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0 | Introduction

Geometry has found immense use in the study of mathematical physics, and often provides
a much more intuitive explanation to difficult physical problems. Perhaps the most obvi-
ous/prominent example of this is general relativity. This is built on the mathematical con-
struction of real manifolds and their associated structures. However, of course the natural
extension of such tools would be to consider the complex counterpart, complex manifolds.
These notes aim to do just that, giving a somewhat smooth transition from a real manifold
to a complex manifold, in a hopefully pedagogical manner.

The content is laid out as follows.

• Chapter 1 reviews real manifolds, and then introduces some perhaps new notions, such
as (co)homology and Hodge theory.

• Chapter 2 then takes a "middle ground" approach to our problem, showing how we can
make almost complex manifolds. These are real manifold on which we define complex
tensor fields. We generalise the structures on our real manifolds to these cases and
introduce some new ones, the most important of which are the Chern classes.

• Chapter 3 introduces so called projective spaces, and we study their properties (that are
relevant to us). In particular we look at how to construct hypersurfaces in these spaces
and derive their Chern classes.

• Chapter 4 finally introduces complex manifolds. We soon specialise to a particular
class of complex manifolds known as Kähler manfiolds. We then further constrain our
attention to a subclass of these known as Calabi-Yau manifolds. It is these spaces we
are fundamentally interested in.1

• Chapter 5 then shows how to construct Calabi-Yau manifolds as submanifolds of our
projective spaces. We give a general procedure of how to do this, and then consider
specific examples to help ground the material.

• Chapter 6 briefly discusses orbifold singularities and shows that they arise in so-called
weighted projective spaces.

• Chapter 7 then quickly summaries the work done.

1We don’t discuss this too much here, but the main reason for this is the fact that Calabi-Yau manifolds
possess a lot of nice properties when it comes to compactifying string theories. In particular we can construct
Calabi-Yau manifolds with real dimension 10 − 4 = 6, which also manage to remove a significant proportion
of the SUSY string theory needs, but that physical spacetime doesn’t seem to possess.
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1 | Real Manifolds

We start with a discussion of real manifolds. This serves two main purposes: 1) it allows us
to set notation in a familiar setting; 2) a lot of the ideas that we will discuss for complex
manifolds have some real counterpart. With the second purpose in mind, we point out now
(and will try to mention as we go) the word "complex" in what follows does not always mean
we are considering a complex manifold. For example it is possible to define complex-valued
tensor fields even on a real manifold (although this is not often done in practice1). I therefore
think it is important that we keep track of what is specific to complex manifolds themselves
and what holds in a more general idea.

1.1 Quick Review

A lot of the material in here is assumed to already be understood, at least to some degree. It
can therefore be read in a more "skim read" fashion, but is included for pedagogical reasons.
However some of the more detailed definitions are omitted2 for brevity reasons. However any
readers should expect a pretty steep climb in content as we progress through this chapter.

1.1.1 Topological Manifolds

First let’s have a quick review on what a real manifold is and how we define it. A lot more
details on these constructions can be found via any differential geometry textbook, or by the
amazing online lecture course "Geometrical Anatomy of Theoretic Physics" by Dr. Frederic
Schuller.3

Definition. [Topological Manifold] A real topological manifold of dimension d is a double4

(M,O), whereM is a set and O is a (paracompact, Hausdorff) topology, where for every
p ∈ M there is a neighbourhood Up such that x : Up → Rd is a homeomorphism. We call
the pair (U, x) a coordinate chart and the set of all coordinate charts defines an atlas. If
we have two charts (U, x) and (V, y) where U ∩ V 6= ∅, then we can consider the (chart)
transition maps y ◦ x−1 : Rd ⊇ x(Up)→ y(Vp) ⊆ Rd, where obviously p ∈ U ∩ V . We only
require that these transition maps be continuous.

1Or at least I don’t suppose it is.
2e.g. the definition of a closed manifold is rammed into a footnote later in a very quick fashion
3See end of notes for some links.
4Well this whole construction is the topological manifold, but we get the idea.

2



CHAPTER 1. REAL MANIFOLDS 3

The main point we want to stress here is that the definition of a topological manifold
only requires that the transition maps be continuous. Of course we can impose further re-
strictions on these maps, therefore giving the manifold more structure. This will prove vital
when it comes to defining a complex manifold later. Throughout these notes, unless specified
otherwise, we shall actually assume that our transition maps are smooth, that is infinitely dif-
ferentiable with continuous result, we call such a manifold a smooth (or differential) manifold.

We will also make extensive use of the tangent spaces. There are lots of ways one can
define a tangent space, but here we just give a quick definition as we assume any readers are
familiar with more complete definitions.

Definition. [Tangent Space] LetM be a smooth manifold of dimension d. Consider a point
p ∈ M and a chart (U, x) around p. Then if we denote the components of x : U → Rn by
{x1, ..., xd}, i.e. xi : U → R, then we define the tangent space to p, denoted TpM, to be
the vector space spanned by {(

∂

∂x1

)
p

, ...,

(
∂

∂xd

)
p

}
.

Proposition 1.1.1. The following holds:

dimTpM = dimM

for all p ∈M.

Definition. [Cotangent Space] Given a manifoldM and its tangent spaces TpM, we define
the cotangent space to p ∈ M as the dual vector space T ∗pM ≡ (TpM)∗ := {f : TpM →
R | f is linear}.

1.1.2 Bundles

We now need the notion of bundles. Again we are assuming that any readers are already
familiar with the idea of a bundle and so we simply quickly state what a bundle is, mainly
to fix notation. Again much more information can be found via Dr. Schuller’s Geometrical
Anatomy course.

Definition. [Bundle] A (smooth) bundle is a triple (E, π,M), where E and M are
(smooth) manifolds and π : E → M is a surjective (smooth) mapping. E is known as
the total space,M the base space and π the projection. There are multiple ways to denote
a bundle, the common ones being (E, π,M), π : E → M, E π→ M and simply E → M.
We will likely use all three interchangeably in these notes.

Definition. [Fibre] Given a bundle (E, π,M), we can define what is known as a fibre at
p ∈M as the preimage under π : E →M, i.e.

Fp := preimπ(p) := {e ∈ E |π(e) = p}.
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Next we need the notion of a section.

Definition. [Section] Let (E, π,M) be a bundle. Then a section is a map σ :M⊇ U → E
such that π ◦ σ = 1M, i.e. π(σ(p)) = p for all p ∈ M. In other words, a section maps a
point p ∈ M into some point in the fibre Fp. Sections are not unique, and we denote the
set of all sections on (E, π,M) over region U by Γ(E,U).

Note that we were careful to say the a section only maps a subset of M to E. In this
sense sections are a local quantity. Some bundles do admit a global section, but such bundles
are necessarily trivial (to be defined in a moment).

It is important to note that for a given bundle, the fibres to each point need not be the
same (i.e. isomorphic to each other). For example, we might have Fp ∼= R but Fq ∼= S1, which
we have tried to indicate in the following diagram where we depictM∼= R. Of course we do
require that dimFp = dimFq for all p, q ∈M, otherwise the dimension of E wouldn’t be well
defined.

Mp q

However of course we can have the case when all the fibres are isomorphic, which leads us to
the next definition.

Definition. [Fibre Bundle] Let (E, π,M) be a bundle. Then if Fp ∼= F , where F is some
manifold, for all p ∈M then we call the bundle a fibre bundle and call F the typical fibre.
We will generally denote a fibre bundle by (E, π,M, F ).

Given two fibre bundles over a common base space (E1, π1,M) and (E2, π2,M), we can
form a new bundle by taking their tensor product

Definition. [Trivial Fibre Bundle] Let (E, π,M, F ) be a fibre bundle with typical fibre F .
We call the fibre bundle trivial iff it is isomorphic as a bundle5 to the bundle (M×F, π,M),
which is clearly a fibre bundle with typical fibre F . For a trivial bundle the projection can
really be thought of as a projection into the first slot, i.e. π : (e, f) 7→ e.

Proposition 1.1.2. A fibre bundle is trivial iff it admits a global section. When a bundle is
trivial, we denote the space of sections simply as Γ(E).

Exercise

Prove the above proposition. Hint: If stuck, see the proof of Proposition 1.1.3 below.

So we can think of a trivial fibre bundle as one who’s total space looks like M × F
everywhere. Clearly not all fibre bundles are trivial, however they are all necessarily locally
trivial. This means that if we consider some open U ⊂M then there exists a homeomorphism

ϕU : U × F → FU := preimπ(U).

5This is defined in the expected way in terms of commuting diagrams.
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We call such a map a local trivialisation, and as the name suggests it basically tells us that
that any local patch of E is trivial. The classic examples of trivial vs non-trivial fibre bundles
is a cylinder (which is given by E ∼= R× S1) and a Möbius strip, which is only locally trivial
to R× S1.

Vector Bundles

It is hopefully clear that we can given structure to a fibre bundle by giving the typical fibre
structure. The most important case for us is when F is given the structure of a vector space.

Definition. [Real Vector Bundle] Let (E, π,M, F ) be a fibre bundle. Then we get a vector
bundle or rank k if we equip the fibres with a dimension k real vector space structure. That
is a vector bundle is a fibre bundle who’s local trivialisation is

ϕU : U × Rk → FU .

We will typically denote a vector bundle by F → V , where V represents the full vector
space structure).

Definition. [Transition Functions] Given a vector bundle of rank k, (E, π,M, V ), we can
consider two local trivialisations on overlapping regions, i.e.

ϕU : U × Rk → FU

ϕV : V × Rk → FV ,

where U ∩ V 6= ∅. We can then consider the composite map

ϕ−1
U ◦ ϕV : (U ∩ V )× Rk → (U ∩ V )× Rk

(p, v) 7→ (p, gUV (p)v)

where gUV : (U ∩V )→ GL(k,R) are the transition functions. The transition functions can
easily be shown to obey6

gUU (p) = 1 ∀p ∈ U
gUV (p)gV U (p) = 1 ∀p ∈ U ∩ V

gUV (p)gVW (p)gWU (p) = 1 ∀p ∈ U ∩ V ∩W,
(1.1)

known as the (Čech) cocycle conditions.

The transition functions are incredible useful as we can actually define a vector bundle
using them. More specifically, we see that they encode information about the projection
map: this is because they are defined in relation to the local trivialisations which contain
information about the projection map. Putting this together with the fact that we can
encode the information about M via an open cover {Ui}, we see that we can determine a
vector bundle (up to isomorphism) by the fibres, an open cover and the transition functions,

6Its worth checking these as an exercise!
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which we now denote by gij : (Ui ∩ Uj) → GL(k,R). Intuitively this makes sense, as we can
think about the transition functions as a way of "patching together" the different parts of the
bundle.

Proposition 1.1.3. Let (E, π,M, V ) be a vector bundle of rank k. Then the bundle is trivial
iff there exists k linearly independent, nowhere vanishing, global sections {σ1, ...σk} ⊂ Γ(E).

Proof. First assume that (E, π,M) is trivial. Then we have a global isomorphism ϕ : M×
V → E. Then if we pick a basis {e1, ..., ek} for V we can consider the maps

σi : p→ ϕ(p, ei),

these are globally defined (as ϕ(p, ei) is7), and are sections as π ◦ σi = 1M. Therefore
{σi} ⊂ Γ(E), are linearly independent and nowhere vanishing (as ϕ is an isomorphism, and
so only vanishes when we consider the zero vector 0 ∈ V ).

Now assume that there exists k linearly independent, nowhere vanishing, global sections
{σ1, ..., σk} ⊂ Γ(E). Then any section τ ∈ Γ(E,U) can be expanded as

τ =
k∑
i=1

fiσi,

where fi ∈ C∞(M).8 However, any point vp ∈ preimπ(p) can be obtained by some section
τp : p → preimπ(p), and so from the above it follows that any point in the fibre at p can be
expanded as

vp =
k∑
i=1

Aiσi(p), Ai ∈ R,

in other words the {σi(p)} define a basis for the vector space preimπ(p). As the {σi} are
globally defined, we can express any point in E via the following decomposition, which gives
us the isomorphism

ϕ : E →M× V

e =

k∑
i=1

Aiσi
(
π(e)

)
7→
(
p = π(e),

k∑
i=1

Aiσi(p)

)
.

There is a specific category of vector bundles that will come up frequently for us later.

Definition. [Line Bundle] A vector bundle of rank k = 1 (i.e. the fibres are 1-
dimensional vector spaces) is known as a line bundle. It is common to denote the
total space of a line bundle by L.

7Also the smooth structure etc inherited from ϕ
8That is, it is a smooth function onM.
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Making New Bundles Out Of Old Ones

Finally, before defining tensor fields, we need to discuss how we can make new bundles out of
existing ones.

We proceed by recalling that a vector bundle is determined (up to isomorphism) by an
open cover, the fibres and the transition functions.

Definition. [Dual Bundle] Let (E, π,M, V ) be a vector bundle of rank k with transition
functions gij : (Ui∩Uj)→ GL(k,R). Then we define the dual bundle as the bundle over the
same base space who’s fibres are given by the dual vector space V ∗, and who’s transition
functions are given by the pointwise matrix inverse of gij .9

With some thought, it can be seen that the dual bundle maps sections of (E, π,M, V ) to
smooth functions overM, hence the name. This will become more clear in the next section
when we construct the cotangent bundle.

Definition. [Whitney Sum Bundle] Consider two vector bundles of ranks k1 and k2 over
the same base space: (E1, π1,M, V1) and (E2, π2,M, V2). Consider a common open cover
{Ui}10 and denote the transition functions by (g1)ij : (Ui ∩ Uj) → GL(k1,R) and (g2)ij :
(Ui ∩ Uj)→ GL(k2,R).

We can construct a new bundle, known as the Whitney sum bundle, by taking the direct
sum, i.e. we have a vector bundle over M with total space E1 ⊕ E2, fibres V1 ⊕ V2 and
who’s transition functions are given by

(g1)ij ⊕ (g2)ij : (Ui ∩ Uj)→ GL(k1 + k2,R)

p 7→ (g1)ij(p)⊕ (g2)ij(p) :=

(
(g1)ij(p) 0

0 (g2)ij(p)

)
.

Definition. [Tensor Product Bundle] Again consider to vector bundles with some common
open cover with transition functions as above. We then define the tensor product bundle
as the vector bundle with total space E1 ⊗ E2, fibres V1 ⊗ V2 and transition maps

(g1)ij ⊗ (g2)ij : (Ui ∩ Uj)→ GL(k1 + k2,R)

p 7→ (g1)ij(p)⊗ (g2)ij(p) :=

 (g1)11(p)g2(p) ... (g1)1k1g2(p)
...

...
...

(g1)k11(p)g2(p) ... (g1)k1k1g2(p)

 ,

where g2(p) represents the whole matrix of g2.

We want to introduce one more type of bundle, but first we need to remind ourselves/introduce
of some notation.

9Note this is not the same as the inverse function: as a function gij : (Ui ∩ Uj) → GL(k,R), so firstly
the inverse would map from GL(k,R) to (Ui ∩ Uj) which is the wrong behaviour, and besides not every such
function is even invertible in the first place.

10This is always possible to form by taking what is known as the refinement of the local trivialisations of
the two bundles.
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Definition. [Antisymmetric Tensor Product] Consider some vector space V , and consider
the nth tensor product

⊗nV := V ⊗ ...⊗ V︸ ︷︷ ︸
n-times

.

We can consider the subspace of ⊗nV given by taking only the pth order antisymmetric
tensor product (also known as the exterior product or wedge product), which we denote by
ΛpV . It’s clear that 1 ≤ p ≤ n.

As a concrete example of a wedge product, given two vectors v, w ∈ V , we have

v ∧ w := v ⊗ w − w ⊗ v ∈ Λ2V.

Note that dim ΛdimV V = 1, as it is formed by taking an antisymmetric product of all the
basis elements, and so any element in ΛdimV is related to another by a smooth function.

Definition. [Determinant Bundle] Let (E, π,M, V ) be a vector bundle or rank k. We can
construct the determinant bundle as the kth exterior product bundle. The fibres are then
given by ΛkV , and the transition functions as in the tensor product definition above, but
now restricted to the antisymmetric product. However this is just the definition of the
determinant of the matrix g(p), hence the name determinant bundle. Note also that, as
explained above, the fibres are 1 dimensional, and so the determinant bundle is an example
of a line bundle.

The determinant bundle is actually very important, and it gives rise to notions of tensor
densities, which play a huge role in topics such as GR, where the familiar term

√
−g used in

GR integrals is a tensor density.

1.1.3 Tensor Fields

We are now in a good place to give a nice definition of tensor fields. We do this by recalling
the tangent space to a point p ∈M is a vector space with dimension dimTpM = dimM. We
have a tangent space for all p ∈M, and clearly TpM∼= TqM for all p, q ∈M, and so we can
form the trivial vector bundle with total space E ∼=M×TpM. We denote the total space – in
fact we will often just call the whole tangent bundle TM rather than (TM, π,M, TpM), for
obvious reasons – by TM and the bundle is known as the tangent bundle. We similarly have
the cotangent bundle, T ∗M, which is the dual bundle to the tangent bundle (as the fibres are
the dual to the fibres in TM).

Definition. [(Co)Vector Field] Consider the tangent bundle TM. A smooth section σ :
M→ TM is known as a vector field. Likewise a covector field is a smooth section of the
cotangent bundle ω :M→ T ∗M.

We can get a nice intuitive idea to why we define a vector field as above: we like to think
of a vector field as a "vector at each point, that nicely follow on from each other". Well the
fibres of the tangent bundle are exactly vectors at a point, and a section gives us one per
point. The vague condition of "nicely follow on from each other" is taken care of by the more
concrete requirement that the section be smooth.
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Definition. [Tensor Field] Let TM and T ∗M be the tangent and cotangent bundle to
some manifoldM. A (r, s)-tensor field is a section of the product bundle

T :M→⊗rTM⊗s T ∗M,

i.e. it is a map

T : T ∗M× ...× T ∗M︸ ︷︷ ︸
r-times

×TM× ...× TM︸ ︷︷ ︸
s-times

→ C∞(M).

We denote the space of (r, s)-tensor fields as Γ(⊗rTM⊗s T ∗M).

Note that vector fields are (1, 0)-tensor fields and covector fields are (0, 1)-tensor fields.
There is a further subset of tensor fields which is very important, which we now define.

Differential Forms

Definition. [Differential Forms] A differential p-form on some manifold M is a smooth
section ω :M→ ΛpT ∗M, i.e. it is a totally antisymmetric (0, p)-tensor field. We denote
the set of p-forms11 onM as Ωp(M).

There are two special types of p-forms worth mentioning:

1. 0-forms: It follows from Λ0T ∗M∼= C∞(M), that 0-forms are just smooth functions on
M.

2. dimM-forms: As explained above, this is a one-dimensional space, and an element is
known as a top form. A nowhere vanishing top form is called a volume form.

We conclude this "quick" review by noting/defining two operations on forms. Firstly note
that the wedge product allows us to produce forms of higher degree, i.e. if ω ∈ ΩpM and
η ∈ ΩqM, then ω ∧ η ∈ Ωp+qM. Next we define the exterior derivative.

Definition. [Exterior Derivative] The exterior derivative is a map

d : ΩpM→ Ωp+1M

defined to obey

(i) For any smooth function f ∈ C∞(M), we have df(X) = X(f).

(ii) It "squares to zero", i.e. d ◦ dω = 0 for ω ∈ ΩpM for all 1 ≤ p ≤ dimM.

(iii) It is graded Leibniz on the wedge product, easiest just written: if ω ∈ ΩpM and
η ∈ ΩqM then

d(ω ∧ η) = (dω) ∧ η + (−1)pω ∧ dη.

11We often drop the "differential" and just call them forms.
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The Metric

We assume the reader is at least familiar with the importance of a metric (say, from a GR
course), but for completeness we give a definition now.

Definition. [Metric] LetM be a smooth manifold. Then the metric, g, is a (0, 2)-tensor
field that is symmetric, g(X,Y ) = g(Y,X), and non-degenerate, g(X,Y ) = 0 for all X
implies Y = 0. A manifold equipped with a metric is called a metric manifold. We split
these into two further categories:

(i) If we require that is positive definitite, i.e. g(X,X) > 0 for all X 6= 0, then we call
the manifold Riemannian.

(ii) If we allow g(X,X) < 0 then we call the manifold pseudo-Riemannian.

We can relate the two definitions to the signature of g, Riemannian metrics having all +s
while pseudo-Riemannian having some +s and some −s. If we have only 1 minus we call
the manifold Lorentzian.

As the metric is non-degenerate it can be inverted, i.e. we can define an inverse metric
which is an element of the symmetric (2, 0)-tensor fields. What we are essentially doing is
defining an (pseudo-)inner product on the tangent and cotangent spaces. We can extend this to
define a (pseudo-)inner product for a general tensor space by the familiar "lowering"/"raising"
of all the indices.

1.2 Poincaré Duality

We now present a very hand wavey/brief discussion of an important result in algebraic topol-
ogy; the Poincaré duality. This section by no means claims to be a rigorous discussion, and
definitely glosses over lots of subtleties. We do this for three reasons: 1) I am not a math-
ematician and so don’t actually know these subtleties myself; 2) in these notes we will only
really be concered with the general concept of Poincaré duality; and 3) to save space — any-
one interested in a much (much much) more detailed discussion is directed to the 250 or so
pages in Hatcher’s book.

1.2.1 Homology

Simplices

In order to understand homology, we first need to know what a simplex is. We give the
following, geometrical, definition.

Definition. [n-Simplex (Triangle)] An n-simplex is the n-dimensional version of a triangle.

To help clarify the above definition, and to give some standard names, we list the first few
simplices:

(i) 0-simplex: a point.

(ii) 1-simplex: a line segment.
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(iii) 2-simplex: a triangle.

(iv) 3-simplex: a tetrahedron.

A more formal definition of an n-simplex is as follows.

Definition. [n-Simplex (Convex Hull)] An n-simplex is n-dimensional polytope12 which
is the convex hull13 of n+ 1 vertices.

We see, therefore, that we can think of an n-simplex as a collection of (n + 1)-vertices,
{v0, ..., vn}, connected by straight lines, and then filling in the surface area. In fact we are
also going to order the vertices, so that our lines now have an orientation given by increasing
order. We then denote our simplex by [v0, ..., vn] where the ordering is read left to right. We
will assume this ordering is understood whenever we say "n-simplex", i.e. we what we really
mean is "an n-simplex with this vertices ordered".

Example 1.2.1 . As an example, let’s consider a 2-simplex. This is given by 3 vertices [v0, v1, v2],
we depict this graphically as

v2

v0 v1

Definition. [Standard n-Simplex] We define the standard n-simplex to be the n-simplex
given by

∆n :=
{

(t0, ..., tn) ∈ Rn+1 |
∑
i

ti = 1 and ti ≥ 0∀i
}
.

The standard simplex basically just corresponds to taking the vertices to lie unit distance
along the axes of Rn+1, and the ordering is given by the labelling of the axes. Now with
a bit of thought, its easy to convince ourselves that any n-simplex is homeomorphic to the
standard n-simplex ∆n. We shall therefore just call our simplices ∆n = [v0, ..., vn].

Definition. [Face Of A Simplex] Consider an n-simplex ∆n = [v0, ..., vn]. Now if we
remove one of the vertices, say the i-th vertex, we are left with [v0, ...v̂i, ..., vn], where the
hat indicates its removal. But this is simply a (n − 1)-simplex. We call this resulting
simplex a face of ∆n.

Definition. [Boundary Of A Simplex] Let ∆n be an n-simplex. The union of all the faces
of ∆n is called the boundary of ∆n, and we denote it ∂∆n. The name is hopefully clear

12Basically a shape with flat sides.
13Basically the surface.
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from the geometrical point of view. For reasons that shall become clear soon, we define
our boundary map by the formal sum

∂ : [v0, ..., vn] 7→
∑
i

(−1)i[v0, ..., v̂i, ..., vn], (1.2)

where the sum should be thought of as "composing the arrows", which a minus sign indi-
cating going against the ordering.

Example 1.2.2 . To clarify the definition of boundary map given above, let’s take the boundary
of our 2-simplex from before. We have

∂[v0, v1, v2] = [v1, v2]− [v0, v2] + [v0, v1],

which we can indicate pictorially as

v2

v0 v1

∂

v2

v0 v1

where the arrow on the inside shows us the flow of the arrows.

(Simplical) Homology

The idea of (simplical) homology is to take the ∆ns and to embed them into some topological
space X, "gluing" them along the faces as we go. In this way we can build the space X
using the ∆ns. We denote the embedding maps by σα : ∆n → X, where the α index tells
us which n we consider. If we place certain reasonable restrictions on these maps,14 we get
what is known as a ∆-complex. We denote by ∆n(X) the set of n-dimensional subspaces
that are given by taking the disjoint union of (the image of) one or more ∆n and the ∆n−1

simplices that "glue" them together.15 Essentially all we’re saying is glue together one or
more n-simplex in X along a common face (which is a (n − 1)-simplex), but keep track (i.e.
disjoint union) of the simplices we have.

We now look at Example 1.2.2 again. We can think of the 2-simplex as a trivial element
of ∆n(X) given just by the embedding of the 2-simplex. Now we note that we can think of
the triangle on the right of the diagram as an element of ∆n−1(X), where we have glued three
1-simplices (the lines [v0, v1], [v1, v2] and [v2, v0]) together using three 0-simplices (the vertices
v0, v1 and v2). By a (hopefully clear) extension of this example, we see that we can view our
boundary maps instead as maps from ∆n(X) to ∆n−1(X). Explicitly, using Equation (1.2)
for guidence, we define ∂n : ∆n(X)→ ∆n−1(X) by its action on the embedding maps:

∂n(σα) =
∑
i

(−1)iσα
∣∣
[v0,...,v̂i,...,vn]

,

14See page 103 of Hatcher.
15For those interested, we are essentially talking about CW complexes.
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where, by the linearity described above, we need only specify the map on the basis (n − 1)-
simplices.

Lemma 1.2.3. The boundary map is nilpotent, that is the composition ∂n−1 ◦ ∂n : ∆n(X)→
∆n−2(X) vanishes.

Proof. By definition we have

∂n−1∂n(σ) = ∂n−1

(∑
i

(−1)iσα
∣∣
[v0,...,v̂i,...,vn]

)
=
∑
j 6=i

(−1)i(−1)jσα
∣∣
[v0,...,v̂i,...,v̂j ,...,vn]

=
∑
j<i

(−1)i(−1)jσα
∣∣
[v0,...,v̂j ,...,v̂i,...,vn]

+
∑
j>i

(−1)i(−1)j−1σα
∣∣
[v0,...,v̂i,...,v̂j ,...,vn]

where the second line follows from the fact that when we take out vi, we should really relabel
vj → vj−1 for all j > i. Now simply relabel i ↔ j in the last sum and then the last line
cancels.

It follows from the above Lemma, that we have the following exact sequence of maps

... ∆n+1(X) ∆n(X) ∆n−1(X) ... ∆1 ∆0(X) 0,
∂n+1 ∂n ∂1 ∂0

with ∂n∂n+1 = 0, i.e. Im ∂n+1 ⊆ ker ∂n, where Im / ker stand for image and kernel, respec-
tively. Such an sequence is known as chain complex. We call elements of Im ∂n+1 n-boundaries
and elements of ker ∂n n-cycles.16

There is another sequence, which looks a lot like a chain complex, known as an exact
sequence. An exact sequence is basically a chain complex but where we satisfy the equality,
Im ∂n+1 = ker ∂n. The homology group is essentially a measure of how far off the chain
complex is from being exact, as the next definition makes formal.

Definition. [Homology Group] Consider some chain complex (C•, ∂•),17 we define the n-th
homology to be the quotient

HC
n :=

ker ∂n
Im ∂n+1

. (1.3)

Elements of HC
n are called homology classes, and are equivalence classes, i.e. for α, β ∈ Cn

α ∼ β ⇐⇒ α = β + ∂n+1γ,

where γ ∈ Cn+1.

16These names are hopefully somewhat intuitive given the geometrical pictures: boundaries should be
obvious, and a cycle we can think of as a collection of n-simplices which are glued together in "cyclic" fashion,
i.e. they flow around the shape. With a bit of thought, it’s clear such a cyclic shape will have vanishing
boundary. It is important to note that such a cyclic shape need not be the boundary, though, which is the
entire point of homology, so hang on!

17This notation is standard, the • basically represents all the different n values. Note also as the wording
indicates, there are homology groups are defined for general chain complexes, not just the ∆n(X) stuff we’re
considering.
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The homology group for the specific case we have constructed, i.e. Cn = ∆n(X), is known as
the n-th simplical homology group of X, denoted H∆

n (X).
Ok so we have H∆

n (X), but what exactly does this tell us? Well, by definition, we get a
non-vanishing n-th simplical homology iff there exists a n-cycle which is not the boundary of
some (n + 1)-simplex. With a bit of thought, it should be clear this is equivalent to saying
that it’s non-vanishing iff there is a n-dimensional subspace in X which is not the boundary
of some (n+1)-dimensional subspace which has no singularities (by which we mean you can’t
"poke a hole" in the latter space).18

It is actually the point in brackets above that is of interest to us: the n-th simplical
homology is non-vanishing only when there exists a n-dimensional subspace which does not
contain any "holes", in other words it can be contracted away without leaving X. We try
clarify this with the following examples and exercise but first we introduce the Betti numbers.

Definition. [Betti Numbers] We define the n-th Betti number as the dimension of the n-th
homology group:

bn := dimH∆
n (X). (1.4)

Example 1.2.4 . Let X = Rn. It is hopefully clear that any k-cycle, which is a k-dimensional
closed surface in Rn, is given by the boundary of a (k + 1)-simplex, namely the (k + 1)-ball
Bk+1.19 For example, if we take n = 2 then we have the 1-cylce given by a circle, but this is
just the boundary of a disk. This is just the statement that Sk = ∂Bk+1. The only exception
here is k = 0 as S0 is a single point but B1 is a line and the boundary of a line is two points.
We therefore conclude20

H∆
k (Rn) =

{
R k = 0

0 otherwise

where it is power of R21 that tells us "how many k-dimensional non-contractible loops we
have" (from now on this is what we mean by k-dimensional hole).

Example 1.2.5 . Let X = S2, the 2-sphere. From the example above, it’s hopefully clear that
H∆

1 (S2) = 0. This is just the statement that any loop on the surface of S2 can be contracted
away without leaving S2. However we see that H∆

2 (S2) 6= 0 as we cannot contract the sphere
itself away. In simplex language, we would need to embed a tetrahedron homeomorphically
into S2, but this can’t be done precisely because we don’t include the interior of the ball. Said
another way, we can think of S2 as ∂B3, as above. The extension of these arguments show
that

H∆
k (Sn) =

{
R k = 0, n

0 otherwise.

18This is basically given by the fact that we require that σα : ∆n → X need to map the interior of ∆n to
an open subspace of X.

19Or at least something that is homeomorphic to a Bk+1.
20We argue the k = n case by invoking the contractible away argument, as we obviously can’t homeomor-

phically put a (n+ 1)-dimensional space into Rn.
21Really we should have a Z here given the way we have defined homology. However for easy comparison

to deRham cohomology shortly, we assume we have R coefficients not Z.
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Exercise

Convince yourself (using geometric arguments) that the simplical homology of the tours
T 2 ∼= S1 × S1 is

H∆
n (T ) =


R k = 0, 2

R2 k = 1

0 otherwise

This result generalises to

H∆
n (Tm) =


R k = 0,m

Rm k = 1

0 otherwise

where Tm := S1 × ...× S1︸ ︷︷ ︸
m-times

.

Brief Comment on Singular Homology

As we have been careful to say, what we have defined is known as simplical homology. There
is another, closely related, type of homology known as singular homology. The main difference
between the two is that in singular homology we only require that our maps σα : ∆n → X
be immersions, rather than embeddings. This basically means our map needs only to be
continuous (and not necessarily injective) that we can "fold" the ∆n into X, giving us some
singular embedding. It is a fair question to ask "Why on EARTH would we consider such a
wacky idea!?" The answer is that it actually allows us to see some really nice properties, e.g.
two spaces X and Y that are homeomorphic must have isomorphic singular homology groups,
in this sense singular homology is a propert of the topology of X itself, rather than of some
triangulation, which simplical homology seems to be. We denote the n-th singular homology
group of X simply by Hn(X). We then claim, without proof (see Hatcher for details), the
following Lemma holds.

Lemma 1.2.6. The singular and simplical homologies are isomorphic for all ∆-complexes.

1.2.2 Cohomology

Just as a covector was the dual of a vector, cohomology is the dual of homology. We define
it using the specific example of singular cohomology.

Singular Cohomology

Definition. [Singular Cohomology] Let (C•(X), ∂•) be the singular homology of some
topological space X. We then define the singular cochain complex (C∗• , d•) where

Cn ≡ C∗n := Hom(Cn,R), and dn : Cn → Cn+1
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where Hom stands for homomorphisms. We then define the n-th singular cohomology
equivalently to before, namely

Hn(X) =
ker dn

Im dn−1
,

where we note we have "raised" the n index, compared to singular homology. We call
elements of ker dn n-cocycles and elements of Im dn−1 n-coboundaries.

Essentially what we have done is reverse the ordering of the sequence, so that our coboundary
map dn increases the index rather than decreases it. Note that the cohomology is well defined
as we still have dn ◦ dn−1 = 0.

de Rham Cohomology

Before finally stating the Poincaré duality, we want to present the type of cohomology, that
will be of most interest to us, de Rham Cohomology.

Recall that we defined the exterior derivative to be a map

d : ΩpM→ Ωp+1M

and condition (ii) told us that it is nilpotent. Well, if we are more correct and note that we
actually have an exterior derivative for each 1 ≤ p ≤ dimM, we see that we actually have
a cochain complex (Ω•M, d•). We can therefore define its cohomology, which we call the de
Rham cohomology ofM

Hp
dR(M) :=

ker(d : Ωp(M)→ Ωp+1(M))

Im(d : Ωp−1(M)→ Ωp(M))
.

It is standard to replace the names "cocycle" and "coboundary" with "closed" and "exact"
when dealing with de Rham cohomology. That is, α ∈ Ωp(M) is closed if dα = 0 and is exact
if α = dβ for some β ∈ Ωp−1(M). So the de Rham cohomology is a measure on how a closed
form fails to be exact.

Theorem 1.2.7 (de Rham). LetM be a smooth manifold, then we have an isomorphism

Hp
dR(M) ∼= Hp(M; R), (1.5)

where the right-hand side is the singular cohomology ofM, with coefficients in R.22

Proof. The proof of this theorem follows from the fact that we can only integrate a p-form on
a p-dimensional manifold.23 We then recall that the p-th singular cohomology is defined to
be the dual of p-th singular homology, which in itself represents p-dimensional submanifolds
inM. Well we then just define the map

I : Hp
dR(M)→ Hp(M; R)

ω 7→ Iω,

22This is why we took our coefficients above to be in R.
23For the sake of brevity, we do not show why this is the case here, but a discussion can be found in Lecture

12 of Dr. Schuller’s Winter School On Gravity and Light course, notes for which are available on my website.
note to self, maybe do put a short section in here as would make these notes more self contained.
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which acts on a [c] ∈ Hp(M,R) as

Iω([c]) :=

∫
c
ω,

which we claim is well defined (i.e. independent of the representative c).

1.2.3 Poincaré Duality (Finally!)

We are now ready to finally state the Poincaré duality and why it is of interest to us. We
state the duality in the form of a Lemma without proof (again see Hatcher for more details).

Lemma 1.2.8 (Poincaré Duality). LetM be an n-dimensional, oriented, closed24 manifold,
then we have an isomorphism between singular cohomology and singular homology:

Hp(M; R) ∼= Hn−p(M; R). (1.6)

The reason we care about Poincaré duality is that, putting it together with Equation (1.5),
we conclude

Hp
dR(M) ∼= HdimM−p(M; R), (1.7)

and so the p-th de Rham cohomology tells us how many (dimM−p)-dimensional holes there
are inM. This is a highly non-trivial result and is incredibly powerful. Why? Well because
it is practically relatively simple to calculate the de Rham cohomology of a space, whereas
the singular homology is a bit of a pain. However the interesting topological information (i.e.
the number of holes) is contained within the singular homology. So Equation (1.7) gives us
a practical way to answer the question of "how many holes does our manifold have?" This
motivatives the redefinition of our Betti numbers, Equation (1.4):25

Definition. [Betti Numbers (de Rham)] We define the n-th Betti number of a
smooth manifold to be

bn := dimHn
dR(M). (1.8)

We can then introduce the Euler characteristic26

24This means compact without boundary. A manifold is compact, if its underlying topological space is
compact. A topological space is compact is every open cover (basically the union of the open sets that
contains the full space) contains a finite subcover. These definitions are assumed understood, but if not any
decent differential geometry textbook will explain this.

25Note this is actually a new definition, which is indicated by the raising of the index.
26The Euler characteristic is actually defined in terms of homology as the number of vertices minus the

number of edges plus the number of faces of a given polyhedron. It turns out the following is equal to this.



CHAPTER 1. REAL MANIFOLDS 18

Definition. [Euler Characteristic] We define the Euler characteristic of M to be
the alternating sum

χ :=

dimM∑
n=0

(−1)nbn. (1.9)

1.2.4 Some Geometry Of Forms

Before moving on to discuss Hodge theory, let’s just make some comments on the geometrical
interpretations of forms. This short subsection is based off [1], and the interested reader is
directed there for lots of nice diagrams to go along with the words.

1-Forms

The Poincaré duality actually allows us to give a nice geometrical interpretation to exact
1-forms. A 1-form α is exact if it is given by the exterior derivative of a smooth function, i.e.
α = df where f ∈ C∞(M). Well we have just seen that the Poincaré duality tells us that an
exact p-form is isomorphic to a (dimM−1)-dimensional submanifold, which is the boundary
of a (dimM− 1 + 1)-dimensional submanifold. So what is it? Well with a bit of thought we
can convince ourselves that df corresponds to the contour lines of f , that is the field f is our
dimM submanifold and its boundary is given by the contour lines.

This also allows us to understand, geometrically, why df(X) := X(f) is a smooth function.
If we think of df as the contour lines of f and X as a set of vectors at each point p ∈M, then
the number we get out from df(X)|p is just given by the number of contour lines X "goes
through". This is obviously a loose analogy (as how do you "count" the contours) but it is
still a nice geometrical picture, I think.

Volume Forms

Recall that a volume form is a nowhere vanishing top form, i.e. ω ∈ ΩdimM(M) with ω(p) 6= 0
for all p ∈ M. Well, by Poincaré duality, this corresponds to a 0-dimensional submanifold,
which is a scalar field (i.e. a number at every point). This number, is exactly the weight of
the measure when we integrate over this manifold, hence the name volume form.

Wedge Products

Finally let’s comment on the wedge product of two forms. Recall that if α ∈ Ωp(M) and
β ∈ Ωq(M) then α ∧ β ∈ Ωp+q(M). How does this translate under Poincaré duality? Well
we’re taking a (dimM− p)-dimensional and a (dimM− q)-dimensional submanifold and
somehow putting them together to give a (dimM− p − q)-dimensional submanifold. The
geometrical picture of this is that the resulting submanifold is given by the intersection of the
two original ones, which you should be able to convince yourself has the correct dimension.
We can also account for the orientation of these manifolds under wedge products, but we
won’t discuss that further here (whenever needed later, we shall just claim results on how the
resulting orientation comes out). For more details see section 4.3 of [1].
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1.3 Hodge Theory

Right, we now want to introduce Hodge theory. This is a very powerful way of studying the
differential forms of a manifold, and, as we will see, leads to a nice decomposition of the de
Rham cohomology. The complex version of Hodge theory will prove immensely helpful to us
later.

1.3.1 The Hodge Dual Operator

First we need to define the Hodge dual operator. This Hodge dual can be defined in a more
general sense, however we focus on its definition in terms of its action on differential forms
on a Riemannian manifold.

Definition. [Hodge Dual] Let α ∈ Ωp(M) be some generic p-form on a (pseudo-
)Riemannian manifoldM. We define the Hodge dual as the map

? : Ωp(M)→ ΩdimM−p(M).

We can define it completely via the following relation: let α, β ∈ Ωp(M), and let (α, β)
denote the inner product induced by the metric. Further let ω ∈ ΩdimM(M) be the unit
volume form,27 then the Hodge dual satisfies

α ∧ ?β = (α, β)ω. (1.10)

It follows from the non-degeneracy of the inner product that Equation (1.10) tells us that
the Hodge dual is unique. We can integrate both sides of Equation (1.10) on all of M to
obtain the square integrable inner product on p-forms, i.e.

〈α, β〉 :=

∫
M
α ∧ ?β, (1.11)

which we note makes sense as α ∧ ?β is necesserily a top form and so can be integrated over
M.

Remark 1.3.1 . We can give a slightly more "useful" definition of the Hodge star by using
coordinates, namely, if dimM = n

(?ω)µ1...µn−p =
1

p!

√
|g|εµ1...µn−pν1...νpων1...µp .

We will rarely use indices in these notes, however, and so this is just included more to help
"ground" the more abstract definitions above.

Remark 1.3.2 . It is important to note that our definition of the Hodge dual depends on the
metric. This is seen in the abstract definition by the introduction of the inner product 〈α, β〉,
and in the index version by the fact that we have raised the indices of the form ων1...νp on the
right-hand side. This is important in things like QFT where we contrast terms like F ∧ F
with F ∧ ?F ; the former is purely topological, whereas the latter is metric dependent. We
won’t discuss this further here, but just include this as an important side remark.

27I.e. the volume form with unit inner product with itself.
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Self Dual & Anti-Self Dual Forms

One can relatively easily show that for α ∈ Ωp(M)

?(?α) = ±(−1)p(n−p)α,

where we take the + sign for Riemannian manifolds and the − sign for Lorentzian ones. This
is probably easiest shown using the component expansion above along with

εµ1...µn−pρ1...ρpεν1...νn−pρ1...ρp = ±p!(n− p)!δµ1[ν1
...δ

µn−p
νn−p] = ±p!δµ1ν1 ...δ

µn−p
νn−p ,

where again the + sign is for Riemannina and − for Lorentzian.
Now also note that, if dimM = 2m, i.e. is even, then ? : Ωm(M) → Ωm(M) is a

convolution. Putting this together with the Lorentzian result, for α ∈ Ωm(M),

?(?α) = −(−1)m(2m−m)α = −(−1)m
2
α = −α

we see that our m-forms are eigenvectors of ? with eigenvalues ±i. In this sense we can
decompose as follows

Ωm(M) = Ωm
+ (M)⊕ Ωm

− (M),

where the subscripts indicate the eigenvalue, i.e. α ∈ Ωm
+ (M) obeys ?α = +iα. We call

elements of Ωm
+ (M) self dual forms and elements of Ωm

− (M) anti-self dual forms.
Self dual and anti-self dual forms crop up all over the place in physics. We won’t discuss

these too much further in these notes, but we just note that this duality clearly reduces the
number of degrees of freedom (i.e. if our m-form represents a collection of fields then the
(anti-)self duality equates some of these fields).

1.3.2 Codifferential

Let’s now go back to Equation (1.11). This should (hopefully) remind us of square integrable
functions in topics such as quantum mechanics. Now also recall that we have an operator
d : Ωp(M)→ Ωp+1(M). We now want to ask the question of is there some formal adjoint to
this operator that we can insert into Equation (1.11). That is, is there an equivalent to the
QM relation28

〈ψ, Pχ〉 = 〈P †ψ, χ〉?

The answer is yes, and we call it the codifferential. We define it in the following claim.

Claim 1.3.3 . Let α ∈ Ωp(M) and β ∈ Ωp−1(M), then, if M is a closed manifold,29 the
following is true

〈α, dβ〉 = 〈d†α, β〉, (1.12)

where d† : Ωp(M)→ Ωp−1(M) is defined as

d† := ±(−1)np+n−1 ? d?, (1.13)

where dimM = n, and again ± corresponds to Riemannian vs Lorentzian. We call d† the
codifferential operator.

28If this doesn’t look familiar, see Dr. Schuller’s QM course. REF NEEDED.
29This basically takes care of boundary terms.
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Exercise

Given that, on a closed manifold, Stoke’s theorem tells us∫
M
dω = 0,

where ω ∈ ΩdimM−1(M) (i.e. the integral of an exact form vanishes), prove the above
claim.
Hint: If you get very stuck, Prof. Tong’s GR notes might not be a bad place to look...

We note that it follows from d2 = 0 and ?2ω ∝ ω that (d†)2 = 0, explicitly,

(d†)2ω = ?d ? (?d ? ω) ∝ ?d2 ? ω = 0.

In analogy to the d case, we call a form coclosed if d†α = 0 and coexact if α = d†β, where
α ∈ Ωp(M) and β ∈ Ωp−1(M).

1.3.3 Hodge Decomposition & Harmonic Forms

Now comes the important bit, we start by introducing the following definition.

Definition. [Laplacian] We define the Laplacian for differential forms via

∆d := (d+ d†)2 = dd† + d†d, (1.14)

where the second line follows from d2 = (d†)2 = 0.

Definition. [Harmonic Forms] We call a p-form α harmonic iff ∆dα = 0. We denote the
space of harmonic p forms onM by Hp(M).

Proposition 1.3.4. A p-form on a closed manifold is harmonic iff it is both closed
and coclosed.

Proof. Firstly it is clear that if dα = d†α = 0 then ∆dα = 0. Now we need to show the
reverse: recalling Equation (1.12), consider

〈∆dα, α〉 = 〈dd†α, α〉+ 〈d†dα, α〉
= 〈d†α, d†α〉+ 〈dα, dα〉
= ‖d†α‖2 + ‖dα‖2

where the last line defines what we mean by ‖α‖2. Each of these terms are positive (they’re
norm-squares), and so if ∆dα = 0 it follows that d†α = dα = 0.

Note that ∆d : Ωp(M) → Ωp(M). This motives the following theorem (which we do not
prove).
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Theorem 1.3.5 (Hodge Decomposition). We can decompose the space of p-forms as follows

Ωp(M) = Hp(M)⊕ Im dp−1 ⊕ Im d†p+1. (1.15)

That is, any p-form ω can be uniquely written as

ω = dα+ d†β + γ,

where α ∈ Ωp−1(M), β ∈ Ωp+1(M) and γ ∈ Hp(M).

The Hodge decomposition theorem allows us to prove the following, important, Lemma.

Lemma 1.3.6. For some smooth manifoldM we have the following isomorphism

Hp(M) ∼= Hp
dR(M). (1.16)

Proof. First let’s show that a harmonic form gives an element in Hp
dR(M). Firstly note that

if γ ∈ Hp(M) then, as we have shown, dγ = 0. We now just need to show that it is not exact.
This follows immediately from the fact that the Hodge decomposition is unique and so, since
Hp(M) ⊆ Ωp(M), we have γ ∈ Ωp(M) and so it must not lie in Im dp−1, that is γ 6= dβ for
some β ∈ Ωp−1(M).

Now let’s show that every equivalence class in Hp
dR(M) contains a harmonic form. That is

we want to show that if [ω] ∈ Hp
dR(M) that ω = dα+γ for some harmonic form γ. Well again

comparing this to the Hodge decomposition, basically all we need to show is that d†β = 0.
Well note that dω = 0, and then consider

0 = 〈dω, β〉 = 〈dd†β, β〉 = 〈d†β, d†β〉 = ‖d†β‖ ⇐⇒ d†β = 0,

where we have used that d2α = dγ = 0 in the decomposition of ω. This proves surjectivity,
and then injectivity follows from the fact that the decomposition is unique. We can equally
show it by proving and exact form dα is mapped to 0 ∈ Hp(M).30

1.4 Holonomy

We now take a step back from discussing differential forms and cohomology to introduce what
is known as holonomy. There is a lot that can be said about holonomy31 but here we shall
just give a brief definition and description of holonomy.

Definition. [Holonomy] Let M be a smooth manifold equipped with some connection32

∇, and consider a X ∈ TpM. Now consider a closed smooth loop γ : [0, 1] → M with
γ(0) = γ(1) = p. Now consider parallel transporting X around γ, the result will be, in
general, some other element X ′ ∈ TpM. As TpM is an (dimM)-dimensional vector space,
we know we can relate X and X ′ via some GL(dimM,R) action, i.e. Pγ ∈ GL(dimM,R)
where Pγ denotes the parallel transport along γ. We then define the holonomy group at
p ∈M to be

Holp(∇) := {Pγ ∈ GL(dimM,R) | γ is a loop based at p ∈M}. (1.17)

This is a Lie group, where multiplication is given by composition and the inverse is given
by running around the path in the opposite direction.

30This is a nice additional exercise.
31And I might later end up producing some more detailed notes on the topic.
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As the notation suggests, the holonomy is a property of the connection ∇, and so changing
the connection changes the holonomy. This is not surprising, as it is the connection that
defines what we mean by parallel transport. If we consider a (pseduo-)Riemannian manifold,
then we know that there exists a unique connection which is metric compatible, which we call
the Levi-Civita connection. The condition of being metric compatible basically means that
lengths are preserved under parallel transport and so our holonomy group clearly restricts to
Holp(∇LC) ⊆ O(dimM). If we further require our manifold to be orientable, then we get
SO(dimM).

Now, as we have been careful to indicate, the holonomy seems to depend on the choice of
base point p ∈M. Of course in general this is true, however if we have a connected manifold
then any two points p, q ∈ M can be connected by some smooth path τ : [0, 1] → M with
τ(0) = p and τ(1) = q, and so we can relate the holonomies at these two points, simply by

Holq(∇) = PτHolp(∇)P−1
τ .

This provides an isomorphism between Holp(∇) and Holq(∇) and so it allows us to really
speak about the holonomy of the manifoldM itself. We denote this by Hol(∇;M), although
in what follows we will basically always drop the ∇, but again it is important to remember
that the holonomy depends crucially on the connection.

It is hopefully clear that the holonomy group of a manifold is related to the curvature
of the manifold and that Hol(M) = 0 iff the Riemann tensor vanishes (i.e. the manifold is
flat). In fact we can make an even nicer statement than this. The holonomy group is in
fact a Lie group, and so we can consider its Lie algebra. This is going to be a measure of
the local curvature (as the Lie algebra can be thought of as the local action of a group).
Putting this together with the fact that parallel transporting a vector around an infinitesimal
parallelogram is given by the Riemann tensor, i.e. that locally

[∇X ,∇Y ](V ) = R(X,Y )V,

we see that the Lie algebra of Holp(M) is generated by the matrices R(X,Y ) ∈ End(TpM)
where X,Y run over the elements of TpM. This is basically the content of the Ambrose-Singer
theorem, however we will not discuss it in more detail in these notes.

32We assume the reader is familiar with the idea of a connection and parallel transport from a GR course,
e.g.
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We will now start to make our first contact with something that looks "complexy" in our
geometry. However, as we noted at the start of the notes, it is important to note that
everything we discuss in this chapter equally applies to real manifolds as well as complex
ones. As we will make clear shortly, the idea is that essentially all that follows are properties
of complex vector bundles, and it is possible to make a complex vector bundle over a real
manifold: simply make the fibres complex vector spaces.

2.1 Almost Complex Structures

As we just explained, the aim is make a complex vector bundle over our real1 manifold. We
do that as by introducing the following definitions.

Definition. [Linear Complex Structure] Let V be some vector space. We call a linear map
J : V → V a linear complex structure if it squares to −1, i.e. J2 = −1V .

Definition. [Almost Complex Structure] Let M be a smooth manifold, then an almost
complex structure is a linear complex structure on each tangent space TpM. That is, an
almost complex structure is a (1, 1)-tensor field which we view as a map J : TM→ TM
such that J2 = −1. We call the pair (M, J) an almost complex manifold.

Proposition 2.1.1. Let M be a real smooth manifold, then M admits an almost complex
structure only if the dimension ofM is even.

Proof. It follows from J2 = −1 that (det J)2 = (−1)dimM, but isM is real then (det J)2 > 0,
and so we must have dimM = 2m for m ∈ Z.

Essentially an almost complex structure turns our tangent spaces into complex vector
spaces. In fact, if we define the complexified tangent bundle by

TCM: = TM⊗ C ∼= C2m where dimR(M) = 2m,

then we can naturally extend the definition of J to J : TCM → TCM. We then see that
elements X ∈ TCM are eigenvectors of J with eigenvalues ±i (as J2X = −X), which allows
us to decompose as follows

TCM = TM(1,0) ⊕ TM(0,1),

1As we might expect, a complex manifold is a particular kind of real manifold of twice the dimension, and
so these definitions also apply to complex manifolds. We will make this more concrete in the next chapter.

24
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where X ∈ TM(1,0) obeys JX = +iX and simiarly X ∈ TM(0,1) obeys JX = −iX. We call
TM(1,0) the holomorphic tangent bundle and TM(0,1) the antiholomorphic tangent bundle.
Of course we can equally define the (anti)holomorphic cotangent bundles in the obvious way.
From here we can construct complex tensor fields of any form.

Remark 2.1.2 . As we mentioned right at the start of the notes, and as indicated by the chapter
title, it is possible to define complex tensor fields on a real manifold, as we have just done.
This is not the same thing as having a complex manifold. This is one of the reasons we have
set the notes out like this. With this noted, we continue to discuss complex tensor fields and
their related objects within this "middle ground" chapter. As we have already hinted at, it
will turn our that all complex manifolds are almost complex (but clearly the reverse is not
true), and so everything that follows is applicable to complex manifolds and indeed is where
we will use it.

2.2 Complex Differential Forms & Dolbeault Cohomology

Now we said above that we can define complex tensors of higher degree one we have our
(anti)holomorphic (co)tangent bundles. This is true, but we need to be a bit more careful
when looking at the decompositions. The result is exactly what we would expect, and we
clarify what we mean by considering the complexified version of a (0, p)-tensor field: the
decomposition is given by

⊗pT ∗CM =
⊕
p=r+s

T ∗M(r,s) =

p⊕
j=0

T ∗M(p,p−j),

where
T ∗M(r,s) := ⊗rT ∗M(1,0) ⊗s T ∗M(0,1).

As an explicit example, we have that

T ∗CM⊗ T ∗CM = T ∗M(2,0) ⊕ T ∗M(1,1) ⊕ T ∗M(0,2).

Note that
T ∗M(p,q) ∼= T ∗M(q,p), (2.1)

where the bar indicates complex conjugation. We will use this relation in a moment when
discussing Hodge numbers.

The reason we used the example of complex (0, p)-fields is indicated in the title of this
section: we want to now study complex differential forms and define the equivalent of de
Rham cohomology for them.

2.2.1 Complex Differential Forms
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Definition. [(p, q)-Form] Let (M, J) be an almost complex smooth manifold. We
then define a (p, q)-form to be an element of

Ωp,qM := Γ(Λp,qM), where Λp,qM = ΛpT ∗M(1,0) ⊗ ΛqT ∗M(0,1).

It follows from above that we have the decomposition of complex p-forms via

ΛpT ∗CM =

p⊕
j=0

Λj,p−jM. (2.2)

Next up we need the equivalent of our exterior derivative d. This also follows from a
decomposition d = ∂ + ∂̄ where we have defined

∂ : Ωp,qM→ Ωp+1,qM and ∂̄ : Ωp,qM→ Ωp,q+1M.

Exercise

Using d2 = 0 show that
∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0. (2.3)

Hint: Expand out d2 and then look at what maps to where.

As it will be useful later (i.e. when constructing the so-called Kähler potential), we
introduce another real operator dc : Ωk

C(M)→ Ωk+1
C (M) defined by

dc := i
(
∂̄ − ∂

)
,

which obeys

(dc)2 = 0, ddc + dcd = 0, ∂ =
1

2
(d+ idc), ∂̄ =

1

2
(d− idc), and ddc = 2i∂∂̄,

which are left as an excercise for the reader to prove.

2.2.2 Dolbeault Cohomology

Now we note that Equation (2.3) tells us, in particular, that ∂̄2 = 0, and so we can form the
following chain complex

0 Ωp,0M Ωp,1M ... Ωp,mM 0,∂̄ ∂̄ ∂̄ ∂̄ ∂̄

which in turn lets us define a cohomology, known as the Dolbeault cohomology

Hp,q

∂̄
(M) =

ker(∂̄ : Ωp,q(M)→ Ωp,q+1(M))

Im(∂̄ : Ωp,q−1(M)→ Ωp,q(M))
. (2.4)

We make two immediate comments
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(i) We could just as easily have defined Hp,q
∂ (M), as ∂2 = 0.

(ii) The Dolbeault cohomology depends on the almost complex structure J . This follows
because it is J that allows us to decompose out complex tangent space, and so define
what we mean by (p, q).

2.2.3 Hodge Numbers

Definition. [Hodge Numbers] Let (M,J) be an almost complex smooth manifold
with Dolbeault cohomology Hp,q

∂̄
(M). We define the Hodge numbers to be

hp,q := dimCH
p,q

∂̄
(M). (2.5)

We often display Hodge numbers in a Hodge Diamond (where dimR(M) = 2m)

hm,m

hm,m−1 ... hm−1,m

hm,0 . . . . . . h0,m

h1,0 ... h0,1

h0,0

This seems like a lot, however the (m+1)2 Hodge numbers are not independent. The relations
depend on the type of manifold we are considering and what structures it has, but we notice
already that Equation (2.1) tells us that complex conjugation of the tangent spaces gives us
hp,q = hq,p. The Hodge star operator (which acts as we might imagine, namely ? : Ωp,q →
Ωm−p,m−q) also tells us that hp,q = hm−p,m−q.

2.2.4 de Rham Dolbeault Relation

Hodge numbers are clearly just the complex version of Betti numbers, but how are the two
related? We can seek to an answer to this by recalling Equation (1.16), i.e. that there is
an isomorphism between harmonic k-forms and the k-th de Rham cohomology. Why is this
helpful? Well, if we complexity our harmonic k-forms, we can relate them, via Equation (2.2),
to (p, q)-forms. If we can then obtain the (p, q)-form equivalent of Equation (1.16), we should
be able to relate the de Rham and Dolbeault cohomologies. That is, we want to define
harmonic (p, q)-forms, show they are isomorphic to Hp,q

∂̄
(M). We do just this now.

We start by defining the formal adjoints of our ∂/∂̄ operators. This is done exactly as we
might expect, namely

∂† := ∓ ? ∂ ? and ∂̄† := ∓ ? ∂̄?, (2.6)

where we note that the ∓ factor comes from the fact that complex manifolds are always even
dimensional, and so we have (−1)pn+n−1 = −1 for any p.
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Exercise

Derive Equation (2.6) using d† = ∓ ? d? and d = ∂ + ∂̄.

Next recall that a harmonic forms was defined via ∆dω = 0, where ∆d = dd† + d†d With
this in mind, we define the two Laplacians

∆∂ = ∂∂† + ∂†∂ and ∆∂̄ = ∂̄∂̄† + ∂̄†∂̄,

which we can easily check satisfy ∆d = 2∆∂ = 2∆∂̄ . It is clear that we have two ways to define
harmonic (p, q)-forms: namely w.r.t. ∆∂ and ∆∂̄ . As we defined our Dolbeault cohomology in
relation to ∂̄, we proceed with using the ∆∂̄ Laplacian, which we simply relabel ∆ to lighten
notation.

Definition. [Harmonic (p, q)-Form] A (p, q)-form ω ∈ Ωp,q(M) is called a harmonic (p, q)-
form if ∆ω = 0. We denote the space of harmonic (p, q)-forms onM by Hp,q(M).

Everything now follows through analogously to Hodge theory: i.e. we get the decomposi-
tion

Ωp,q(M) = Hp,q(M)⊕ Im ∂̄q−1 ⊕ Im ∂̄q+1,

and the isomorphism
Hp,q(M) ∼= Hp,q

∂̄
(M).

So if we finally define HkC(M) to be the space of complex harmonic k-forms, i.e. HkC(M) :=
ker(∆d : Ωk

C(M)→ Ωk
C(M)), and recalling Equation (2.2), we finally obtain

HkC =
k⊕
j=0

Hj,k−j ,

which in turn (using the related isomorphisms) gives

Hk
dR(M; C) =

k⊕
j=0

Hj,k−j
∂̄

(M),

where Hk
dR(M; C) is just the k-th de Rham cohomology w.r.t. complex forms.

It then follows from this decompositions that

bk =
k∑
j=0

hj,k−j . (2.7)

Therefore, we can use the Hodge numbers to ask questions about the number of holes in our
manifold. We can also, therefore, relate the Euler characteristic, Equation (1.9), to the Hodge
numbers

χ =
dimM∑
n=0

(−1)n
n∑
j=0

hj,n−j .

We can therefore calculate the the Euler characteristic by adding up the rows of the Hodge
diamond with alternating sign.



CHAPTER 2. MIDDLE GROUND 29

2.3 Chen Classes

So far we have just introduced the complex versions of the structures/operators on our real
vector bundles to our complex vector bundles. We now want to introduce something very
important that doesn’t have a real vector bundle equivalent.

Definition. [Chern Class] Let (E, π,M) be a complex vector bundle, and let A be the
connection on E with associated curvature 2-form F = dA+A∧A be the curvature 2-form.2

Then we define the total Chern class of E as

c(E) := det

(
1 +

i

2π
F

)
(2.8)

Now, we note that F is a 2-form, and remembering that top forms are a thing, we see
that if we expand Equation (2.8), the sequence will terminate at the top form contribution.
That is, if the complex rank of E is k, then we can only have k powers of F before we get a
vanishing result.3 We therefore get the Chern classes, defined via

c(E) = c0(E) + c1(E) + c2(E) + ...+ ck(E).

Remark 2.3.1 . Actually, we should be a little more technically correct: the ci(E) we defined
above are the Chern forms, the Chern classes are given by the cohomology classes of the Chern
forms. This is why we put [·] around out expressions below: Chern classes are equivalence
classes. However, in these notes we will use Chern form and Chern classes interchangably.

Considering the standard results for the Taylor expansion of a determinant near the iden-
tity, we see from Equation (2.8) that

c0(E) = [1],

c1(E) =

[
1

2πi
TrF

]
,

c2(E) =

[
1

2

(
i

2π

)2(
TrF ∧ TrF − Tr(F ∧ F )

)]
...

ck(E) =

[(
i

2π

)k
detF

]
.

(2.9)

We state the following claim without proof4

2More details on what this is if not familiar can be found in Dr. Schuller’s Geometrical Anatomy course.
Note to self, if get time, would be good revision to type up stuff about this.

3At first this might seem wrong, as F is a two-form and then surely we should only be able to have k/2 of
them. However we must remember that E is a complex vector bundle and so F is a complex 2-form, and so
we can have k powers of it, namely a (k, k)-form.

4This can be shown by considering the properties of the determinants of a short exact sequence.
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Claim 2.3.2 . Given a short exact sequence5 of complex vector bundles 0 −→ E1 −→ E −→
E2, the total Chern class obeys

c(E) = c(E1)c(E2). (2.10)

2.3.1 First & Top Chern Classes

For reason that will become clearer later, the most important Chern classes for us will be the
first Chern class c1(E) and the top Chern class ck(E). Let’s discuss briefly why this is the
case in turn.

First Chern Class

The first Chern class is a 2-form on E. Now, it turns out that if E is the complex tangent
bundle of M then the curvature 2-form F is actually (proportional to) the Ricci curvature
R, more specifically, if we’re dealing with the holomorphic tangent bundle, F = −iR. We
therefore see that the first Chern class of the holomorphic tangent bundle is determined by
the Ricci curvature6

c1(T (1,0)M) ≡ c1(M) =

[
1

2π
R

]
. (2.11)

We see immediately from this that if the manifold is Ricci flat, i.e. R = 0, then the first
Chern class vanishes. The natural question to ask if "does the reverse hold?" i.e. does the
vanishing of the first Chern class tell us the manifold is Ricci flat. The answer is, in general,
no however ifM is a certain type of complex manifold, namely a Kähler manifold (which we
will discuss shortly), then it turns out to be true. This is the content of the Calabi conjecture,
which was proved by Yau twenty years later. We will discuss this more later.

Top Chern Class

The top Chern class is a top form on E. If we again consider E = T (1,0)(M), then we note
that dimR T

(1,0)M = dimRM, we see that we can integrate the top Chern class over M
itself.7 It turns out this top form in M is actually what is known as the Euler form, and
integrating it overM gives you the Euler characteristic. That is (if dimRM = 2m)

χ =

∫
M
cm(M) (2.12)

5It is assumed the reader knows what a short exact sequence is. If not see any decent differential geometry
textbook.

6Here we define what we mean by ci(M), namely if we just write ci(M) we mean the i-th Chern class of
the holomorphic tangent bundle.

7More technically we pullback the top Chern form on E to a top form onM.
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2.3.2 Chern Character

Before moving on to discuss projective spaces (in order to set up a nice discussion of complex
projective spaces later), we introduce a useful quantity associated to Chern classes.

Definition. [Chern Character] Let E be a complex vector bundle or rank r, and express
the total Chern class via c(E) =

∏r
i=1(1 + xi). We define the Chern character to be

ch(E) :=

r∑
i=1

exi .

Now the Chern character seems like a strange thing to define, however we now note that
it has the two nice properties that

ch(E1 ⊕ E2) = ch(E1) + ch(E2) and ch(E1 ⊗ E2) = ch(E1)ch(E2).

Next we note that if we have a complex line bundle L, then L has rank 1 and so our Chern
class, as defined above, is simply c(L) = (1+x1), but we can compare this to c(L) = 1+c1(L)
and conclude that x1 = c1(L). We therefore have that

ch(L) = ec1(E) =

∞∑
`=0

c1(L)`

`!

Now, it follows from the expressions above that if E is given by the direct sum of r line
bundles {L1, ..., Lr} then we have

ch(E) = ch(L1 ⊕ ...⊕ Ln) = ch(L1) + ...+ ch(Ln) = ec1(L1) + ...+ ec1(Lr).

If we now compare this to the fact that ch(E) =
∑

i e
xi when c(E) =

∏
i(1 + xi) we see that

c(L1 ⊕ ...⊕ Ln) =
(
1 + c1(L1)

)
...
(
1 + c1(Lr)

)
,

and in particular
c(L⊕r) =

(
1 + c1(L)

)r (2.13)

This is the nice result from the Whitney sum of line bundles, but we also have a nice result
from the tensor product of line bundles as follows. If E = L1 ⊗ ...⊗ Ln, then

ch(E) = ch(L1 ⊗ ...⊗ Lr) = ch(L1)...ch(Ln) = ex1 ...exn = ex1+...+xn ,

where xi = c1(Li). Now comes the interesting bit: this is still a line bundle, as dim(V ⊗W ) =
dimV × dimW , so we can compare it to ch(L) = ec1(L) and conclude that

c1(L1 ⊗ ...⊗ Ln) = c1(L1) + ...+ c1(Ln).

What will be of particular use to us when trying to construct so-called Calabi-Yau manifolds
later will be the specific case of this result

c1

(
L⊗d

)
= 1 + dc1(L), (2.14)

where L is some line bundle.



3 | Projective Spaces

We now wish to talk about projective spaces. The reason we do this shall become much
clearer when we talk about trying to construct our mysterious Calabi-Yau manifolds,1 but we
introduce them now in order to be able to talk about how all the above stuff applies to them,
in particular their Chern classes.

3.1 Definition

Definition. [Projective Space] Let V be some vector space over a field K. We define
the projective space of V , denoted P(V ), as the equivalence classes of V \ {0V } where the
equivalence relation is

v ∼ w ⇐⇒ v = λw,

where λ ∈ K∗, i.e. a non-zero element of K.

Exercise

Convince yourself that dim P(V ) = (dimV )− 1

Claim 3.1.1 . If V is a topological space, then we can make P(V ) a topological space, using
the so-called quotient topology.2

In the cases when V = Kn+1, we denote the projective space simply as KPn. In this case,
we often denote an element of KPn by [k0 : ... : kn], where of course ki ∈ K. Of particular
interest to us is going to

CPn := {(z0, ..., zn) ∈ Cn+1 | (z0, ..., zn) = (λz0, ..., λzn), for λ ∈ C∗}.

We are going to use CPn as a proxy for all that follows, as it allows us to be a bit more
concrete. It should be reasonably clear how the definitions etc. that follow generalise to a
generic projective space.

Although we have not formally introduced complex manifolds yet, it is hopefully obvious
that Cn+1 is a complex manifold of complex dimension (n+ 1), and so we conclude that CPn

is a complex manifold of dimension n. If this is uncomfortable for any reason, we can think
1As a semi-spoiler, we will construct them as hypersurfaces in complex projective spaces.
2Details of what this means can be found in Dr. Schuller’s Geometrical Anatomy course.
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of Cn+1 ∼= R2(n+1) and consider a real manifold instead. The charts in CPn are given by the
open sets

Ui := {[z0, ..., zn] | zi 6= 0} ⊂ CPn.

It is clear that the set U := {Ui | i = 0, ...n} forms an open cover of CPn. Finally, we call the
coordinates (z0, ..., zn) the homogeneous coordinates of CPn. We will often use z to denote
the full set (z0, ..., zn) just to lighten notation.

3.2 Tautological & Hyperplane Line Bundles

We now want to construct two very important types of line bundle, defined on projective
spaces. We give the definitions in a wordy manor (to avoid being too abstract) but of course
they can be written down very concretely.

Definition. [Tautological Line Bundle] Consider the complex projective space CPn. There
is a "natural" line bundle we can construct over this: namely attach to each point [z1 :
... : zn+1] ∈ CPn the line "projected away", i.e. the line given by π−1([z0 : ... : zn]) =
{(λz0, ..., λzn) |λ ∈ C∗} ⊂ Cn+1. This is known as the tautological (or universal) line
bundle, and we denote it by OCPn(−1).

Recalling that we can define a bundle via its open cover, fibres and transition functions, we
give the following definition.

Definition. [Hyperplane Line Bundle] Consider the complex projective space CPn with
tautological line bundle OCPn(−1). Then we define the hyperplane line bundle to be it’s
dual, i.e. is is a bundle over CPn where the fibres are the dual space3 (C \ {0})∗. The
transition functions are given by gij : Ui ∩Uj → zi/zj , where Ui, Uj ∈ U . That is gij([z]) =
zi
zj

[z]. We denote the hyperplane line bundle by OCPn(1).

Remark 3.2.1 . If it’s not clear why the hyperplane line bundle is in fact a line bundle, note
that the fibres are the duals of the complex numbers. That is an element of the fibres of
OCPn(1) is a linear functional

ϕ : C∗ → C

which clearly just acts as ϕ(z) = az for some a ∈ C, but the basis of such a space is clearly
just ϕ = 1, and so the fibres are one-dimensional.

Remark 3.2.2 . As a technical aside, we have been a little sloppy with notation above. We
denoted the tautological/hyperplane line bundles themselves using the O(±1) notation. Re-
ally we should just use L/L−1, and then O(±1) denotes the sheaf of holomorphic sections4

Γ(L)/Γ(L−1). However this is standard notation, and we shall use O(±1) to denote both the
bundle itself and sections of the bundle, with the understanding following from context.

3The asterisk here means dual, whereas the asterisk in the previous definition meant \{0}. Annoying, I
know, but we get the idea.

4As we’re being more technical here, a holomorphic section obviously only makes sense if the base space
is a complex manifold. This is simply because a section is a map σ : M → E, and so if we want to ask the
question of "is it holomorphic", clearlyM and E must both be complex.
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Recalling that the product of line bundles is again a line bundle, we introduce the notation

OCPn(d) := ⊗dOCPn(1) and OCPn(−d) := ⊗dOCPn(−1).

Now comes an important proposition that we will use later.

Proposition 3.2.3. Any homogeneous polynomial of degree d in CPn can be canonically
identified with the holomorphic sections OCPn(k).

Proof. Consider a polynomial of degree d in the homogeneous coordinates (z0, ..., zn)

Pk(z) =
∑
|ν|=d

aνz
ν0
0 ...z

νn
n ,

where aν ∈ C, and the notation is hopefully understood (i.e. ν0 + ... + νn = d, but we can
have a sum of different individual νi values). Now this is not a polynomial in CPn as it isn’t
scale invariant, i.e. Pk(λz) = λdPk(z) but we want Pk(λz) = Pk(z). This is easily fixed by
considering one of the charts Ui ∈ U : we then simply divide by zdi , which we now write in a
suggestive manner

si ≡
Pk(z)

zdi
=
∑
|ν|=d

aν

(
z0

zi

)ν0
...

(
zn
zi

)νn
.

Now this is only defined on Ui (as this is where we are guaranteed zi 6= 0), but it is hopefully
clear that we can get a globally defined polynomial by patching together the different si by
multiplying by (zi/zj)

d on the overlap Ui ∩ Uj . However we now notice that this is simply k
times the hyperplane line bundle’s transition functions gij :∈ Ui ∩ Uj → zi/zj , so

sj = g−dij si.

We can therefore think of the global polynomial as a section of OCPn(d). This map is clearly
bijective, as an element of OCPn(d) is a a linear functional from5 Cd → C, but this is basically
the definition of a polynomial of degree d in CPn, which proves the proposition.

There is now an important Lemma associated to the proposition above.

Lemma 3.2.4. The homogeneous coordinates of CPn can be identified as sections of the
hyperplane line bundle.

3.3 Chern Classes

We now want to find the Chern classes of CPn, the question is how do we do this? We start
by clarifying what a vector field in T (1,0)CPn is, and in particular what a zero vector is here.

Recall that CPn is defined to be the quotient of Cn+1 \ {0} by λ ∈ C. We can define this
in terms of a projection π(z) = [z], i.e. the fibres are given by the lines we project away. Now
we can define a vector field in T (1,0)CPn by pushing down6 a vector X̃ in T (Cn+1 \{0}). That

5Note Cd is fine as our polynomials si only have d variables: the term with zi in Pk(z) becomes 1 in si.
6To those unfamiliar, a push forward is basically a map that allows us to take a vector field from one

space to another space given a map between the two. That is if ϕ : M→ N is our map then we get a map
ϕ∗ : TpM→ Tϕ(p)N by (ϕ∗X)(f) = X(f ◦ ϕ).
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is, consider some open subset U ∈ CPn, then we have an open subset in Cn+1 \ {0} given
by π−1(U). We define our X̃ vector field over π−1(U), and then get a vector field over U as
X([z]) := π∗zX̃(z) = π∗λzX̃(λz), where the second equality is our projective condition.

Now we want to ask the question of "what is a zero vector in CPn?" Well, it follows
from above that X([z]) = 0 when π∗zX̃(z) = 0, but what is such a vector? Well, thinking
geometrically, if X̃ "points up the fibre" then the projection will shrink it down to a vanishing
vector. In other words, if we split the tangent space at z ∈ Cn+1 \ {0} into a vertical and
horizontal subspace, defined precisely as

Vz(C
n+1 \ {0}) := kerπ∗z,

and then Hz(Cn+1 \ {0}) defined as the rest, then if X̃(z) ∈ Vz(Cn+1 \ {0}), we get our zero
vector X([z]) = 0. Finally, recalling that the fibres are given by scaling the point [z] ∈ CPn,
we see that our zero vectors are given by the push downs of

X̃ = λ

(
z0

∂

∂z0
+ ...+ zn

∂

∂zn

)
= λVE ,

where we have defined the Euler vector field VE := zi∂zi , and where λ ∈ C.
Ok why is this useful to us? Well we note that we can span our holomorphic tangent

bundle T (1,0)CPn by the push downs of the vectors {si(z) ∂
∂zi
}, where si(z) is a section in

OCPn(1). In this way, we can define a surjective mapping

ϕ : OCPn(1)⊕(n+1) → T (1,0)CPn,

where surjectivity is understood as we can produce a basis of T (1,0)CPn. However we have
just seen that the kernel of this map is the trivial line bundle C (i.e. the λ appearing in front
of VE), and we can embed this into OCPn(1)⊕(n+1), giving us the short exact sequence7

0 C OCPn(1)⊕(n+1) T (1,0)CPn 0,ι ϕ

and then recalling Equation (2.10) we have

c
(
OCPn(1)⊕(n+1)

)
= c(C) · c

(
T (1,0)CPn

)
.

Finally, using that trivially c(C) = 1 and Equation (2.13) with x = c1(OCP(1)), we conclude
(using c(CPn) ≡ c

(
T (1,0)CPn

)
)

c(CPn) = (1 + x)n+1. (3.1)

3.3.1 Sum Of CPns

We can slightly generalise the result above, by now considering the whole thing again but
now over a sum of complex projective spaces. In other words our base space becomes

CPn1 ⊕ ...⊕ CPn` .
7This is an example of an Euler sequence.
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Basically the whole thing is completely analogous, however now our middle term in the se-
quence is

OCPn1 (1)⊕(n1+1) ⊕ ...⊕OCPn` (1)⊕(n`+1),

and similarly the holomorphic tangent space term changes. However clearly the expression
above is just a Whitney sum of line bundles and so we have

c
(
OCPn1 (1)⊕(n1+1) ⊕ ...⊕OCPn` (1)⊕(n`+1)

)
=
∏̀
i=1

(1 + xi)
ni+1,

where xi = c1(OCPni )(1), and so we conclude

c
(
CPn1 ⊕ ...⊕ CPn`

)
=
∏̀
i=1

(1 + xi)
ni+1. (3.2)

3.4 Weighted Projective Spaces

We conclude this chapter by discussing weighted projective spaces. These are basically exactly
the same as "regular" projective spaces, but now each homogeneous coordinate has its own
weight under scaling. That is, the weighted projective space WCP(k0,...,kn) is defined the same
as a projective space but now with equivalence relation

[z0 : ... : zn] = [λk0z0 : ... : λknzn].

It is common to write a weighted projective space as WCPn and then stating the weights as
an (n + 1)-tuple, i.e. we write "WCPn with weights (k0, ..., kn)". We sometimes also use the
notation WCPnk0,...,kn . We will likely use a combination of all of these.

As we might expect, WCPnk0,...,kn and CPn have a lot in common, however stuff is more
subtle in the former. For example, let’s consider trying to define a polynomial of degree d in
WCPnk0,...,kn . Let’s illustrate why stuff is more subtle with an example.

Example 3.4.1 . Consider WCP2
1,2. Let’s define the polynomial

P (z0, z1) = z2
0z1 + z3

0 ,

this would be a polynomial of degree 3 in CP2, but for WCP2
1,2 we have

P (λz0, λz1) = (λz0)2(λ2z1) + (λz0)3 = λ4z2
0z1 + λ3z3

0 6= λdP (z0, z1).

Definition. [Quasihomogeneous Polynomial] We call a polynomial in WCPnk0,...,kn quasi-
homogeneous of degree d if

P (λz0, ..., λzn) = λdP (z0, ..., zn)

for some d ∈ N.
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Now, we can still define the tautological line bundle over WCPnk0,...,kn as the line bundle
with fibres

π−1[z0 : ... : zn] = (λk0z0, ..., λ
knzn).

We denote the space of holomorphic sections of this space by OWCPnk0,...,kn
(−1). We then

similarly have the hyperplane line bundle OWCPnk0,...,kn
(1), given by the dual of the above.

Note that the transition functions themselves are the same as before, i.e. gij : Ui∩Uj → zi/zj .
The change comes by adapting Proposition 3.2.3:

Proposition 3.4.2. Any quasihomogeneous polynomial of degree d in WCPnk0,...,kn can be
canonically identifies with the holomorphic sections OWCPnk0,...,kn

(d).

The proof follows completely analogously to that of Proposition 3.2.3, however now Lemma 3.2.4
changes to

Lemma 3.4.3. The homogeneous coordinate zi of WCPnk0,...,kn can be identified as sections of
OWCPnk0,...,kn

(zi).

This is easily understood as Pi([z]) = zi is a quasihomogeneous polynomial of degree ki.
Indeed we can understand Proposition 3.2.3 and Lemma 3.2.4 simply as specialisations of the
above with k1 = ... = kn = 1.

We now proceed as before, and we arrive at an Euler sequence

0 C OWCPnk0,...,kn
(ki)

⊕(
∑
i) T (1,0)WCPnk0,...,kn 0,

from which, recalling c(OWCPnk0,...,kn
(ki)) = (1 + kixk0,...,kn), we conclude that

c
(
WCPnk0,...,kn

)
=
∏
i

(1 + kixk0,...,kn) (3.3)

where, of course, xk0,...,kn = c1(OWCPnk0,...,kn
(1)).

As we will see later, the weightings in WCPnk0,...,kn give rise to some rather interesting
behaviour, in particular we will get singularities!



4 | Complex Manifolds

We now finally want to actually define a complex manifold. The initial definition will, likely,
not be surprising, however we will then redefine it in terms of stuff we introduced above.

4.1 Definition

Definition. [Complex Manifold] A complex manifold is a manifold M of real dimension
2m, but where our charts are now homeomorphic to Cm, i.e. we have chart maps ψi :
Ui → Cm, with {Ui} being an open cover of M. To get a smooth complex manifold, we
further require that our chart transition maps ψij := ψi ◦ ψj : ψ(Ui ∩ Uj) → ψj(Ui ∩ Uj)
are holomorphic maps from Cm to Cm. We callM a complex manifold of dimension m.

We can obviously view a complex manifold of dimensionm as a particular kind of real manifold
of dimension 2m. Specifically, ifM is a m-dimensional complex manifold, and we express the
chart transition functions as ψij = uij + ivij with uij and vij being real smooth functions,
then we can viewM as a (2m)-dimensional real manifold with chart transition maps {uij , vij}
subject the Cauchy-Riemann equations

∂uij
∂xµ

=
∂vij
∂yµ

and
∂uij
∂yµ

= −∂vij
∂xµ

,

where we define xµ and yµ by zµ = xµ + iyµ.

Proposition 4.1.1. Every orientable, 2-dimensional Riemannian manifold (M, g) is a com-
plex manifold.

Proof. We do this by considering two overlapping charts U, V ⊂M and show that the tran-
sition functions between these charts obey the Cauchy-Riemann equations. As we have a
Riemannian manifold, we know that the metric can be written in any local chart as

gU = λ2
U

(
1 0
0 1

)
and similarly gV with λ2

U → λ2
V . Now suppose we coordinates our two charts using (u1, u2)

and (v1, v2). Now consider a change of basis on the overlap U ∩ V , we have

(gU )ij =
∂vm
∂ui

∂vn
∂uj

(gV )mn,
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so pluggnig in values for i, j ∈ {1, 2}, we have

λ2
U = λ2

V

[(
∂v1

∂u1

)2

+

(
∂v2

∂u1

)2]
λ2
U = λ2

V

[(
∂v1

∂u2

)2

+

(
∂v2

∂u2

)2]
0 = λ2

V

(
∂v1

∂u1

∂v1

∂u2
+
∂v2

∂u1

∂v2

∂u2

)
,

from which we conclude

∂v1

∂u1

∂v1

∂u2
+
∂v2

∂u1

∂v2

∂u2
= 0, and

(
∂v1

∂u1

)2

+

(
∂v2

∂u1

)2

=

(
∂v1

∂u2

)2

+

(
∂v2

∂u2

)2

.

Now consider the complex coordinates z = u1 + iu2 and w = v1 + iv2, then we have

∂w

∂z
=
∂(v1 + iv2)

∂u1
− i∂(v1 + iv2)

∂u2
,

and so

∂w

∂z
· ∂w̄
∂z

=

[
∂(v1 + iv2)

∂u1
− i∂(v1 + iv2)

∂u2

][
∂(v1 − iv2)

∂u1
− i∂(v1 − iv2)

∂u2

]
=

(
∂v1

∂u1

)2

+

(
∂v2

∂u1

)2

−
(
∂v1

∂u2

)2

+

(
∂v2

∂u2

)2

− 2i

(
∂v1

∂u1

∂v1

∂u2
+
∂v1

∂u1

∂v1

∂u2

)
where the last line we have only written the terms that don’t cancel in the expansion. But
these are our two chart transition equations and so we conclude

∂w

∂z
· ∂w̄
∂z

= 0,

which clearly has the two solutions

∂w

∂z
= 0 and

∂w̄

∂z
= 0.

The second condition is what we want, as this is the Cauchy-Riemann equations, so let’s see
what happens if we take the first solution.

Consider the determinant of the Jacobian of the coordinate transformation

det

(
∂w
∂z

∂w
∂z̄

∂w̄
∂z

∂w̄
∂z̄

)
=

(
∂w

∂z

)(
∂w̄

∂z̄

)
−
(
∂w̄

∂z

)(
∂w

∂z̄

)
,

and then use our condition that ∂w
∂z = 0 along with ∂w

∂z̄ = ∂w̄
∂z to get

det(...) = 0−
∣∣∣∣∂w∂z̄

∣∣∣∣2 < 0.

However, if (M, g) is orientable then we require that the determinant of the Jacobian is
always positive,1 and so we must rule this solution out. We therefore conclude that our chart
transition maps obey the Cauchy-Riemann equations, and so our manifold is complex.

1For those not familiar, this is basically the definition of orientation.
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Now recall that we can define an almost complex structure J on a manifold as a (1, 1)-
tensor field that squares to −1. Further recall that we can complexify the tangent space
(which for a complex manifold is trivial: it is already complex) and define holomorphic and
antiholomorphic tensor fields as sections of the appropriate vector bundles. Well we now
introduce a property that an almost complex structure can have.

Definition. [Integrable Almost Complex Structure] LetM be an almost complex manifold.
If the Lie bracket of two holomorphic vector fields is again a holomorphic vector field, we
say that the almost complex structure is integrable.

It is clear that is J is integrable then equally the Lie bracket of two antiholomorphic vector
fields is again an antiholomorphic vector field.

Remark 4.1.2 . Note that the integrability condition is really a property of the almost complex
structure. This is because we define what we mean by "a holomorphic vector field" explictly
using J .

We can also define the following tensor field.

Definition. [Nijenhuis Tensor] LetM be an almost complex manifold with almost complex
structure J . Then we define the Nijenhuis tensor by

NJ(X,Y ) = [X,Y ] + J [X, JY ] + J [JX, Y ]− [JX, JY ]

where X,Y ∈ TCM.

Proposition 4.1.3. An almost complex structure is integrable iff the Nijenhuis tensor van-
ishes, i.e. NJ(X,Y ) = 0 for smooth vector fields X,Y .

Proof. First let’s assume NJ(X,Y ) = 0. Now, recall that we can decompose any vector
field into a sum of a holomorphic and an antiholomorphic piece. Let’s denote these by X =
X+ +X−, i.e. JX± = ±X±. Now, let’s consider the specific case that X = X+ and Y = Y +,
then we have

NJ(X+, Y +) = [X+, Y +] + J [X+, JY +] + J [JX+, Y ]− [JX+, JY +]

= 2[X+, Y +] + 2iJ [X+, iY +],

but this must vanish as NJ(X,Y ) = 0 for all X,Y , which includes purely holomorphic vector
fields. We are therefore forced to conclude J [X+, Y +] = i[X+, Y +], i.e. the Lie bracket of
two holomorphic vector fields is again a holomorphic vector field, and so J is integrable.

Now suppose that J is integrable. Considering our decomposition above again, we have
(using that NJ(X+, X+) = NJ(Y +, Y +) = 0, when J is integrable, as proved above)

NJ(X,Y ) = NJ(X+, Y +) +NJ(X+, Y −) +NJ(X−, Y +) +NJ(X−, Y −)

= NJ(X+, Y −) +NJ(X−, Y +)

= [X+, Y −]− iJ [X+, Y −] + iJ [X+, Y −]− [X+, Y −] + (+←→ −)

= 0 + 0,

which completes the proof.
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Note, as we wrote in the definition, the property of an integrable almost complex structure
is valid for almost complex manifolds where the underlying manifold is purely real (i.e. it
need not be complex). Equally the Nijenhuis tensor is well defined in this case. However,
the reason we didn’t introduce these in the "real manifolds" chapter because of the following
theorem.

Theorem 4.1.4 (Nirnberg-Newlander). LetM be an almost complex manifold with an almost
complex structure J . Then M is a complex manifold iff the Nijenhuis tensor vanishes, i.e.
if J is integrable. For this reason, we call an integrable almost complex structure simply a
complex structure.

Proof. Omitted, for now. Read through this later and do proof.

4.2 CPn

Claim 4.2.1 . The manifold CPn is a complex manifold of dimension n.

Proof. We have basically already shown this. Recall the we can defined charts for CPn by

Ui := {[z0 : ... : zn] ∈ CPn |zi 6= 0},

so the coordinates for each Ui are given by ζiµ = zµ/zi, and we go from one set of coordinates
to another simply by multiplication of ζji = zi/zj . In other words, on the overlap Ui ∩ Uj we
have

ζiµ =
zµ
zi

=
zµ
zj

zj
zi

= ζjµζ
i
j ,

which is well defined as both zi, zj 6= 0 on the intersection. This is clearly a holomorphic
transition map and so CPn is a complex manifold. The dimension follows from the fact that
each Ui has n coordinates, i.e. µ = 1, ..., n (note it’s n and not n+ 1 as ζii = 1 and so is not
a coordinate).

4.2.1 Submanifolds Of CPn

We have just shown that CPn is a complex manifold, we now claim (without proof) that it is
also a compact manifold. This is great, but, for reasons that will become clearer later, we now
want to ask the question of how we get submanifolds of CPn that are also compact, complex
manifolds. This question is answered in the next theorem.

Theorem 4.2.2 (Chow). Any compact complex manifold that is a submanifold of CPn can
be constructed by considering the zero locus of a finite number of homogeneous polynomial
equations.

We do not prove this theorem, but just clarify that it seems reasonable: a homogeneous
polynomial is a polynomial of the homogeneous coordinates (z0, ..., zn), and if we construct
a polynomial out of them, and consider the zero locus (i.e. the points at which P (z) = 0)
then we can use this condition to relate one of the coordinates to some of the others. In this
way we reduce the dimension of the manifold we are considering by one. If we take two such
polynomials and consider their mutual zero locus (i.e. the points when both P1(z) and P2(z)

https://arxiv.org/pdf/1902.08549.pdf
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vanish), then we reduce the dimension by 2. This idea clearly generalises to saying that for
every polynomial we introduce, we reduce the dimension by one. We call a manifold produced
by the common zero locus of a finite collection of polynomials a complete intersection. Of
course this does not prove that the resulting space is a compact, complex manifold, but we
accept that as true and move on.

Given Chow’s theorem, we can ask the question "what are the Chern classes of the resulting
complex submanifolds?" The answer to this question will prove immensely useful to us later,
but we shall answer it now.

Let X ⊂ CPn be a smooth hypersurface given by the zero locus of a homogeneous polyno-
mial of degree d, P (z), which we recall can be identified with a section of OCPn(d). We now
define the normal bundle of X to be

NX :=
T (1,0)CPn|X
T (1,0)X

,

that is, the normal bundle is we construct the normal bundle by considering the holomorphic
tangent space to CPn, restricting it to X ⊂ CPn and then quotienting by the holomorphic
tangent space of X itself. Now this name is suggestive: we want to think of the normal bundle
as being the tangent bundle to X, but where we only consider the vectors that are tangent
to X, as seen in CPn. Indeed this is exactly what it is, as we now try outline.

Take any vector field in V = T (1,0)CPn|X . For simplicity, we restrict ourselves to a single
point x ∈ X so that we are dealing with a single vector space. Now we decompose this vector
at x into a piece that is tangential to X, which we define as an element of T (1,0)X and a piece
that is orthogonal (i.e. normal) to this. Our quotienting map is then

v ∼ w ⇐⇒ v = w + uX ,

where uX ∈ T (1,0)CPn only has a tangential element. Well clearly this is going to leave us just
with the piece that is normal to X, hence giving us the normal bundle. This idea is depicted
in the following figure.

Figure 4.1: A depiction of the normal bundle NX of a 1-dimensional hypersurface
X ⊂ CP2. Image from [2].

Now comes the crucial point: as we mentioned already, we can view X as the zero locus
of our polynomial P (z). However recall that Proposition 3.2.3 told us that a polynomial of
degree d can be identified with a section of OCPn(d), from which we conclude that X should
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be identified with the zeros in the fibres of OCPn(d). In fact the normal bundle NX of X is
actually just given by OCPn(d)|X .2 Finally, noting that essentially what we said above about
the splitting of T (1,0)CPn|X into the normal bundle and T (1,0)X is just the statement that

T (1,0)CPn|X = T (1,0)X ⊕NX = T (1,0)X ⊕OCPn(d)|X ,

we have the (split) short exact sequence

0 T (1,0)X T (1,0)CPn|X OCPn(d)|X 0,

from which we can compute the total Chern class of X, again using Equation (2.10), as

c(X) =
c(T (1,0)CP|X)

c(OCPn(d)|X)
=

c(CPn)

c(OCPn(d))
,

where we have used that the total Chern class doesn’t depend on whether we restrict to X or
not. So finally recalling Equation (3.1) and Equation (2.14) (which tells us that c(OCPn(d)) =
1 + dx) we finally conclude

c(X) =
(1 + x)n+1

1 + dx
. (4.1)

where as always x = c1(OCPn(d)).

4.2.2 Generalising

We can generalise this result to the cases when we consider a complete intersection manifold,
i.e. our submanifold is now given by the common zero locus of multiple homogeneous poly-
nomials. Let’s say there are k polynomials of degrees di, i ∈ {1, ..., k}. Then it is hopefully
intuitively clear that in this case we have that the result NX = OCPn(d)|X generalises to

NX = OCPn(d1)|X ⊕ ...⊕OCPn(dk)|X ,

i.e. each OCPn(di) term represents the polynomial of degree di, and the direct sum the fact
that we must satisfy all of them. Now recalling that each OCPn(di) is itself a line bundle, we
can use Equation (2.13) to obtain

c(NX) =

k∏
i=1

(1 + dix),

which gives us

c(X) =
(1 + x)n+1∏k
i=1(1 + dix)

.

We can generalise this result further by allowing our base space to be a sum of complex
projective spaces. However we need to be a bit more careful then simply plugging Equa-
tion (3.2) into the numerator of the above expression. The reason is that our polynomials

2Note to self: Go over explanation in Griffiths and Harris on why this is true (page 146).
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could have different degrees in the different CPnis. For example, if we had CP2 ⊕CP3, which
is a complex 5-dimensional manifold, we can produce a complex 2-dimensional manifold by
introducing 3 polynomials. These polynomials can be of different degrees to each other, but
we also have to take into account how the degree of each polynomial is distributed across the
CP2 and CP3. We summarise this information in a configuration matrix. Say, for example,
our polynomials had degrees (1, 3), (4, 2) and (5, 0), where (i, j) means degree i in the homo-
geneous coordinates of CP2 and degree j in the homogeneous coordinates of CP3, then our
congiuration matrix would be

CP2 1 4 5
CP3 3 2 0

∣∣∣∣
χ

,

where we have also indicated that we normally include the Euler characteristic in the bottom
right. To be completely clear on what the polynomials above are, if we denote the homoge-
neous coordinates of CP2 by (z0, z1, z3) and those of CP3 by (w0, w1, w2, w3), then a particular
example would be

P1(z, w) = z0w
2
0w1 + z2w0w2w3,

P2(z, w) = z3
1z2w1w3,

P3(z, w) = z2
0z

2
1z3 + z4

0z3.

Luckily, the result for the total Chern class is relatively simple, given what we already
know: the polynomials above are simply sections in OCP2(1) ⊗ OCP3(3), OCP2(4) ⊗ OCP3(2)
and OCP2(5), respectively. To write down the final result we want, we now consider the
completely general configuration matrix

CPn1 d1
1 . . . dk

...
...

...
CPn` d`1 . . . d`k

∣∣∣∣∣∣∣
χ

,

we get that the total Chern class of X is given by

c(X) =

∏`
i=1(1 + xi)

ni+1∏k
r=1(1 +

∑`
s=1 d

s
rxs)

,

which is hopefully not too hard to see.

4.3 Kähler Geometry

So far, a great deal of effort has gone into discussing properties of complex manifolds, but
we are yet to really talk about specific types of complex manifolds and why we care about
them. We will now do just that, first discussing Kähler manifolds and then going on to study
Calabi-Yau manifolds.

Remark 4.3.1 . The way these notes are laid out is a bit different to how (at least I’ve seen)
other notes on complex geometry are done. Specifically, other notes tend to introduce Kähler
and Calabi-Yau manifolds earlier on, in order to give a motivation from the start as to why
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we are doing what we are doing. They then sprinkle all (and more) of the stuff we have
discussed throughout these discussions. The reason I have decided to lay the notes out this
way is because it allows us to make the introduction of Kähler/Calabi-Yau manifolds very
concise and we can immediately discuss how the above structures apply to these cases. This
is done essentially to allow myself to make sure I understand where the definitions apply in a
general sense. This remark is just to point this out.

4.3.1 Kähler Manifold

Definition. [Hermitian Metric/Manifold] Let (M, J, g) be a complex manifold equipped
with a Riemannian metric g. We call the metric Hermitian if the following holds: g(X,Y ) =
g(JX, JY ) for all X,Y ∈ TM. We call the resulting manifold a Hermitian manifold.

If preferred, we can express the above in component notation as gab = JcaJ
d
b gcd. Now we recall

that J actually induces a decomposition TM = T (1,0)M⊕ T (0,1)M, so the natural question
is "how does the Hermitian metric decompose here?" Well, if we label the holomorphic com-
ponents by Greek letters α, β etc, and antiholomorphic components by barred Greek letters
ᾱ, β̄ etc, and recalling the JX± = ±iX±, it is hopefully clear that in this notation we have

Jab = iδαβ − iδᾱβ̄ ,

where it is understood that α/ᾱ match with a and β/β̄ match with b and correspond to pro-
jecting onto the holomorphic/antiholomorphic parts. If we then plug this into our component
expression for g, we get

gαβ + gᾱβ + gαβ̄ + gᾱβ̄ = −
(
δζα − δ

ζ̄
ᾱ

)(
δγβ − δ

γ̄

β̄

)(
gζγ + gζ̄γ + gζγ̄ + gζ̄γ̄

)
= −

(
δζα − δ

ζ̄
ᾱ

)(
gζβ + gζ̄β − gζβ̄ − gζ̄β̄

)
= −

(
gαβ − gᾱβ − gαβ̄ + gᾱβ̄

)
,

and so comparing components on each side we see we are forced to conclude that gαβ = gᾱβ̄ =
0, so in other words

gab = gᾱβ + gαβ̄.

This tells us that a Hermitian metric is a section g ∈ Γ(T (1,0)M⊗ T (0,1)M).

Claim 4.3.2 . A complex manifold always admits a Hermitian metric.

We do not prove this here, but simply state it to be clear that the Hermiticity of the metric
is really a property of the metric itself, not the manifoldM.

Definition. [Hermitian Form] Let (M, J, g) be a Hermitian manifold. We can use the
Hermitian metric to define a (1, 1)-form via

ω(X,Y ) = g(JX, Y ) (4.2)

for all vector fields X,Y , which we call the Hermitian form.
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Note the Hermitian form really is a form, i.e. it is antisymmetric. This follows from the fact
that g is Hermitian and so

ω(Y,X) = g(JY,X) = g(X, JY ) = g(JX, J2Y ) = −g(JX, Y ) = −ω(X,Y ),

where we have used the symmetry of the metric along with J2 = −1. In Greek letter compo-
nent form we have

ωab = igaβ̄ − igᾱβ,

which again shows explicitly that ω ∈ Ω(1,1)M.

Proposition 4.3.3. Let (M, J, g) be a Hermitian manifold with associated Hermitian form
ω. Then the Levi-Civita connection associated to g satisfies

dω(X,Y, Z)− dω(Z, JY, JZ) + 2g
(
(∇XJ)Y,Z

)
= 0.

Proof. Omitted. Essentially its just a "plug-in-and-go" job, details of which can be found on
page 35 of the Calabi-Yau for Dummies notes.

Lemma 4.3.4. On a Hermitian manifold (M, J, g) with Hermitian form ω and Levi-Civita
connection ∇, the following three are equivalent:

(i) ∇ω = 0 (i.e. ∇Xω = 0 for arbitrary vector field X),

(ii) ∇J = 0, and

(iii) dω = 0.

Proof. Omitted. Again see the Calabi-Yau for Dummies notes.

Definition. [Kähler Form/Metric/Manifold] Let (M, J, g) be a Hermitian manifold
with associated Hermitian form ω. If ω is closed, i.e. dω = 0, then we call it the
Kähler form, we call g a Kähler metric and the whole thing a Kähler manifold.

Remark 4.3.5 . For those familiar, note that the Kähler form is a symplectic form: that is it
is a closed, non-degenerate 2-form. We will not discuss symplectic geometry any further in
these notes, we just point this out here.

Proposition 4.3.6. Any submanifold of a Kähler manifold is itself a Kähler manifold.

Proof. We do not prove this in detail, but simply point out that it is reasonable: the Kähler
form is globally defined and closed, so if we restrict it to some submanifold, we will again get
a closed (1, 1)-form defined over all of our submanifold. A bit more technically, this is seen by
the fact that the exterior derivative commutes with the pullback, and we can pull the Kähler
form back from M onto the submanifold, and so d(ϕ∗ω) = ϕ∗(dω) = 0, and so the induced
form is closed.

Kähler Class & Kähler Cone
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Definition. [Kähler Class] Let (M, J, g) be a Kähler manifold with associated Kähler
form ω. By definition, ω is a closed (1, 1)-form and so it’s equivalence class if an element
of H1,1

∂̄
(M). If we view the manifold as a real manifold of dimension 2m, we equally get

that [ω] ∈ H2
dR(M; R), and we call this latter class the Kähler class.

Proposition 4.3.7. The Kähler class of a compact Kähler manifold is non-trivial.

Proof. First we claim (without proof) that

Vol(Y ) =
1

r!

∫
Y
ωr,

where Y ⊂M is a closed, complex r-dimensional submanifold, and where ωr means r wedge
products of ω. We note that this integral at least makes sense as ωr ∈ Ωr,r(M), which in
terms of the real manifold picture is an element of Ω2r(M) and here dimR(Y ) = 2r. Now we
know from Stoke’s theorem that this integral only depends on the cohomology class (as the
integral of an exact form vanishes on a closed manifold) and so the result is only dependent
on [ω] ∈ H2

dR(M; R),3 i.e. on the Kähler class. Now it follows from Vol(Y ) > 0 that ω > 0
which in particular tells us that ω is not exact, and so [ω] 6= [0].

We now note that we never said that the Kähler form was unique. This follows from
the fact that a complex manifold may admit more than one, distinctly different, Hermitian
metric. Indeed, in general, one can produce any different (i.e. not even in the same Kähler
class) Kähler forms for a given complex manifold. This then motivates the following definition.

Definition. [Kähler Cone] Let (M, J) be a complex manifold admitting Kähler metrics.
Each Kähler metric g gives rise to a Kähler class [ωg] ∈ H1,1

∂̄
(M). We define the Kähler

cone, K, to be the set of Kähler classes, i.e.

K :=
{

[ωg] ∈ H1,1

∂̄
(M) | g is a Kähler metric onM

}
.

The Kähler cone is important, as it seems to suggests that there is some link between the
Hodge number h1,1 and Kähler structure of moduli space ofM. That is, h1,1 seems to indicate
to us how many different Kähler manifolds we can obtain from a given complex manifold.

Kähler Potential

Now there is an important structure that exists on Kähler manifolds, which we now outline.
Let (M, J, g) be a Kähler manifold. Then we can construct a real, closed 2-from a smooth

function φ simply by ddcφ. Now we recall that ddc = 2i∂∂̄, and so we see that ddcφ is actually
a closed (1, 1)-form. This is true even outside Kähler manifolds, of course, but the important
point comes when we realise that the Kähler form is a non-degenerate, closed (1, 1)-form, and
so locally we can always relate it to ddcφ. The natural question to ask is "when can this

3At first we might think it should depend on [ωr] ∈ H2r
dR(M; R). However we note that the wedge product

descends to cohomology, which follows from the fact that d(α∧β) = dα∧β+(−1)pα∧dβ: additional exercise,
check that this does indeed imply that if α, β are closed then α∧ β is closed and also that if either α or β are
exact that α ∧ β is exact.
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be done globally?" The answer is "never", and this follows simply from the fact that ddcφ
is exact but we just showed that the Kähler class is non-trivial and so ω cannot be globally
exact. We therefore conclude

On a Kähler manifold we can always express the Kähler form locally as ω = ddcφ for
some real smooth function φ, but we can never do this globally. We call φ the Kähler

potential.

A related result is the following.

Lemma 4.3.8. We can parameterise the space of Kähler metrics for a given Kähler class by
non-constant smooth functions onM.

Proof. Let’s suppose ω1 and ω2 are two different Kähler forms onM but that [ω1] = [ω2], i.e.
they are in the same Kähler class. Well, then, by definition, the difference ω1−ω2 is a globally
defined exact (1, 1)-form, but any globally defined exact (1, 1)-form can be written as ddcψ
for some real smooth function ψ, and so our two Kähler forms are related by ω1 = ω2 + ddcψ.

We now have to show that the choice of ddcψ is unique, up to a constant. Well suppose
that ddcψ1 = ω1 − ω2 = ddcψ2, for two different smooth functions ψ1, ψ2. Then, using the
linearity of ddc, we have ddc(ψ1 − ψ2) = 0, which tells us that ψ1 − ψ2 is a constant. We
therefore conclude that the space of non-constant smooth functions on M parameterise the
representations of the Kähler class, which once we put together with the fact that the Kähler
forms are explicitly linked to the Kähler metric, we prove our Lemma.

4.3.2 CPn Is Kähler

We now want to prove that CPn is a Kähler manifold. We already know that it is a complex
manifold, so we just need to show that it admits a Kähler metric. We now construct this
metric and it’s associated Kähler form.

In order to construct a Kähler metric, we first need a Hermitian metric. Similarly to
our construction of the Euler vector in Section 3.3, we do this by considering a metric on
Cn+1 \ {0} and then pushing it down onto CPn.

Recalling that a Hermitian metric is a section in Γ(T (1,0)M⊗ T (0,1)M), we consider the
standard Hermitian metric (which we express in terms of the line element) on Cn+1

ds2 = |dz|2 = dz0 ⊗ dz̄0 + ...+ dzn ⊗ dz̄n.
However this won’t work as it doesn’t project down nicely: that is it is not invariant under
z → λz. With this in mind we suggest the following metric

ds2 =
|z|2|dz|2 − (z · dz̄)(z̄ · dz)

|z|4

where z · dz̄ = z0dz̄0 + ...+ zndz̄n and similarly for z̄ · dz. It is easily seen that this is indeed
Hermitian, and it also respects our scaling, and so gives rise to an Hermitian metric on CPn.
This is known as the Fubini-Study metric, and we write it in slightly more useful form, namely4

ds2 =
zαz̄

αdzβdz̄
β − z̄αzβdzαdz̄β

(zτ z̄τ )2
=

1

zτ z̄τ

(
δαβ −

z̄αzβ
zγ z̄γ

)
dzαdz̄β.

4Note this notation makes sense as everything is summed over and so it’s fine to write z̄α etc. (i.e. not
using ᾱ index) as both α and ᾱ have the same range.



CHAPTER 4. COMPLEX MANIFOLDS 49

Now recalling that ωab = igαβ̄−igᾱβ , we can use the above result to write down a potential
Kähler form. We cannot conclude that this is the Kähler form just yet, though. However if
we show that the local version of this result can be reproduced via ∂∂̄φ for some scalar field
φ, then we can conclude that ω is the Kähler form and so we have a Kähler manifold.

Recall that our charts for CPn are given by Uα = {[z0 : ... : zn] | zα 6= 0}. We can use the
scale invariance to use the representative given by dividing through by zi everywhere. For
concreteness we pick U0, but of course this choice is arbitrary and so the following result holds
in all charts. We then define Zi := zi/z1 where i ∈ {1, ..., n}. Our contraction then becomes

|z|2|U0 = 1 + ZiZ̄
i,

and so the local expression for our line element is

ds2|U0 =
1

1 + ZkZ̄k

(
δij −

Z̄iZj
1 + Z`Z̄`

)
dZidZ̄j

Now consider the global smooth function φ = log
(
|z|2
)
. On U0 this becomes φ|U0 = log

(
1 + ZiZ̄

i
)
.

Then take the derivatives

∂i∂̄jφ|U0 = ∂i

(
Zkδ

k
j

1 + Z`Z̄`

)
=

1

1 + Z`Z̄`

(
δikδ

k
j −

ZjZ̄
rδri

1 + ZsZ̄s

)
=

1

1 + ZkZ̄k

(
δij −

ZjZ̄i
1 + Z`Z̄`

)
,

where to get to the last line we have done some relabelling. This is just the expression
appearing in ds2|U0 , and so we conclude that

gij̄ = ∂i∂̄jφ|U0

We can then see from here that φ is in fact our Kähler potential and so we have proved that
CPn is a Kähler manifold.

We conclude this subsection by recalling that Proposition 4.3.6 told us that any subman-
ifold of a Kähler manifold is itself Kähler. Well we spent quite a bit of time earlier finding
submanifolds of CPn in terms of the zero-locus of polynomials. We now see that these sub-
manifolds are Kähler, a fact that will prove incredibly useful for us when trying to constrcut
Calabi-Yau manifolds shortly.

4.3.3 Holonomy

We now note that Lemma 4.3.4 tells us that we could equally define a Kähler manifold by
the conditions ∇ω = 0 or ∇J = 0. The latter of these two is very important and interesting.
Why? Well recall that our decomposition into holomorphic and antiholomorphic tensors
depends on J . So if J is covariantly constant, i.e. not effected by parallel transport so
∇J = 0, then our decomposition is uneffected by parallel transport. This tells us that if we
equip a Kähler manifold with the Levi-Civita connection then the holomorphicity of a tensor
field is preserved under parallel transport. The reason this is important, is that we recall that
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holonomy is defined by parallel transporting a vector around a closed loop, and so it follows
that the holonomy of a Kähler manifold w.r.t. the Levi-Civita connection is restricted. In
particular we see that the holonomy group must preserve both the length of the vector as
well as its complex properties. In other words, because PγX ∈ T (1,0)M if X ∈ T (1,0)M and
recalling that T (1,0)M = T (0,1)M, the holonomy group must preserve the Hermititcity, and
so we have

Hol(MKähler) ⊆ U(dimCM).

4.4 Calabi-Yau Geometry

We are finally ready to begin discussing Calabi-Yau manifolds. These are a particular kind
of Kähler manifold and play a huge role in studying compactifications of string theories.
Recall that we showed all the way back in Section 2.3.1 that if a manifold has vanishing Ricci
curvature that the first Chern class vanishes. We said that the reverse was not true in general,
but that Calabi and Yau showed that if the manifold was in fact a Kähler manifold that it
was. That is, ifM is a Kähler manifold then c1(M) = 0 if and only if M is Ricci flat. We
state this more formally now.

Theorem 4.4.1 (Yau). Let (M, J, g) be a compact Kähler manifold with associated Kähler
form ω. Further let R be (1, 1)-form which represents the first Chern class of M, i.e. [R] ∝
c1(M). Then there exists a unique Kähler metric g̃ on M with associated Kähler form ω̃
such that [ω̃] = [ω] and the Ricci form associated to g̃ is R.

This theorem is not easy to prove5 however its importance lies in the fact that we get the
following immediate corollary.

Corollary 4.4.2. Let (M, J, g) be compact Kähler manifold with Kähler form ω. Then, if
c1(M) = 0 there exists a unique equivalent Kähler form, [ω̃] = [ω], such that g̃ is Ricci flat.

This gives us a definition of a Calabi-Yau manifold, however there are many equivalent
ways of defining one. We group the common ones in the following definition.

Definition. [Calabi-Yau Manifold] Let (M, J, g) be a Kähler manifold of real di-
mension 2m. Then we call it a Calabi-Yau manifold if any of the following hold:

(i) M is Ricci flat, R = 0;

(ii) The first Chen class vanishes, c1(M) = 0;

(iii) The holonomy group is restricted to Hol(M) ⊆ SU(m);

(iv) The canonical bundle is trivial (i.e. admits a global, non-vanishing section);

(v) M admits a globally defined, nowhere vanishing holomorphic m-form.

5As all the notes I’ve read say...
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A comparison between these different definition can be found in Bouchard’s notes, but
here we just point out the thing that is of most interest to us: recall that h1,1 tells us the
number of inequivalent Kähler forms for a given complex manifold, so putting this together
with Yau’s theorem we see that h1,1 counts the number of possible Ricci flat Kähler forms for
our manifold. In other words:

h1,1 tells us how many different Calabi-Yau manifolds we can define for a given
complex manifold.

4.4.1 Hodge Numbers

We now want to study the Hodge numbers for a Calabi-Yau manifold. We recall that we
have already shown that complex conjugation gives hp,q = hq,p and that Hodge star gives
hp,q = hm−p,m−q. Well for Calbi-Yau manifolds we have further restrictions, which we now
outline:

• Condition (v) in the definition tells us the hm,0 = 1. Why? Well a nowhere vanishing
holomorphic m-form is clearly a holomorphic volume form, Ω and therefore any element
in Ωm,0 can be expressed in terms of this holomorphic m-form, i.e. α = fΩ for some
holomorphic function f .

• Next, given a class [α] ∈ H0,q(M), there is a unique class [β] ∈ H0,m−q(M) such that∫
M
α ∧ β ∧ Ω = 1,

where Ω is our unique holomorphic volume form. This follows simply from the fact that
the above integrand is clearly the (m,m) volume form, which is unique. We therefore
have h0,q = h0,m−q. We can put this together with our complex conjugation condition
to get that hp,0 = hm−p,0.

• Finally we claim (without proof Look up.) that h1,0 = 0.

In physics we are mostly interested in Calabi-Yau 3-folds, that is Calabi-Yau manifolds
of complex dimension 3. The reason for this is that M-theory is 10-dimensional and so if
we compactify M-theory on some real 6-dimensional space then we stand a chance of getting
something related to our observed reality, i.e. we get a 4-dimensional spacetime. For this
reason, we write down the Hodge diamond explicitly for a Calabi-Yau three fold.
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1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

(4.3)

The Euler characteristic also nicely simplifies for Calabi-Yau manifolds, and in particular for
a Calabi-Yau 3-fold we have

χ = 2(h1,1 − h2,1) (4.4)

It turns out for a Calabi-Yau 3-fold that h2,1 classifies the infinitesimal deformations of the
complex structure, in the same way that h1,1 classifies the infinitesimal deformations of the
Kähler structure. More details on why this is the case will come later.6

In practice, for a Calabi-Yau 3-fold we compute the Euler characteristic by recalling Equa-
tion (2.12), i.e. that χ is given by the integral over our top Chern class, which here is c3(M):

χ =

∫
M
c3(M).

We then employ techniques to calculate h2,1 and then we can use Equation (4.4) to find h1,1.
We will do all of this for explicit examples in a moment.

Mirror Symmetry

Before moving on to discuss explicit examples, we first make a brief comment on mirror
symmetry. Note, if swapped h1,1 ⇐⇒ h2,1 in our Hodge diamond Equation (4.3), we would
get back a Calabi-Yau 3-fold but now with the complex moduli and Kähler structure moduli
swapped. Clearly these two Calabi-Yau manifolds are geometrically different, however it turns
out that if we use them as the compacitfying dimensions in string theory, they give symmetric
results. We will not discuss this further7 but simply show a pretty diagram to highlight how
elegant this symmetry is.

6I am still learning about this!
7Again because I am still learning about this.
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Figure 4.2: A plot of h1,1 + h2,1 against χ = 2(h1,1 − h2,1). Figure taken from
[3].



5 | Constructing Calabi-Yaus In CPn

We now want to actually try explicitly find out where we can construct Calabi-Yau manifolds.
Of course the first thing we require is that the manifold is Kähler, we then need to check if
we can impose some condition on this manifold such that the first Chern class vanishes.

Well we have already shown that CPn is Kähler, and in fact we have claimed that sub-
manifolds of CPn defined by the zero-locus of degree polynomials in CPn are Kähler. Now we
see why we invested so much effort in finding expressions for the total Chern class of these
manifolds: we can expand these expressions and obtain a formula for c1(X) in terms of the
dimension of the polynomials, which in turn might allow us to fix c1(X) = 0. We use the most
general case of an arbitrary configuration matrix and then drastically simplify (e.g. consider
a single polynomial in CPn):

5.1 General Result

Recall that for the general configuration matrix

CPn1 d1
1 . . . dk

...
...

...
CPn` d`1 . . . d`k

∣∣∣∣∣∣∣
χ

,

we get that the total Chern class of X is given by

c(X) =

∏`
i=1(1 + xi)

ni+1∏k
r=1(1 +

∑`
s=1 d

s
rxs)

.

Well we can expand the numerator and denominator in powers of x and read the first Chern
class off as the term linear in x. We obtain

c1(X) =
∑̀
i=1

(
ni + 1−

k∑
r=1

dir

)
xi (5.1)

and so

54
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We get a Calabi-Yau manifold of dimension (
∑`

i=1 ni − k) when

k∑
r=1

dir = ni + 1 ∀i ∈ {1, ..., `}. (5.2)

If we continue the expansion of our total Chern class, we can find the top Chern class, which
if we then integrate over X gives us our Euler characteristic. This is, of course, technically
correct although it is often quite hard to compute in practise. However integrating on CPn is
much simpler, so we ask the question "is there any way we can get the result of

∫
X ctop(X)

as an integral over CPn?" The answer is yes and it the content of the next theorem.

Theorem 5.1.1. Let M be an n-dimensional manifold, and let X ⊂ M be some closed, k-
dimensional submanifold. Then for any closed k-form [τ ] ∈ Hk

dR(M; R) there exists a closed
(n− k)-form [ηX ] ∈ Hn−k

dR (M; R) such that∫
X
τ =

∫
M
τ ∧ ηX . (5.3)

We call ηX the Poincaré dual class to X.1

Proof. We give a somewhat intuitive proof here (although it is perhaps not the most rigorous).
For a moment let’s forget that X is some submanifold in M. We then see that τ must be
related to the volume form on X. Locally we can write the volume form on X as

ΩX = dx1 ∧ ... ∧ dxk,

where (dx1, ..., dxk) are the coordinate basis of the cotangent bundle. Now, we imagine
embedding X intoM, but bringing our basis along for the ride. We then complete this basis
to give a full basis forM, (or we can just imagine doing the embedding in such a way that the
(dx1, ..., dxk) align with the first k basis elements inM). Let’s denote the completed basis by
(dx1, ..., dxk, dy1, ..., dyn−k). NowM carries its own volume form, which we can write locally
as

ΩM = dx1 ∧ ... ∧ dxk ∧ dy1 ∧ ... ∧ dyn−k = ΩX ∧ dy1 ∧ ... ∧ dyn−k.

So we simply define our ηX = dy1 ∧ ... ∧ dyn−k, and then we get∫
M
τ ∧ ηX =

∫
M
τ ∧ dy1 ∧ ... ∧ dyn−k =

∫
X
τ,

where the last equality follows from the rules of integration. In this sense we can think of ηX
as a delta function which restricts the integral overM to the integral over X.

This is great, apart from we now have to ask ourselves "what is ηX , explicitly?" Well, it
is hopefully clear that our ηX is a top form in the (co)normal bundle NX , i.e. it only contains

1This name comes preciely from Poincaré duality as we defined it before. That is X is a k-dimensional
closed manifold (and so essentially an element of the k-th homology group), so by Poincaré duality there
should exist some closed (n− k)-form, which is exactly our ηX .
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dyi terms, which are are normal to the cotangent bundle of T ∗X. Now if are considering the
special cases when NX = E|X , which we are doing for CPn — recall that NX = OCPn(d)|X
for E = OCPn(d) — then the top form is just given by the top Chern class cr(E), where r is
the rank of E. So finally using that for us dimX =

∑`
i=1 ni and dimNx = k (that is each

polynomial increases the dimension of the normal bundle by 1) we have

χ =

∫
CPn1⊕...⊕CPn`

c∑`
i=1 ni

(X) ∧ ck(E), (5.4)

where E is given by the slightly complicated looking expression in terms of OCPn(d) terms.

5.2 Calabi-Yau 3-folds

We now want to simplify the above formula a bit by considering the specific cases when we
want to get a Calabi-Yau 3-fold.

5.2.1 The Quintic In CP4

Let’s start with the simplest case: a single polynomial in CPn. Here we have ` = 1 and k = 1
and so Equations (5.1) and (5.2) become

c1(X) = (n+ 1− d)x =⇒ (n− 1)-dimensional Calabi-Yau if d = n+ 1.

So if we want to construct a Calabi-Yau 3-fold we have to consider a quintic in CP4. This is a
very important example of a Calabi-Yau manifold and we now explore it in a bit more detail.

Denoting the space by Q, we have that the total Chern class is

c(Q) =
(1 + x)4

1− 4x
= 1 + 10x2 − 40x3,

where the second line follows from expanding and truncating at x3 as dimC(Q) = 3. So we
see that c3(Q) = −40x3. Next we have that our normal bundle NQ = OCP4(5) is a line bundle
and so

ck(E) = c1

(
OCP4(5)

)
= 5x,

where we have used c(OCPn(d)) = 1 + dx. So we can compute our Euler characteristic via
Equation (5.4)

χ(Q) =

∫
CP4

(−40x3) ∧ (5x) = −200.

We can therefore summarise the Calabi-Yau manifold coming from the quintic in CP4 via the
following configuration matrix

Q = CP4|5|−200.

Ok, great so we have constructed a collection of Calabi-Yau manifolds, we now want to
ask the question of "how many are there?" We recall this question is answered exactly by the
value of h1,1, so if we can just work out h2,1 then we can use Equation (4.4) to find h1,1 and
be done!
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So how do we find h2,1? Well we recall that it classifies the infinitesimal deformations of
the complex structure on Q. This complex structure is inherited from the complex structure
in CP4, and how it is inherited clearly depends on how Q is embedded into CP4. That is, if we
deform how Q sits in CP4, then we change how the tangent spaces of Q align with the tangent
spaces of CP4, therefore altering the what we call a holomorphic vs. antiholomorphic vector
in Q, which is exactly an alteration of the complex structure. Well the different embeddings
of Q into CP4 are given precisely by the number of free parameters in our defining polynomial.
So we just need to compute this.

Now it is a fact that the number of independent degree d polynomials in (n+ 1) variables

is given by the binomial coefficient
(
d+ n
n

)
, and so our quintic polynomial starts off with(

9
4

)
= 126 parameters. However we need to account for coordinate transformations (i.e.

homogeneous linear change of variables) as well as the scaling. These collectively add up to2

(n + 1)2 which for us is 52 = 25, which finally leaves us with h2,1 = 126 − 25 = 101. So
plugging this into Equation (4.4) we conclude

−200 = 2(h1,1 − 101) =⇒ h1,1 = 1.

That is

There is a single Calabi-Yau manifold given by the zero-locus of a quintic polynomial
in CP4.

We can summarise this using the Hodge diamond Equation (4.3)

1

0 0

0 1 0

1 101 101 1

0 1 0

0 0

1

5.2.2 Complete Intersection Manifolds

We now go to the slightly more complicated case where we still only have a single CPn but
now we can use multiple polynomials. Here we have ` = 1 and k = n − 3, i.e. we need to
reduce down to an 3-dimensional manifold. Our Calabi-Yau condition is simply

`−3∑
r=1

dr = n+ 1.

2Basically the homogeneous linear transformations of (n+1) variables are given by the group PGL(n+1,C),
which is defined to be GL(n+ 1,C) modded out by our scaling, so it has dimension (n+ 1)2 − 1, with the −1
corresponding exactly to our scaling, so when we add this back in we’re just left with (n+ 1)2.
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We now note that we actually require that dr ≥ 2 for all r. Why? Well imagine we have
some CPn and one of our polynomials has degree 1. Well, we can always use a coordinate
transformation such that this polynomial simply sets one of the homogeneous coordinates to
zero, but then this just leaves us with (k − 1) polynomials in CPn−1.

Given this, we can see that there are actually only five solutions. We display them via
their configuration matrices below (without their Euler characteristics)

CP4|5|, CP5|3 3|, CP5|2 4|, CP6|2 2 3| and CP7|2 2 2 2|.

For clarity on why we can’t have anymore, let’s imagine we considered CP8. To get a
3-fold, we would need to consider 5 polynomials who’s degrees sum up to 9. However we
cannot do this if we also require that dr ≥ 2 for all r. The same idea applies to higher n.

5.2.3 Tian-Yau Manifold

Of course we can generate other Calabi-Yau 3-folds by allowing our base spaces to be given
by a direct sum of CPns. For example,

CP3 1 3 0
CP3 1 0 3

∣∣∣∣
−18

,

is a Calabi-Yau 3-fold. This particular example is is known as the Tian-Yau manifold. For
completeness, the Hodge diamond for the Tian-Yau manifold is

1

0 0

0 14 0

1 23 23 1

0 14 0

0 0

1

Hopefully the construction of Calabi-Yau 3-folds is now clear and so we don’t discuss
generating Calabi-Yaus in this way any further.

Exercise

Show that the Tian-Yau manifold is indeed a Calabi-Yau 3-fold, and verify it’s Euler
characteristic is −18.
Hint: If stuck on finding χ, see the section below on K3 manifolds, then come back.
Equally see Bouchard’s notes for more deatils.

5.2.4 Holomorphic (3, 0)-Form

Recall that we said one of the equivalent conditions for a Calabi-Yau 3-fold was that there
exists a globally defined, nowhere vanishing holomorphic (3, 0)-form. We now want to outline
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how we calculate this form, and we shall use the quintic in CP4 as an example, and then we
will state how this generalises after.

We start by defining a (4, 0) form on C5 by

τ =

4∑
µ=0

dz0 ∧ ... ∧ zµ ∧ ... ∧ dz4,

where we note that the zµ is not dzµ (as then we would have a (5, 0)-form). It is hopefully
clear that τ is holomorphic, however we note that it is not well defined in CP4: this is simply
because it not invariant under the scaling zµ → λzµ. In fact is scales as τ → λ5τ under our
scaling. So what do we do? Well we note that this scaling is exactly the scaling of our defining
polynomial PQ,3 so we know that the form τ̃ = τ/PQ is projectively well defined.

This is great, however we have the big problem: τ̃ is singular exactly on our Calabi-Yau,
i.e. when PQ = 0. So what do we do? Well, this problem hopefully "smells like" residue
problems in complex analysis, and so we consider a small curve γPQ in CP4 which circles the
point PQ = 0. We then define

Ω :=

∫
γPQ

τ̃ =

∫
γPQ

τ

PQ
.

The claim is that this is a nowhere vanishing holormorphic (3, 0)-form on Q, i.e. when PQ = 0.
To see this, consider a coordinate patch and use dz0 = ∂z0

∂PQ
dPQ, then we get

Ω =

∫
γPQ

∑4
µ=1 dPQ ∧ dz1 ∧ ... ∧ zµ ∧ ... ∧ dz4

(∂PQ/∂z0)PQ
= (2πi)

(∑4
µ=1 dz1 ∧ ... ∧ zµ ∧ ... ∧ dz4

(∂PQ/∂z0)

)
PQ=0

,

where the second line is our residue theorem, i.e. we did the integral around γPQ . This is a
holomorphic (3, 0)-form, is projectively well defined and lives on Q, which is exactly what we
wanted.

So how do we adapt this result to the case when we have a complete intersection, but
still only one CPn? We outline the idea here, and leave it for the reader to make sure they
understand why this works.

We define an (n, 0)-form on Cn+1 by

τ =
n∑
µ=0

dz0 ∧ ... ∧ zµ ∧ ... ∧ dzn.

We then make this projectively well defined by dividing by the the product of the defining
polynomials,

τ̃ =
τ∏n−3

r=1 Pr
,

which we note is projectively well defined precisely because (n + 1) =
∑n−3

r=1 dr. Again this
is singular, but now at all the points Pr = 0, so we consider the (n− 3)-dimensional contour
given by

Γn−3 = γ1 × ...× γn−3,

3A lot of authours use Q to denote both the Calabi-Yau space as the polynomial. In these notes I am going
to try be careful to differentiate between the two, at least for now.
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where γr means the contour circling Pr = 0. We then get the holomorphic (3, 0)-form as

Ω =

∫
Γ
τ̃ =

∫
γ1×...×γn−3

τ∏n−3
r=1 Pr

.

which is well defined on our Calabi-Yau 3-fold.
We now just want to generalise this to the case when our base space is given by multiple

CPns. Well each of these CPns carries its own set of homogeneous coordinates, and so we
need to fine a τ on each one. So if we consider our usual general case (i.e. ` CPns) we define

τi =

ni+1∑
µ=0

dzi0 ∧ ... ∧ ziµ ∧ ... ∧ dzini ,

and then define

τ =
∏̀
i=1

τi,

which is a form on
∏`
i=1 Cn1+1. We now need to divide by our defining polynomials

τ̃ =
τ∏N

r=1 Pr
,

where N = (
∑`

i=1 ni)− 3, i.e. the number of polynomials needed to give us a 3-fold. Next we
define our contour

ΓN = γ1 × ...× γN
and finally obtain our holomorphic (3, 0)-form

Ω =

∫
ΓN

τ̃ =

∫
γ1×...×γN

τ∏N
r=1 Pr

.

5.3 K3 Surfaces

We have just constructed a Calabi-Yau 3-fold as the quintic in CP4. We now want to look
at constructing another class of interesting Calabi-Yau manifolds, namely 2-folds. As we will
see, interestingly, the Euler characteristics of all 2-folds will be the same, in which sense we
can view all 2D Calabi-Yau manifolds as deformations of each other. The defomaration family
are known as K3 surfaces.

5.3.1 In CP3

We start with the easy case of a polynomial in CP3. From above, we know that this polynomial
must be of degree 3+1 = 4, i.e. this is how we get vanishing first Chern class in Equation (5.1).
The total Chern class is then given by

c(K) =
(1 + x)4

(1 + 3x)
, with x = c[OCP3(1)],
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we can expand this out, and truncate at the x2 term (as K is a 2-fold so we can have at max
a (2, 2)-form), and then read off the top Chern class. We get

c2(K) = 6x2.

Next we again use that our normal bundle NK = OCP3(4) is a line bundle and so the top
Chern class is simply 4x. We can then compute the Euler characteristic:

χ(K) =

∫
CP3

6x2 ∧ 4x = 24.

The Hodge diamond for a Calabi-Yau 2-fold is simply

1

0 0

0 h1,1 1

0 0

1

which comes from h0,0 = 1 and h1,0 = 0 along with the relations

h0,0 = h2,2 = h0,2 = h2,0, and h1,0 = h0,1 = h1,2 = h2,1.

So we just need to compute h1,1, which we relate to the Euler characteristic:

χ(K) =
4∑

k=0

(−1)kbk = 2b0 − 2b1 + b2 = 2− 0 + 2 + h1,1,

where we have used b0 = b4 and b1 = b3, so we conclude

h1,1 = 20.

5.3.2 In CP1 ⊕ CP2

We can now repeat the construction for the complete intersection of two hypersurfaces in
CP1 ⊕ CP2. From the work above, we have the configuration matrix

CP1 2
CP2 3

∣∣∣∣
χ

,

where the degrees of the polynomials are hopefully clear. The total Chern class is given by

c(K1,2) =
(1 + x1)2(1 + x2)3

(1 + 2x1 + 3x2)
where xi = c[OCPi(1)].

Again we now expand and truncate at the second order term, however first we note something.
Really what we are after is the Euler characteristic, which is given by integrating over CP1 ⊕
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CP2, so our final integrand must be of the form x1x
2
2, as these are the top forms on the two

spaces. We therefore drop anything containing a x2
1 term, leaving us with

c2(K1,2) = 6x1x2 + 3x2
2.

Again our normal bundle is simply a line bundle, and we have

c1(NK1,2) = 2x1 + 3x2

Our Euler characteristic is then given by

χ(K1,2) =

∫
K1,2

(6x1x2 + 3x2
2)

=

∫
CP1⊕CP2

(6x1x2 + 3x2
2) ∧ (2x1 + 3x2)

=

∫
CP1⊕CP2

(
18 + (−1)26

)
x1x

2
2

= 24,

where the (−1)2 factor is coming from having to commute x1 through x2, which are forms,
remember. We therefore see that the Euler characteristic of K1,2 is equal to that of K, as
promised at the start of this section.



6 | Quick Comment On WCPn & Or-
bitfold Singularities

We have seen how to construct Calabi-Yau manifolds in projective spaces, the next step is
obviously to consider weighted projective spaces. However, as we will see, things here are
more subtle and singularities arise! These singularities can be fixed using the method of toric
geometry, but we will discuss this construction in a separate set of notes.

Let’s consider the specific case of a single polynomial in WCP4
1,1,1,1,4, which we coordinatise

using [x1, x2, x3, x4, y]. We have from Equation (3.3) that (using A to denote our ambient
space, i.e. the WCP4

11114)
c1(A) = 8H,

where we have changed to the notation of H = c1(OWCP4
11114

), so as to not confuse this with
the homogeneous coordinates. So if we want to have some subspace X that is Calabi-Yau, we
are going to need a quasihomogenous polynomial of degree 8, which is hopefully clear from
the previous calculations (i.e. the denominator in c(X) is still just 1 + dH).

Let’s consider the case y2 = P8(xi), where P8(xi) is some degree 8 polynomial in the xis.
Now say we pick the patch y = 1, that is consider the chart where y 6= 0 and use the scaling
to set y = 1. We now note that this scaling is not unique. That is, we can further multiply by
any of the solutions to λ4 = 1, but of course which solution we pick will effect the xi values.
In other words, we conclude that the xis are not free complex numbers but in fact

xi ∈
C
Z4
.

We see that this problem goes away when xi = 0, and we call this point a fixed point. This
is an example of what is known as an orbifold singularity, which we do not discuss too much
further here.1 Another way to see this result is to note that A has a fractial hyperplane class.
That is, if we consider the smooth point p = [0 : 0 : 0 : 0 : 1], which is defined by the 4
polynomials y = x1 = x2 = x3 = 0, then we have∫

p
4H ·H ·H ·H = 1 ⇐⇒ H4 =

1

4
,

where the 4H and H factors are just the first Chern classes of the polynomials, and the 1
comes from simply integrating over p.

1They will be discussed in the Toric Geometry notes.
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Remark 6.0.1 . It is important to note that this singularity is a property of the ambient space
A = WCP4

11114 not the Calabi-Yau space X. This is seen simply from the fact that p = [0 :
0 : 0 : 0 : 1] is not a solution to our defining polynomial.

As we mentioned at the start of this chapter, these singularities can actually be easily fixed
using the techniques of toric geometry. For example, the resolution of the orbifold singularity
in WCP2

1,1,n is given by the Hirzebruch surface Fn. Again this will be discuss more in the toric
geometry notes.



7 | Quick Summary

Let’s just quickly remind ourselves what we have discussed in these notes.

• In Chapter 1 we discussed real manifolds in some detail, introducing perhaps previ-
ously unfamiliar structures such as de Rham cohomology and Hodge theory. We also
breifly discussed holonomy at the end. The main results from this chapter were the
procedure for construing (co)homology groups, Poincaré duality, Betti numbers, Hodge
decomposition and harmonic forms.

• Next, in Chapter 2 we took a "middle ground" approach to going from real to complex
manifolds, by introducing an almost complex structure. We showed how to complexify
the tangent bundle and so define complex tensor fields on a real manifold. We then
adapted the above constructions to these complexified cases, also introducing Chern
classes. The main results are the definitions of (p, q)-forms, the Dolbeaut cohomology,
Hodge numbers/diamond, and of course Chern classes.

• Chapter 3 then introduced complex projective spaces, and discussed how to construct
hypersurfaces in these spaces by considering the zero locus of homogeneous polynomials.
We then studied the total Chern classes of these spaces, as well as direct sums of different
CPns. We then did the same thing for weighted projective spaces. The main results are
the total Chern class formulae, Equations (3.1) to (3.3).

• In Chapter 4 we finally introduced complex manifolds. We then discussed certain classes
of complex manifolds, in particular Kähler manifolds. This was done by introducing the
Hermitian form associated to the Hermitian metric and saying such a form is Kähler
when it is closed. We then showed that CPn is a Kähler manifold, constructing the
Fubini-Study metric. We could then introduce Calabi-Yau manifolds as a subset of
Kähler manifolds in which the first Chern class vanished, while also introducing several
other, obviously equivalent, definitions. We then discussed how the Hodge numbers on
a Calabi-Yau manifold are related to each other and wrote down the Hodge diamond
explictly for a Calabi-Yau 3-fold, Equation (4.3). We then made a breif comment on
Mirror symmetry at the end. The main results of this chapter is the definition of a
Calabi-Yau manifold and the relation between the Hodge numbers, Euler characteristic
and Chern classes.

• Then in Chapter 5 we discussed in some detail how to construct Calabi-Yau manifolds
in (products of) CPn. We saw that projective spaces themselves are not Calabi-Yau, but
that we could form Calabi-Yau manifolds by considering hypersurfaces in such spaces.
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We showed that the first Chern class vanishes only when the polynomial degree(s) equal
(the sum of) n + 1. We then worked through a few explicit examples of Calabi-Yau
3-folds, discussing the quintic in CP4 and the Tian-Yau manifold. We also worked
through how to construct the holomorphic (3, 0)-form for our Calabi-Yau 3-folds. We
then concluded this chapter with a breif discussion of K3 surfaces. The main results
were the Calabi-Yau condition stated above, and the details of the calculations.

• Finally in Chapter 6 we touched on orbifold singularities, showing how weighted pro-
jective spaces contain such singularities. As mentioned int eh chapter, we will discuss
these more in some follow up notes on toric geometry.
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