# 最新代码复制运行点wget https://file.cz123.top/3PhD/4BDA/Codes/ToBOML_Colab.sh && bash ToBOML_Colab.sh
x#/bin/bash
apt-get -y updateapt-get -y upgrade
echo "更新完成"# 需要安装sslapt -y install libssl-devapt -y install libffi-dev
echo "开始下载Python3.7"wget https://www.python.org/ftp/python/3.7.11/Python-3.7.11.tgztar -zxf Python-3.7.11.tgz
echo "安装Python3.7.11"cd ./Python-3.7.11./configuremake && make install
cd ~rm Python-3.7.11.tgz
echo "创建新环境"cd ~python3 -m venv tf-env-BDAsource ~/tf-env-BDA/bin/activate
# 升级git到最新pip install --upgrade pip
# 安装tensorflow-1.14版本cd ~
wget https://files.pythonhosted.org/packages/f4/28/96efba1a516cdacc2e2d6d081f699c001d414cc8ca3250e6d59ae657eb2b/tensorflow-1.14.0-cp37-cp37m-manylinux1_x86_64.whlpip install tensorflow-1.14.0-cp37-cp37m-manylinux1_x86_64.whlwget https://files.pythonhosted.org/packages/32/67/559ca8408431c37ad3a17e859c8c291ea82f092354074baef482b98ffb7b/tensorflow_gpu-1.14.0-cp37-cp37m-manylinux1_x86_64.whlpip install tensorflow_gpu-1.14.0-cp37-cp37m-manylinux1_x86_64.whl
pip install protobuf==3.20.*
# pip install tensorflow==1.14# pip install tensorflow-gpu==1.14
# 下载BOML代码cdgit clone https://github.com/dut-media-lab/BOML.git
# 安装依赖包# 其中要求tensorflow的版本为1.13.*到1.15.*cd ~/BOMLpip install -r requirements.txt
xxxxxxxxxx# 查看tf版本信息python -c "import tensorflow as tf; print(tf.__version__)"
# 查看Cuda版本nvcc -V
# 查看gpu信息nvidia-smi
# 查看系统版本等uname -m && cat /etc/*release
BUG参考链接
xxxxxxxxxxexport LD_LIBRARY_PATH=/usr/localcuda/lib64
https://zhuanlan.zhihu.com/p/487941231
gcc查看和安装
gcc的安装:https://blog.csdn.net/qq_17783559/article/details/132385887
xxxxxxxxxx#查看显卡驱动nvidia-smi
#安装gcc-7apt-get install gcc-7 g++-7
#查看gcc版本ls /usr/bin/gcc*
# 更新aptecho "deb [arch=amd64] http://archive.ubuntu.com/ubuntu focal main universe" >> /etc/apt/sources.list
# 安装apt updateapt-get install gcc-7 g++-7
# 切换版本update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 80update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-7 80
xxxxxxxxxxwget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1810/x86_64/cuda-repo-ubuntu1810_10.1.105-1_amd64.debdpkg -i cuda-repo-ubuntu1810_10.1.105-1_amd64.debapt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1810/x86_64/7fa2af80.pubapt-get updateapt-get install cudaxxxxxxxxxxwget https://developer.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda_10.1.105_418.39_linux.runbash cuda_10.1.105_418.39_linux.runxxxxxxxxxxwget https://developer.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda-repo-ubuntu1810-10-1-local-10.1.105-418.39_1.0-1_amd64.debdpkg -i cuda-repo-ubuntu1810-10-1-local-10.1.105-418.39_1.0-1_amd64.debapt-key add /var/cuda-repo-<version>/7fa2af80.pubapt-get updateapt-get install cudaxxxxxxxxxxErrors were encountered while processing:nvidia-dkms-550nvidia-driver-550cuda-drivers-550cuda-driverscuda-runtime-12-4cuda-12-4cudaE: Sub-process /usr/bin/dpkg returned an error code (1)
xxxxxxxxxx# 测试gpu的可用性
import tensorflow as tf
# tf.ConfigProto()主要的作用是配置tf.Session的运算方式config = tf.ConfigProto()config.gpu_options.allow_growth = True # 不全部占满显存, 按需分配config.gpu_options.per_process_gpu_memory_fraction = 0.6 # 限制GPU内存占用率sess = tf.Session(config=config)
运行上述代码出现的bug提示 见文件
xxxxxxxxxxapt remove cuda
参考地址:https://blog.csdn.net/weixin_45629790/article/details/114803545
安装代码1(deb,network):
xxxxxxxxxxwget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.0.130-1_amd64.debdpkg -i cuda-repo-ubuntu1804_10.0.130-1_amd64.debapt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pubapt-get updateapt-get install cuda安装代码2(runfile, local,2G):
xxxxxxxxxxwget https://developer.nvidia.com/compute/cuda/10.0/Prod/local_installers/cuda_10.0.130_410.48_linuxmv cuda_10.0.130_410.48_linux cuda_10.0.130_410.48_linux.runsh cuda_10.0.130_410.48_linux.run安装代码3(deb, local, 1.6G):
xxxxxxxxxxwget https://developer.nvidia.com/compute/cuda/10.0/Prod/local_installers/cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64dpkg -i cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.debapt-key add /var/cuda-repo-<version>/7fa2af80.pubapt-get updateapt-get install cuda
参考地址:https://blog.csdn.net/m0_37605642/article/details/119637836
https://developer.nvidia.com/rdp/cudnn-archive
xxxxxxxxxxwget http://104.244.90.25:12345/libcudnn7_7.6.5.32-1+cuda10.0_amd64.debdpkg -i libcudnn7_7.6.5.32-1+cuda10.0_amd64.deb
wget http://104.244.90.25:12345/libcudnn7-dev_7.6.5.32-1+cuda10.0_amd64.debdpkg -i libcudnn7-dev_7.6.5.32-1+cuda10.0_amd64.deb
wget http://104.244.90.25:12345/libcudnn7-doc_7.6.5.32-1+cuda10.0_amd64.debdpkg -i libcudnn7-doc_7.6.5.32-1+cuda10.0_amd64.deb
xxxxxxxxxx# 安装gcc
# 更新aptecho "deb [arch=amd64] http://archive.ubuntu.com/ubuntu focal main universe" >> /etc/apt/sources.list
# 安装apt updateapt-get install gcc-7 g++-7
# 切换版本update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 80update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-7 80
# 卸载 cuda 12.2rm -rf /usr/local/cuda-12.2rm /usr/local/cudarm /usr/local/cuda-12apt autoremove
# 安装 cuda 10.0 (方法2)# 该方法需要手动选择cdwget https://developer.nvidia.com/compute/cuda/10.0/Prod/local_installers/cuda_10.0.130_410.48_linuxmv cuda_10.0.130_410.48_linux cuda_10.0.130_410.48_linux.runsh cuda_10.0.130_410.48_linux.runrm cuda_10.0.130_410.48_linux.run
# cuda的环境配置echo "export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}" >> ~/.bashrcecho "export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}" >> ~/.bashrcsource ~/.bashrc
# 安装 cuDNNwget http://104.244.90.25:12345/libcudnn7_7.6.5.32-1+cuda10.0_amd64.debdpkg -i libcudnn7_7.6.5.32-1+cuda10.0_amd64.deb
wget http://104.244.90.25:12345/libcudnn7-dev_7.6.5.32-1+cuda10.0_amd64.debdpkg -i libcudnn7-dev_7.6.5.32-1+cuda10.0_amd64.deb
wget http://104.244.90.25:12345/libcudnn7-doc_7.6.5.32-1+cuda10.0_amd64.debdpkg -i libcudnn7-doc_7.6.5.32-1+cuda10.0_amd64.deb