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a b s t r a c t

This paper is mainly concerned with the classical KKT reformulation and the primal
KKT reformulation (also known as an optimization problem with generalized equation
constraint (OPEC)) of the optimistic bilevel optimization problem. A generalization of
the MFCQ to an optimization problem with operator constraint is applied to each of
these reformulations, hence leading to new constraint qualifications (CQs) for the bilevel
optimization problem. M- and S-type stationarity conditions tailored for the problem are
derived as well. Considering the close link between the aforementioned reformulations,
similarities and relationships between the corresponding CQs and optimality conditions
are highlighted. In this paper, a concept of partial calmness known for the optimal value
reformulation is also introduced for the primal KKT reformulation and used to recover the
M-stationarity conditions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the optimistic bilevel programming problem to

minimize F(x, y) subject to x ∈ X ⊆ Rn, y ∈ S(x), (1.1)

also called the upper level problem, where F : Rn
× Rm

→ R is a continuously differentiable function and the set-valued
mapping S : Rn ⇒ Rm, describes the solution set of the following parametric optimization problem also known as the lower
level problem:

minimize f (x, y) subject to y ∈ K(x), (1.2)

where K(x) is a closed subset of Rm, for all x ∈ X , and the function f : Rn
× Rm

→ R is twice continuously differentiable.
We assume that the upper and lower level feasible sets are given as

X := {x ∈ Rn
|G(x) ≤ 0} and K(x) := {y ∈ Rm

|g(x, y) ≤ 0} for all x ∈ X, (1.3)

respectively; the functions G : Rn
→ Rk and g : Rn

× Rm
→ Rp being continuously and twice continuously differentiable,

respectively. Also, unless otherwise stated, the functions f (x, .) and gi(x, .), i = 1, . . . , p are assumed to be convex for
all x ∈ X . It is well known from convex optimization that the lower level problem would be equivalent to the parametric
generalized equation:

0 ∈ ∇yf (x, y)+ NK(x)(y), (1.4)
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where NK(x)(y) denotes the normal cone (in the sense of convex analysis) to K(x) at y, provided y ∈ K(x), and NK(x)(y) := ∅,
otherwise.

Hence, the following one level reformulation of the bilevel program that we call primal KKT reformulation (this
terminology may be justified by the fact that the above generalized equation can be considered as a compact form of the
KKT conditions of the lower level problem):

minimize F(x, y)

subject to

G(x) ≤ 0
0 ∈ ∇yf (x, y)+ NK(x)(y).

(1.5)

This problem, also corresponding to an optimization problem with (parametric) generalized equation constraint (OPEC),
where K is a moving set, has recently been studied in [1].

Theorem 1.1. The point (x, y) is a local (resp. global) optimal solution of (1.1) if and only if (x, y) is a local (resp. global) optimal
solution of (1.5).

This complete equivalence between problem (1.1) and its primal KKT reformulation (1.5) is lost if one considers the
following detailed form of the normal cone to K(x) at y:

NK(x)(y) = {∇yg(x, y)⊤u|u ≥ 0, u⊤g(x, y) = 0},

which holds under a certain CQ; cf. [2, Theorem 4.3]. In fact, the resulting problem is the so-called KKT reformulation of the
bilevel optimization problem:

minimize F(x, y)

subject to

G(x) ≤ 0, L(x, y, u) = 0
u ≥ 0, g(x, y) ≤ 0, u⊤g(x, y) = 0,

(1.6)

where L(x, y, u) := ∇yf (x, y) + ∇yg(x, y)⊤u. The relationship between the latter problem, that we call classical KKT
reformulation in the sequel, and the bilevel program, in terms of optimal solutions, has recently been studied in [3]. This
link can be summarized in the following result where the fulfillment of a CQ at (x, y), say

[∇yg(x, y)⊤β = 0, β ≥ 0, β⊤g(x, y) = 0] H⇒ β = 0, (1.7)

is necessary. Furthermore, Λ(x, y) will denote the set of Lagrange multipliers of the lower level problem, i.e. the set of all
the vectors u satisfying: u ≥ 0, u⊤g(x, y) = 0 and L(x, y, u) = 0.

Theorem 1.2. Let (x, y) be a global (resp. local) optimal solution of (1.1) and assume that CQ (1.7) is satisfied at (x, y). Then,
for each u ∈ Λ(x, y), the point (x, y, u) is a global (resp. local) optimal solution of (1.6). Conversely, let CQ (1.7) be satisfied at
(x, y), for all y ∈ S(x), x ∈ X (resp. at (x, y)). Assume that (x, y, u) is a global optimal solution (resp. local optimal solution for
all u ∈ Λ(x, y)) of (1.6). Then, (x, y) is a global (resp. local) optimal solution of (1.1).

Clearly, for (x, y) to be a local optimal solution of (1.1), one needs to make sure that (x, y, u) is a local optimal solution of
problem (1.6), for all u ∈ Λ(x, y). In fact, an example of bilevel program was provided in [3], where (x, y) fails to solve (1.1)
locally,whereas (x, y, u) is a local solution of (1.6), for all but one u ∈ Λ(x, y). This fact hasmotivated the following definition
for the notion of optimality conditions for the bilevel optimization problem from the perspective of the KKT reformulation.
As usually done in the literature on MPCCs (mathematical programs with complementarity constraints), we partition the
set of indices of the functions involved in the complementarity slackness as

η := η(x, y, u) := {i|ui = 0, gi(x, y) < 0}
µ := µ(x, y, u) := {i|ui = 0, gi(x, y) = 0}
ν := ν(x, y, u) := {i|ui > 0, gi(x, y) = 0}.

Definition 1.3. A point (x, y) will be said to be M-stationary for the bilevel optimization problem (1.1) if there exists
(α, β, γ ) ∈ Rk+p+m such that ∀u ∈ Λ(x, y):

∇xF(x, y)+ ∇G(x)⊤α + ∇xg(x, y)⊤β + ∇xL(x, y, u)⊤γ = 0 (1.8)

∇yF(x, y)+ ∇yg(x, y)⊤β + ∇yL(x, y, u)⊤γ = 0 (1.9)

α ≥ 0, α⊤G(x) = 0 (1.10)

∇ygν(x, y)γ = 0, βη = 0 (1.11)

∀i ∈ µ, (βi > 0 ∧ ∇ygi(x, y)γ > 0) ∨ βi(∇ygi(x, y)γ ) = 0. (1.12)

Conditions (1.8)–(1.12) are called theM-stationarity conditions for problem (1.1).



1204 S. Dempe, A.B. Zemkoho / Nonlinear Analysis 75 (2012) 1202–1218

Definition 1.4. A point (x, y) will be said to be S-stationary for the bilevel optimization problem (1.1) if there exists
(α, β, γ ) ∈ Rk+p+m such that ∀u ∈ Λ(x, y): (1.8)–(1.11) and

∀i ∈ µ, βi ≥ 0 ∧ ∇ygi(x, y)γ ≥ 0. (1.13)

Conditions (1.8)–(1.11) and (1.13) are called the S-stationarity conditions for (1.1).

Similarly, surrogates of otherwell-known types of stationarity concepts could also be defined for the bilevel optimization
problem. In this paper though, we will focus our attention only on the above M- and S-types, since they are the most
important ones. For the other ones, the interested reader is referred, for example, to [4].

A third possibility to write problem (1.1) as a one level optimization problem is the following optimal value
reformulation:

minimize F(x, y)

subject to

f (x, y) ≤ ϕ(x)
G(x) ≤ 0, g(x, y) ≤ 0

(1.14)

where ϕ is the optimal value function of the lower level problem, defined as

ϕ(x) := min{f (x, y)|y ∈ K(x)}.

The latter problem is globally and locally equivalent to the bilevel programming problem (1.1). For an extensive review on
constraint qualifications and optimality conditions for the optimal value reformulation, the interested reader is referred
to [5]. As far as an algorithmic approach is concerned, see [6]. It is worth mentioning that, in general, the optimality
conditions of the bilevel program obtained via the optimal value reformulation and those derived via the KKT reformulation
are not related [5,7].

Ourmain concerns in this paper are the classical and primal KKT reformulations of the bilevel optimization problem. First
of all, let us recall that problem (1.6) is a special class of the mathematical programming problem with complementarity
constraints (MPCC). Hence, in the literature, the bilevel programming problem has generally been considered as embedded
in the MPCC family. But recently, as mentioned above (see Theorem 1.2), it was shown in [3] that the bilevel programming
problem is not a special case of the MPCC. The main reason is, that a local optimal solution of problem (1.6) may happen not
to be a local optimal solution of the initial bilevel programming problem [3].

One of the consequences of this widespread idea, that the bilevel optimization problem is a special case of the MPCC, is
that, in the literature, very little attention has been given to dual optimality conditions for problem (1.6). Although, a great
amount of work has been devoted to dual optimality conditions for the MPCC; see e.g. [4,8,9]. With the observation in [3], it
seems necessary that a specific study be devoted to (1.6), taking into account its particularities. This is one of the interests
of the current paper.

As far as primal optimality conditions for problem (1.6) are concerned, a number of interesting results can be found in
[10–13]. In particular, for the special class of linear bilevel programming problem, polynomial-time verifiable primal
optimality conditions of problem (1.6)were given in [13], somethingwhich is unusual in bilevel programming [11]. Studying
dual form or KKT-type optimality conditions for problem (1.6), and for the MPCC, in general, the main concern raised in the
literature is the failure of most of the well-known CQs [4,8,14,15].

The first step of our approach consists of rewriting the feasible set of (1.6) as an operator constraint (this appellation is
borrowed from [16]). The basic CQ, which can be seen as an extension of the MFCQ to a certain geometric constraint, is
then applied to the new problem, and this leads to new CQs and the M- and S-type stationarity conditions (1.8)–(1.12) and
(1.8)–(1.11), (1.13) respectively, for the problem (1.6). The M- and S-type stationarity for a local optimal solution of the
bilevel optimization problem (1.1) are then deduced by means of Theorem 1.2. The first major advantage offered by the
operator constraint formulation is the flexibility in choosingΩ,Λ, and ψ (see (3.1)), which helps circumvent the failure of
the usual MFCQ.

Another interesting thing about the operator constraint formulation is that, it could allow one to study the (one level)
reformulations of the bilevel optimization problem in a unifiedmanner. This has already been the case for the optimal value
reformulation, where it helped design new CQs [5]. In this paper, the primal KKT reformulation (1.5) has also been studied
from this perspective. Considering the close link between the primal and the classical KKT reformulations (in the sense that
when the normal cone in (1.5) is replaced by its expression given above, one obtains problem (1.6)), one of our concerns is
to compare the two approaches, in terms of CQs and optimality conditions. Furthermore, we have introduced a concept of
partial calmness for problem (1.5), substantially weaker than the initial basic-type CQ. This has also inspired new ideas of
CQs for problem (1.5), and hence for the bilevel optimization problem.

In the next section of the paper, we present the basic tools (i.e. the Mordukhovich normal cone, subdifferential and
coderivative) and their relevant properties. Some Lipschitzian properties of set-valued mappings will also be recalled.
Section 3 is concerned with the optimization problem with operator constraint. We derive KKT-type optimality conditions
for this problem, from a perspective different from the one already known in [2,16,17]. The partial calmness conceptwill also
be introduced and characterized in this section. Sections 4 and 5 are mainly concerned with the applications of the results
from Section 3. This has led to new CQs andM- and S-type optimality conditions for the bilevel programming problem.
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We now introduce some notations that will simplify the presentation of the paper. Let N∗ be the set of positive integers.
For l ∈ N∗,Rn1+···+nl := Rn1 × · · · × Rnl and 0n1+···+nl is the origin of the space Rn1+···+nl . For vectors ai ∈ Rni , i = 1, . . . , l,
the joint vector (a1, . . . , anl)may be used instead of its transposed vector (a1, . . . , anl)⊤. Let ai ∈ Rni , i = 1, 2; (a1)⊤a2 =

⟨a1, a2⟩ is used for the inner product of a1 and a2. For twoproperties a and b, property a∨bmeans that either a or b is satisfied,
whereas a ∧ b denotes the fulfillment of a and b simultaneously. For A ⊆ Rl, bd A denotes the topological boundary of A,
while dA(a) = d(a, A) is the distance from the point a to A.

2. Basic definitions and background material

We first consider the Fréchet normal cone to a closed set A ⊆ Rl at some point z ∈ ANA(z) := {z∗
∈ Rl

|⟨z∗, z − z⟩ ≤ o(‖z − z‖)∀z ∈ A}.

This cone is known (see [18, Theorem 6.28]) to be the polar of the Bouligand tangent cone

TA(z) := {z ∈ Rl
|∃tk ↓ 0, zk → z : z + tkzk ∈ A}.

The Mordukhovich normal cone to A at z is the Kuratowski–Painlevé upper limit [16] of the Fréchet normal cone, i.e.

NA(z) := {z∗
∈ Rl

|∃z∗

k → z∗, zk → z(zk ∈ A) : z∗

k ∈ NA(zk)}.

The Mordukhovich subdifferential can also be defined from the Fréchet subdifferential as in the case of the normal
cone. But in order to save some space, we simply consider the well-known interplay between most of the normal cone
and subdifferential objects in the literature. That is, for a lower semicontinuous function f : Rl

→ R, the Mordukhovich
subdifferential of f at some point z ∈ dom f is

∂ f (z) := {z∗
∈ Rl

|(z∗,−1) ∈ Nepif (z, f (z))},

where epi f denotes the epigraph of f . It is important to mention that if f is a continuously differentiable function, then ∂ f
coincides with the gradient of f . Considering two functions, the sum and chain rules are obtained respectively as:

Theorem 2.1 ([19, Corollary 4.6]). Let the functions f , g : Rl
→ R be locally Lipschitz continuous around z. Then

∂(f + g)(z) ⊆ ∂ f (z)+ ∂g(z).

Equality holds if f or g is continuously differentiable.

Theorem 2.2 ([20, Proposition 2.10]). Let f : Rl1 → Rl2 be Lipschitz continuous around z, and g : Rl2 → R Lipschitz continuous
aroundw = f (z) ∈ dom g. Then

∂(gof )(z) ⊆


[∂⟨w∗, f (z)⟩ : w∗

∈ ∂g(w)].

In the next result, we recall the necessary optimality condition for a Lipschitz optimization problem with geometric
constraint.

Theorem 2.3 ([18, Theorem 8.15]). We let f : Rl
→ R be a locally Lipschitz continuous function and A ⊆ Rl, a closed set. For z

to be a local minimizer of f on A, it is necessary that

0 ∈ ∂ f (z)+ NA(z).

For a set-valued mapping Φ : Rl1 ⇒ Rl2 , a derivative-like object, called coderivative, and introduced by Mordukhovich
(see [16]), can also be defined. Let (u, z) ∈ gphΦ , the coderivative of Φ at (u, z) is a positively homogeneous set-valued
mapping D∗Φ(u, z) : Rl2 ⇒ Rl1 , such that for any z∗

∈ Rl2 , we have

D∗Φ(u, z)(z∗) := {u∗
∈ Rl1 |(u∗,−z∗) ∈ NgphΦ(u, z)}.

If Φ reduces to a single-valued Lipschitz continuous function, then z can be omitted and the coderivative of Φ reduces to
D∗Φ(u)(z∗) = ∂⟨z∗,Φ⟩(u), for all z∗

∈ Rl2 ; with ⟨z∗,Φ⟩(u) := ⟨z∗,Φ(u)⟩ and ∂ being the basic subdifferential defined
above. It clearly follows that, in case Φ is single-valued and continuously differentiable, then D∗Φ(u)(z∗) = {∇Φ(u)⊤z∗

},
for all z∗

∈ Rl2 ; where ∇Φ(u) denotes the Jacobian matrix ofΦ .
The set-valued mapping Φ is said to be Lipschitz-like at (u, z) ∈ gphΦ , if there exist neighborhoods U of u, V of z, and

a number L > 0 such that

Φ(u) ∩ V ⊆ Φ(u′)+ L‖u − u′
‖B, ∀u, u′

∈ U . (2.1)

This property, often called the Aubin property, was introduced by Aubin [21] and also studied for example in [16,18,20]. It
is worth mentioning that the Aubin property is a natural extension of the Lipschitz continuity known for a single-valued
function. If we fix u′

:= u in (2.1), then we obtain the following inclusion

Φ(u) ∩ V ⊆ Φ(u)+ L‖u − u‖B, ∀u ∈ U, (2.2)
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which defines the calmness or upper pseudo-Lipschitz continuity of the set-valued mappingΦ . Hence, it is obvious that the
Aubin property implies the calmness property. As shown in the next theorem, the calmness property may be very useful in
computing the normal cone to a subset of Rl defined by finitely many inequalities and equalities.

Theorem 2.4 ([22, Theorem 5]).We consider the set

A := {z ∈ Rl
|g(z) ≤ 0, h(z) = 0},

where g : Rl
→ Rl1 and h : Rl

→ Rl2 are continuously differentiable functions. Then

NA(z) = {∇g(z)⊤λ+ ∇h(z)⊤µ|λ ≥ 0, λ⊤g(z) = 0},

for z ∈ A, provided the following set-valued mapping is calm at (0, 0, z)

M(t1, t2) := {z ∈ Rl
|g(z)+ t1 ≤ 0, h(z)+ t2 = 0}.

3. Optimization problem with operator constraint

The optimization problemwith operator constraint, whichmay be seen as a special optimization problemwith geometric
constraint is

minimize F(z) subject to z ∈ Ω ∩ ψ−1(Λ), (3.1)

where F : Rl
→ R andψ : Rl

→ Rl1 are locally Lipschitz continuous functions, and the setsΩ ⊆ Rl,Λ ⊆ Rl1 are closed. To
derive KKT-type dual optimality conditions for problem (3.1), we consider the basic CQ. Let z be a feasible point of problem
(3.1); the basic CQ, which may have been introduced in [23] and studied for example in [2,18,24], is said to be satisfied
at z if

0 ∈ ∂⟨u∗, ψ⟩(z)+ NΩ(z)
u∗

∈ NΛ(ψ(z))


H⇒ u∗

= 0. (3.2)

Some CQs closely related to the basic CQ have also been studied in [25].

Remark 3.1. If Ω := Rl,Λ := Rl2
− × {0l1−l2} and ψ is a continuously differentiable function, then the basic CQ coincides

with the dual form of thewell-knownMFCQ; cf. [26]. Hence, the basic CQ is a generalization of theMFCQ to the optimization
problem with operator constraint.

We consider the following perturbation map of the operator constraint:

Ψ (u) := {z ∈ Ω|ψ(z)+ u ∈ Λ}. (3.3)

The next lemma, which is a consequence of [19, Theorem 6.10] and [24, Corollary 4.2], shows that this set-valued mapping
is Lipschitz-like at (0, z) ∈ gphΨ , if the basic CQ is satisfied at z.

Lemma 3.2. Assume that z ∈ Ψ (0). Then

D∗Ψ (0, z)(z∗) ⊆ {u∗
∈ NΛ(ψ(z))| − z∗

∈ ∂⟨u∗, ψ⟩(z)+ NΩ(z)}.

If in addition, the basic CQ is satisfied at z, then Ψ is Lipschitz-like at (0, z).

Sincewe are only interested in designing optimality conditions for local optimal solutions, it is necessary to show that the
Lipschitz-like and calmness properties defined in the previous section are locally preserved for the set-valued mapping Ψ .

Lemma 3.3. Let z ∈ Ψ (u) and let V be a neighborhood of z. If Ψ is calm (resp. Lipschitz-like) at (u, z), then the set-valued
mapping

ΨV (u) := {z ∈ Ω ∩ V |ψ(z)+ u ∈ Λ}

is also calm (resp. Lipschitz-like) at (u, z).

Proof. Let us set ψu(z) := ψ(z)+ u. Then we have

Ψ (u) = Ω ∩ ψ−1
u (Λ) and ΨV (u) = V ∩Ω ∩ ψ−1

u (Λ),

and the result follows from the definition of calmness (2.2) (resp. Lipschitz-like property (2.1)), by noting that for A, B, C ⊆

Rl, A ⊆ B implies A ∩ C ⊆ B ∩ C . �
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We are now ready to state a KKT-type optimality condition for problem (3.1) under the basic CQ. The technique utilized
in the proof is inspired by [27, Lemma 3.1], in the framework of OPECs. For the latter class of optimization problems, this
approach has also been used in [16,28]. The statement of this result andmany proofs exist in the literature (cf. [2,16–18,29]),
but we were unable to find any reference where the multiplier u∗ is bounded, except as already mentioned, for the OPEC.
Hence, the reason why we include the proof here.

Proposition 3.1. Let z be a local optimal solution of problem (3.1). Assume that the basic CQ is satisfied at z. Then, there exists
µ > 0 such that for any r ≥ µ, one can find u∗

∈ rB ∩ NΛ(ψ(z)) such that

0 ∈ ∂F(z)+ ∂⟨u∗, ψ⟩(z)+ NΩ(z). (3.4)

Proof. Let z be an optimal solution of problem (3.1) in the closed neighborhood V of z. It follows from Lemmas 3.2 and
3.3 that ΨV is Lipschitz-like at (0, z), under the basic CQ (3.2). Denote by LV and LF the Lipschitz modulus of ΨV and F ,
respectively. We claim that for any r ≥ µ := LV LF , the point (0, z) is a local optimal solution of problem

minimize Fr(u, z) subject to (u, z) ∈ gphΨV , (3.5)

with Fr(u, z) := F(z)+ r‖u‖.
In fact,ΨV being Lipschitz-like at (0, z) implies, by definition, that there exist neighborhoods U1 of 0 and V1 of z such that

∀u ∈ U1, ∀z ∈ Ψ (u) ∩ V1, there exists z1 ∈ ΨV (0)with

‖z − z1‖ ≤ LV‖u‖. (3.6)

In addition, F(z) ≤ F(z1), given that z1 ∈ ΨV (0) = Ω ∩ V ∩ψ−1(Λ). Now, let r ≥ µ and (u, z) ∈ gphΨV ∩ (U1 × V1), then
we have

Fr(0, z) = F(z) ≤ [F(z1)− F(z)] + F(z)
≤ LF‖z − z1‖ + F(z) (cf. Lipschitz continuity of F)
≤ LV LF‖u‖ + F(z) ≤ Fr(u, z) (cf. inequality (3.6)).

Applying Theorem 2.3 to problem (3.5), we have

(0, 0) ∈ rB × ∂F(z)+ NgphΨV (0, z).

Hence, there exist u∗
∈ rB and z∗

∈ ∂F(z) such that (−u∗,−z∗) ∈ NgphΨV (0, z). It follows from the definition of the
coderivative, and the inclusion of Lemma 3.2, that

−u∗
∈ NΛ(ψ(z)) and − z∗

∈ ∂⟨−u∗, ψ⟩(z)+ NΩ(z),

which concludes the proof. �

Remark 3.4. Under the setting of Remark 3.1, the basic CQ coincides with the usual MFCQ. Further, it is well known that
under the MFCQ, the set of Lagrange multipliers is bounded. But the bound is not usually provided with the classical
technique to derive KKT conditions via the MFCQ. Hence, the interesting feature of the approach in Proposition 3.1.

Remark 3.5. One can easily check that the above result remains valid if the basic CQ is replaced by the weaker calmness
of the set-valued mapping Ψ . The optimality condition (3.4) also follows from [27, Theorem 3.1], where one has to set
Φ(z) := −ψ(z) + Λ. However, the approach in [27] does not allow us to detect the fact that u∗ also belongs to NΛ(ψ(z)),
which is an important component of Proposition 3.1, regarding the structure of problem (3.1). Furthermore, as it will be
clear in the next sections of the paper, the inclusion u∗

∈ NΛ(ψ(z)) plays an important role in the applications.

For the rest of this section, we assume thatψ is a real-valued function andΛ = R−. Then the optimization problemwith
operator constraint takes the form

minimize F(z) subject to z ∈ Ω, ψ(z) ≤ 0. (3.7)

Here, Ω := {z|g(z) ≤ 0, h(z) = 0}, with g and h being some given continuous functions. Next, we recall the definition of
the concept of partial calmness for problem (3.7), as introduced in [30] in the framework of the optimal value reformulation
of the bilevel program. The term partial as opposed to the stronger notion of calmness by Clarke [31, Definition 6.4.1] refers
to the fact that only some of the constraints (ψ in our case) are perturbed. Since we will be dealing with the classical and
primal KKT reformulations of (1.1), we will use the terminology of ψ-partial calmness in order to differentiate between the
two values to be taken by ψ in the corresponding reformulation.

Definition 3.6. Let z be a local optimal solution of problem (3.7). Problem (3.7) is ψ-partially calm at z if there is a
neighborhood U of (0, z) and a number λ > 0 such that

F(z)− F(z)+ λ|t| ≥ 0 ∀(t, z) ∈ U : z ∈ Ω, ψ(z)+ t ≤ 0.
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Broadly speaking, the latter concept was tailored to move a disturbing constraint (in the sense of leading to the failure
of a CQ) to the objective function. This corresponds in the case of problem (3.7), to the following exact penalization, where
z → ψ(z)+ (with ψ(z)+ = max{0, ψ(z)}) represents the penalty function and λ the penalty coefficient.

Theorem 3.7 ([15, Proposition 2.2]). Let z be a local optimal solution of problem (3.7). Problem (3.7) is ψ-partially calm at z if
and only if there exists a number λ > 0 such that z is a local optimal solution of the problem to

minimize F(z)+ λψ(z)+ subject to z ∈ Ω.

To conclude this section, let us mention a sufficient condition for problem (3.7) to be ψ-partially calm. The proof can be
found in [31] or [5, Theorem 4.10].

Proposition 3.2. Let z be a local optimal solution of problem (3.7) such that the set-valued mapping Ψ in (3.3) (withΩ andΛ
defined in (3.7)) is calm at (0, z). Then, problem (3.7) is ψ-partially calm at z.

4. The classical KKT reformulation

4.1. M-type optimality conditions

Deriving the classical KKT reformulation from the generalized equation (1.4), it is clear that if K(x) := Rm, the MFCQ
remains applicable. Otherwise, if problem (1.6) is considered as a usual nonlinear optimization problem, it would fail at any
feasible point; cf. [8,4,14,15]. However, the basic CQ, which can be seen as a generalization of theMFCQ (cf. Remark 3.1) may
well still be applied provided the feasible set is written differently. To motivate our discussion, we recall that the failure of
the MFCQ is due to the following complementarity system

u ≥ 0, g(x, y) ≤ 0, u⊤g(x, y) = 0. (4.1)

We show in the next example that the basic CQ is applicable to problem (1.6), if we assume that the function g is linear in
(x, y), and the feasible set is reformulated as an operator constraint; with ψ(x, y, u) = (G(x),L(x, y, u)),Λ = Rk

−
× {0m}

andΩ denoting the set of (x, y, u) solving the complementarity problem (4.1).

Example 4.1. We consider the bilevel optimization problem to

minimize x2 + y2 subject to x ≥ 0, y ∈ S(x) := argmin{xy + y|y ≥ 0}.

One can easily check that (0, 0) is the optimal solution of the above problem. The classical KKT reformulation of this
problem is:

minimize x2 + y2

subject to

x ≥ 0, x − u + 1 = 0
u ≥ 0, y ≥ 0, uy = 0.

It is obvious that the lower level multiplier corresponding to the optimal solution is u = 1; and hence that the MFCQ fails to
hold at (0, 0, 1). We are now going to show that the basic CQ is satisfied if we setψ(x, y, u) = (−x, x−u+1),Λ = R−×{0}
andΩ = {(x, y, u) ∈ R3

|y ≥ 0, u ≥ 0, yu = 0}. For some point (α, β) ∈ NΛ(ψ(0, 0, 1)), i.e. (α, β) ∈ R+ × R, (0, 0, 0) ∈

⟨∇ψ(0, 0, 1), (α, β)⟩ + NΩ(0, 0, 1) if and only if α − β = 0 and (0,−β) ∈ NΘ(0, 1) (with Θ := {(y, u) ∈ R2
|y ≥ 0, u ≥

0, yu = 0}). It follows from Lemma 4.1 that β = 0 and hence that α = 0. This shows that the basic CQ holds at (0, 0, 1).

By setting v := −g(x, y) and hence introducing a new (dummy) variable in the problem, the idea in the above example
can be extended to the more general problem (1.6). The technicality behind this is that the new constraint g(x, y)+ v = 0
is moved to the function ψ and thus allowing just the computation of the normal cone to the polyhedral set

Θ := {(u, v) ∈ R2p
|u ≥ 0, v ≥ 0, u⊤v = 0}, (4.2)

which is possible without any qualification condition.

Lemma 4.1 ([32, Proposition 2.1]). Let (u, v) ∈ Θ , then

NΘ(u, v) =

 u∗

i = 0 ∀i : ui > 0 = vi
(u∗, v∗) ∈ R2p

: v∗

i = 0 ∀i : ui = 0 < vi
(u∗

i < 0 ∧ v∗

i < 0) ∨ u∗

i v
∗

i = 0 ∀i : ui = 0 = vi

 .
Thanks to the aforementioned transformation,M-type stationarity conditions can be derived for problem (1.6).
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Theorem 4.2. Let (x, y, u) be a local optimal solution of problem (1.6) and assume that the following CQ holds at (x, y, u):

∇G(x)⊤α + ∇xg(x, y)⊤β + ∇xL(x, y, u)⊤γ = 0
∇yg(x, y)⊤β + ∇yL(x, y, u)⊤γ = 0
α ≥ 0, α⊤G(x) = 0
βν = 0, ∇ygη(x, y)γ = 0
∀i ∈ µ, (βi > 0 ∧ ∇ygi(x, y)γ > 0) ∨ βi(∇ygi(x, y)γ ) = 0

 H⇒


α = 0
β = 0
γ = 0.

(4.3)

Then, there exists (α, β, γ ) ∈ Rk+p+m, with ‖(α, β, γ )‖ ≤ r (for some r > 0) such that the M-stationarity conditions are
satisfied.

Proof. Let us set ψ(x, y, u, v) = (G(x), g(x, y) + v,L(x, y, u)),Λ = Rk
−

× {0p+m} and Ω = Rn+m
× Θ . Let (x, y, u) be a

local optimal solution of problem (1.6). One can easily verify that there is a vector v such that (x, y, u, v) is a local optimal
solution of the problem to

minimize F(x, y) subject to (x, y, u, v) ∈ Ω ∩ ψ−1(Λ). (4.4)

We have

NΩ(x, y, u, v) = {0n+m} × NΘ(u, v) (4.5)

NΛ(ψ(x, y, u, v)) = {(α, β, γ )|α ≥ 0, α⊤G(x) = 0} (4.6)

∇ψ(x, y, u, v)⊤(α, β, γ ) =

[
A(α, β, γ )

β

]
(4.7)

where

A(α, β, γ ) :=

∇G(x)⊤α + ∇xg(x, y)⊤β + ∇xL(x, y, u)⊤γ
∇yg(x, y)⊤β + ∇yL(x, y, u)⊤γ

∇yg(x, y)γ

 . (4.8)

It follows from equalities (4.5)–(4.7) that the basic CQ applied to problem (4.4) at (x, y, u, v) can equivalently be formulated
as follows: there is no nonzero vector (α, β, γ ) ∈ Rk+p+m such that

∇G(x)⊤α + ∇xg(x, y)⊤β + ∇xL(x, y, u)⊤γ = 0 (4.9)

∇yg(x, y)⊤β + ∇yL(x, y, u)⊤γ = 0 (4.10)

α ≥ 0, α⊤G(x) = 0 (4.11)

(−∇yg(x, y)γ ,−β) ∈ NΘ(u, v). (4.12)

By noting that vi = −gi(x, y), for i := 1, . . . , p, it follows from Lemma 4.1 that the basic CQ applied to problem (4.4) is
equivalent to CQ (4.3). Hence, from Proposition 3.1 there exists (α, β, γ ) ∈ Rk+p+m, with ‖(α, β, γ )‖ ≤ r (for some r > 0)
such that (1.8)–(1.10) and (4.12) are satisfied, given that the objective function of problem (4.4) is independent of (u, v).
The result then follows by interpreting inclusion (4.12), as already made above. �

The bound on the multiplier vector, usually neglected for MPCCs, can be explicitly given in terms of problem data; see
the proof of Proposition 3.1. It may be important to mention that this bound can be very useful in developing an effective
algorithm for problem (1.6), and hence for the bilevel optimization problem.

The technique used in the proof of Theorem 4.2, i.e. to transform the nonlinear complementarity problem in (4.1) into
a linear one, has been used in various occasions, for the MPCC; see e.g. [9,32]. One can easily check that the M-stationarity
conditions obtained here are identical to those in [27] or [33] under various CQs, among which CQ (b) of [27, Theorem 4.1]
or (b) of [33, Theorem 5.1] coincides with the CQ in Theorem 4.2. But, it should be mentioned that in the latter case, this CQ
is recovered from a perspective different from that of [27,33], where an enhanced generalized equation formulation of the
KKT conditions of the lower level problem was used to design the CQ.

We now introduce a different way to choose ψ,Ω and Λ; that would lead to a new and weaker CQ allowing us to
obtain the same optimality conditions as in Theorem 4.2. To proceed, let us recall that the complementarity system (4.1) is
equivalent to

ui ≥ 0, gi(x, y) ≤ 0, uigi(x, y) = 0, i = 1, . . . , p,

meaning that

(ui,−gi(x, y)) ∈ Λi := {(a, b) ∈ R2
|a ≥ 0, b ≥ 0, ab = 0}, i = 1, . . . , p.
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Theorem 4.3. Let (x, y, u) be a local optimal solution of problem (1.6) and assume that the following assertions are satisfied:

1. The following set-valued mapping is calm at (0, 0, x, y, u)

M1(t1, t2) := {(x, y, u)|G(x)+ t1 ≤ 0,L(x, y, u)+ t2 = 0}

2. The following implication holds at (x, y, u):

∇G(x)⊤α + ∇xg(x, y)⊤β + ∇xL(x, y, u)⊤γ = 0
∇yg(x, y)⊤β + ∇yL(x, y, u)⊤γ = 0
α ≥ 0, α⊤G(x) = 0
βν = 0, ∇ygη(x, y)γ = 0
∀i ∈ µ, (βi > 0 ∧ ∇ygi(x, y)γ > 0) ∨ βi(∇ygi(x, y)γ ) = 0

 H⇒


β = 0
∇yg(x, y)γ = 0. (4.13)

Then, there exists (α, β, γ ) ∈ Rk+p+m, with ‖β‖ ≤ r (for some r > 0) such that the M-stationarity conditions are satisfied.

Proof. We consider the setΩ = {(x, y, u)|G(x) ≤ 0,L(x, y, u) = 0} and the function ψ(x, y, u) = (ui,−gi(x, y))i=1,...,p. If
(x, y, u) is a local optimal solution of problem (1.6), it means, in other words, that (x, y, u) is a local optimal solution of the
problem to

minimize F(x, y) subject to (x, y, u) ∈ Ω ∩ ψ−1(Λ), (4.14)

whereΛ = Λ1 × · · · ×Λp, withΛi = {(a, b) ∈ R2
|a ≥ 0, b ≥ 0, ab = 0} for i = 1, . . . , p.

Applying Proposition 3.1 to (4.14), there exists a vector (δ, β) ∈ R2p with ‖(δ, β)‖ ≤ r (for some r > 0) such that

(δi, βi) ∈ NΛi(ψi(x, y, u)), i := 1, . . . , p (4.15)

(0, 0) ∈

[
∇F(x, y)

0

]
+

[
−∇g(x, y)⊤β

δ

]
+ NΩ(x, y, u), (4.16)

provided there is no nonzero vector (δ, β) ∈ R2p such that

(δi, βi) ∈ NΛi(ψi(x, y, u)), i := 1, . . . , p (4.17)

(0, 0) ∈

[
−∇g(x, y)⊤β

δ

]
+ NΩ(x, y, u). (4.18)

It follows, under assumption 1 (see Theorem 2.4), that

NΩ(x, y, u) = {A(α, β, γ )− (∇xg(x, y)⊤β,∇yg(x, y)⊤β, 0)⊤|α ≥ 0, α⊤G(x) = 0},

where A(α, β, γ ) denotes the matrix given in (4.8). Hence, either from (4.16) or from (4.18), it follows that there exists
γ ∈ Rm such that δ = −∇yg(x, y)γ ; à fortiori, either (4.15) or (4.17) implies that there exists γ ∈ Rm such that
(−∇ygi(x, y)γ , βi) ∈ NΛi(ψi(x, y, u)), i := 1, . . . , p. The result then follows by noting that NΛi(ψi(x, y, u)) is obtained
from Lemma 4.1. �

The approach in the above result is similar to the one used in [34], for amathematical programwith vanishing constraints.

Remark 4.4. (i) Assumptions 1 and 2 in the previous result are satisfied, provided CQ (4.3) holds at (x, y, u). In fact, it is
obvious that CQ (4.3) implies assumption 2. On the other hand, CQ (4.3) can equivalently be written as

A(x, y, u) := {(α, β, γ )|∇G(x)⊤α + ∇xg(x, y)⊤β + ∇xL(x, y, u)⊤γ = 0
∇yg(x, y)⊤β + ∇yL(x, y, u)⊤γ = 0 α ≥ 0, α⊤G(x) = 0
βν = 0,∇ygη(x, y)γ = 0 ∀i ∈ µ, (βi > 0 ∧ ∇ygi(x, y)γ > 0) ∨ βi(∇ygi(x, y)γ ) = 0}

= {(0, 0, 0)}.

Furthermore, one has

A(x, y, u) ⊇ {(α, 0, γ )|∇G(x)⊤α + ∇xL(x, y, u)⊤γ = 0 ∇yL(x, y, u)⊤γ = 0 α ≥ 0, α⊤G(x) = 0} := B(x, y, u),

which means that CQ (4.3) is also a sufficient condition for B(x, y, u) = {(0, 0, 0)}. Following Lemma 3.2, the latter equality
implies the fulfillment of assumption 1.

(ii) A second possibility to recover CQ (4.3) in the above theorem is to move the constraints defining Ω to the function
ψ , i.e. to setΩ := Rn

× Rm and

ψ(x, y) := [G(x),L(x, y, u), (ui,−gi(x, y))i=1,...,p].

This would also help recover the bound on all the multipliers.
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To conclude this subsection, we now deduce theM-type optimality conditions for the bilevel optimization (1.1) from the
above developments on the classical KKT reformulation (1.6).

Corollary 4.5. Let (x, y) be a local optimal solution of problem (1.1). Assume that the following assertions hold:

1. CQ (1.7) holds at (x, y)
2. CQ (4.3) holds at (x, y, u), for all u ∈ Λ(x, y).

Then, (x, y) is M-stationary, with ‖(α, β, γ )‖ ≤ r (for some r > 0).

This result can be restated with CQ (4.3) of assumption 2 replaced by the CQs in Theorem 4.3.

4.2. S-type optimality conditions

In the framework of MPCCs, the Guignard CQ has been shown to be one of the few CQs to be directly applicable to (1.6)
considered as a usual nonlinear optimization problem; cf. [4]. In the next result, we derive the S-type stationarity conditions
for problem (1.6) under the Guignard CQ, which holds at a point (x, y, u) ∈ C (C being the feasible set of problem (1.6)) if
the Fréchet normal cone to C at z takes the form

NC(x, y, u) =


∇Gi(x)⊤dx ≥ 0, ∀i : Gi(x) = 0

d := (dx, dy, du) : ∇gi(x, y)⊤(dx, dy) ≥ 0, ∀i : gi(x, y) = 0
∇Li(x, y, u)⊤d = 0, ∀i : i = 1, . . . ,m
∇σ(x, y, u)⊤d = 0


where σ denotes the function defined as σ(x, y, u) := −u⊤g(x, y).

Theorem 4.6. Let (x, y, u) be a local optimal solution of problem (1.6) and assume that the Guignard CQ is satisfied at (x, y, u).
Then, there exists (α, β, γ ) ∈ Rk+p+m such that the S-stationarity conditions (in the sense of Definition 1.4) are satisfied.

Proof. According to [35, Theorem 3.5], under the Guignard CQ, there exists (α, β, γ , λ) ∈ Rk+p+m+1 such that the following
optimality conditions are satisfied:

∇xF(x, y)+ ∇G(x)⊤α + ∇xg(x, y)⊤(β − λu)+ ∇xL(x, y, u)⊤γ = 0 (4.19)

∇yF(x, y)+ ∇yg(x, y)⊤(β − λu)+ ∇yL(x, y, u)⊤γ = 0 (4.20)

α ≥ 0, α⊤G(x) = 0 (4.21)

β ≥ 0, β⊤g(x, y) = 0 (4.22)

∇yg(x, y)γ − λg(x, y) ≥ 0, u⊤(∇yg(x, y)γ ) = 0. (4.23)

It suffices now to show that these conditions are equivalent to the S-stationarity conditions in the sense of Definition 1.4,
i.e. for a Lagrange multiplier vector v = (α, β, γ , λ), the triple (x, y, v) satisfies (4.19)–(4.23) if and only if there exists
v∗

= (α∗, β∗, γ ∗) such that (x, y, v∗) satisfies (1.8)–(1.11) and (1.13).
The first implication follows trivially by means of the definitions of the index sets in the introduction of this paper. The

converse follows by applying the same technique as in the proof of Proposition 4.2 in [36]. �

An example of bilevel optimization problem for which the Guignard CQ is satisfied can be found in [35]. For more on this
CQ and its application to MPCCs, see [4].

For the rest of this section, we focus our attention to the concept of partial calmness. Precisely, we start by showing how
a combination of partial calmness and basic CQ could lead to the S-stationarity conditions. The principle of this result is very
simple. In fact, since the failure of theMFCQ is due to the complementarity system, thenmoving the function σ to the upper
level objective function paves the way to the application of the same CQ.

Theorem 4.7. Let (x, y, u) be a local optimal solution of problem (1.6) and assume that the following assertions are satisfied:

1. Problem (1.6) is σ -partially calm at (x, y, u)
2. The following implication holds at (x, y, u):

∇G(x)⊤α + ∇xg(x, y)⊤β + ∇xL(x, y, u)⊤γ = 0
∇yg(x, y)⊤β + ∇yL(x, y, u)⊤γ = 0
α ≥ 0, α⊤G(x) = 0
β ≥ 0, β⊤g(x, y) = 0
∇yg(x, y)γ ≥ 0, u⊤(∇yg(x, y)γ ) = 0

 H⇒


α = 0
β = 0
γ = 0.

(4.24)
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Then, there exists (α, β, γ ) ∈ Rk+p+m, with ‖(α, β, γ )‖ ≤ r (for some r > 0) such that the S-stationarity conditions are
satisfied.

Proof. Let (x, y, u) be a local optimal solution of problem (1.6) and let assumption 1 of the theorem be satisfied. Then, it
follows from Theorem 3.7 that, there exists λ > 0 such that (x, y, u) is also a local optimal solution of the problem

minimize F(x, y)− λu⊤g(x, y) subject to (x, y, u) ∈ Ω ∩ ψ−1(Λ), (4.25)

whereΩ = Rn+m
× Rp

+,Λ = Rk+p
− × {0m} and ψ(x, y, u) = (G(x), g(x, y),L(x, y, u)). One can easily check that:

NΩ(x, y, u) = {0n+m} × {η ∈ Rp
|η ≤ 0, η⊤u = 0} (4.26)

NΛ(ψ(x, y, u)) =

(α, β, γ )|α ≥ 0, α⊤G(x) = 0, β ≥ 0, β⊤g(x, y) = 0


(4.27)

∇ψ(x, y, u)⊤(α, β, γ ) = A(α, β, γ ), (4.28)

where A(α, β, γ ) is the matrix in (4.8). It follows from equalities (4.26)–(4.28) that the basic CQ applied to problem (4.25)
at (x, y, u) can equivalently be formulated as: there is no nonzero vector (α, β, γ ) ∈ Rk+p+m and a vector η ∈ Rp (dummy
multiplier) such that the first four lines of the left hand side of implication (4.24) and the system

∇yg(x, y)γ + η = 0, η ≤ 0, η⊤u = 0 (4.29)

are satisfied, respectively. It clearly follows that assumption 2 corresponds to the basic CQ applied to problem (4.25), where
the last line of the system in the left hand side of implication (4.24) is recovered from (4.29). Hence, applying Proposition 3.1
to problem (4.25), it also follows from (4.26)–(4.28) that there exists (α, β, γ ) ∈ Rk+p+m, with ‖(α, β, γ )‖ ≤ r (for some
r > 0) and λ > 0 such that (4.19)–(4.22) and

− λg(x, y)+ ∇yg(x, y)γ + η = 0, η ≤ 0, η⊤u = 0 (4.30)

hold. Hence, (4.23) is regained from system (4.30) while noting that the feasibility of (x, y, u) implies u⊤g(x, y) = 0.
We have shown that there exists (α, β, γ , λ), with λ > 0, such that (4.19)–(4.23). The S-stationarity conditions

(1.8)–(1.11) and (1.13) are then obtained as in the previous result. �

In the next result, we show that the CQ in assumption 2 of the previous theorem can be weakened, if the perturbation
map of the joint upper and lower level feasible set is calm.

Theorem 4.8. Let (x, y, u) be a local optimal solution of problem (1.6) and assume that the following assertions are satisfied:

1. Problem (1.6) is σ -partially calm at (x, y, u)
2. The following set-valued mapping is calm at (0, 0, x, y)

M2(t1, t2) := {(x, y)|G(x)+ t1 ≤ 0, g(x, y)+ t2 ≤ 0}

3. The following implication holds at (x, y, u):

∇G(x)⊤α + ∇xg(x, y)⊤β + ∇xL(x, y, u)⊤γ = 0
∇yg(x, y)⊤β + ∇yL(x, y, u)⊤γ = 0
α ≥ 0, α⊤G(x) = 0
β ≥ 0, β⊤g(x, y) = 0
∇yg(x, y)γ ≥ 0, u⊤(∇yg(x, y)γ ) = 0

 H⇒ γ = 0. (4.31)

Then, there exists (α, β, γ ) ∈ Rk+p+m, with ‖γ ‖ ≤ r (for some r > 0) such that the S-stationarity conditions are satisfied.

Proof. SetΩ = {(x, y, u)|u ≥ 0,G(x) ≤ 0, g(x, y) ≤ 0}, and let (x, y, u) be a local optimal solution of problem (1.6). Then,
under assumption 1, there exists λ > 0 such that (x, y, u) is also a local optimal solution of

minimize F(x, y)− λu⊤g(x, y) subject to (x, y, u) ∈ Ω ∩ L−1(0).

Hence, it follows from Proposition 3.1 that if

[0 ∈ ∇L(x, y, u)⊤γ + NΩ(x, y, u), γ ∈ Rm
] ⇒ γ = 0, (4.32)

then there exists γ ∈ Rm with ‖γ ‖ ≤ r (for some r > 0) such that

0 ∈

[
∇F(x, y)
−λg(x, y)

]
+ ∇L(x, y, u)⊤γ + NΩ(x, y, u). (4.33)
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Now, observe thatΩ = Ω ′
× Rp

+ withΩ ′
:= {(x, y)|G(x) ≤ 0, g(x, y) ≤ 0}. It follows from Theorem 2.4 that

NΩ ′(x, y) = {(∇G(x)⊤α + ∇xg(x, y)⊤β,∇yg(x, y)⊤β)⊤| (4.21)–(4.22)}

under assumption 2. Hence, we regain assumption 3 and the desired optimality conditions by applying the last equality to
(4.32) and (4.33), while noting that u∗

∈ NRp
+
(u) if and only if u∗

≤ 0 and u⊤u∗
= 0. �

Proceeding as in Remark 4.4, one can easily check that assumption 2 in Theorem 4.7 implies the fulfillment of both
assumption 2 and 3 in Theorem 4.8.

To conclude this section, it seems important to mention some sufficient conditions for the partial calmness used in
Theorems 4.7 and 4.8. For this purpose, a slightly modified notion of uniform weak sharp minimum was introduced in [5].
We recall that the initial definition first appeared in [30].

Definition 4.9. The family {(1.2)|x ∈ X} is said to have a uniformly weak sharp minimum if there exist c > 0 and a
neighborhood N (x) of S(x), x ∈ X such that

f (x, y)− ϕ(x) ≥ cd(y, S(x)), ∀y ∈ K(x) ∩ N (x), ∀x ∈ X .

If we set N (x) = Rm, we obtain the definition in [30]. A uniform weak sharp minimum, as given in the above definition,
was shown to exist under the uniform calmness; see [5].

Theorem 4.10. Let (x, y, u) be a local optimal solution of problem (1.6). Then, problem (1.6) is σ -partially calm at (x, y, u),
provided one of the following assumptions hold:

1. The family {(1.2)|x ∈ X} has a uniform weak sharp minimum.
2. The set A := {(x, y, u)|G(x) ≤ 0,L(x, y, u) = 0, g(x, y) ≤ 0, u ≥ 0} is semismooth and −(u⊤

∇g(x, y), g(x, y)) ∉

bdNA(x, y, u).

Proof. Under assumption 1, the result follows from [15]. Under assumption 2, it follows from [37] that the set-valued
mapping M3(t) := {(x, y, u) ∈ A| − u⊤g(x, y) + t ≤ 0} is calm at (0, x, y, u). Hence, the result follows from
Proposition 3.2. �

For the definition of the semismoothness, the interested reader is referred to [37]. This is automatically satisfied for our
set A, if G is convex, and (x, y) → ∇yf (x, y) and g are affine linear.

Finally, the S-stationarity conditions for the bilevel program (1.1) can be obtained via its classical KKT reformulation as
follows.

Corollary 4.11. Let (x, y) be a local optimal solution of problem (1.1). Assume that the following assertions hold:

1. CQ (1.7) holds at (x, y)
2. Guignard CQ holds at (x, y, u), for all u ∈ Λ(x, y).

Then, (x, y) is S-stationary in the sense of Definition 1.4.

Similarly to theM-stationarity case, this corollary can be restated with the Guignard CQ of assumption 2 replaced by the
CQs in Theorem 4.7 or Theorem 4.8.

5. The primal KKT reformulation

Consider the set-valued mapping Q defined as Q (x, y) := NK(x)(y), for y ∈ K(x), and Q (x, y) := ∅, otherwise. To
obtain the closedness of gphQ , necessary in order to apply the basic CQ to problem (1.5), we introduce the concept of
inner semicontinuity for a set-valued mapping; see [16] for more details.

A set-valued mapping Φ is said to be inner semicontinuous at (x, y) ∈ gphΦ if for every sequence xk → x there is a
sequence yk ∈ Φ(xk) such that yk → y. Φ will be said to be inner semicontinuous if it is inner semicontinuous at every
point of its graph. In the following result, we show that gphQ is closed if the lower level feasible set mapping K is inner
semicontinuous.

Proposition 5.1. Assume that K is inner semicontinuous. Then, gphQ is closed as a subset of gph K × Rm, i.e. if (xk, yk) →

(x, y)((xk, yk) ∈ gphK) and zk → z with zk ∈ Q (xk, yk), then z ∈ Q (x, y).

Proof. Let (xk, yk) → (x, y)((xk, yk) ∈ gph K) and zk → z with zk ∈ Q (xk, yk). Since K(xk) is assumed to be convex for all
k, we have

⟨zk, uk
− yk⟩ ≤ 0, ∀uk

∈ K(xk), k ∈ N. (5.1)

Given that K is inner semicontinuous, then for an arbitrary v ∈ K(x), there exists vk ∈ K(xk) such that vk → v. It follows
from (5.1) that ⟨zk, vk − yk⟩ ≤ 0, ∀k ∈ N. This implies that ⟨z, v − y⟩ ≤ 0, ∀v ∈ K(x), which concludes the proof. �
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This result can be seen as an extension to parametric sets, of the result stated in [2, Proposition 3.3], with the difference
that our cones are defined in the sense of convex analysis. But, it may well be extended to the case where NK(x)(y) is the
more general Mordukhovich normal cone used in [2], when K(x) := K for all x.

Considering the case where the set-valued mapping K is defined as in (1.3), the concept of inner semicontinuity can be
brought to usual terms through the following well-known result; see e.g. [38].

Lemma 5.1. If CQ (1.7) holds at (x, y), then K is inner semicontinuous near (x, y).

The normal cone to the graph of NRp
−
, which is also useful in this section, can be obtained from the normal cone to Θ

(defined in (4.2)) as follows.

Proposition 5.2. Let (χ, v) ∈ gphNRp
−
, then

NgphNRp
−

(χ, v) = {(−χ∗, v∗) ∈ R2p
|(χ∗, v∗) ∈ NΘ(−χ, v)}.

Proof. We start by noting that

gphNRp
−

= {(χ, v) ∈ R2p
|χ ≤ 0, v ≥ 0, χ⊤v = 0}

= {(χ, v) ∈ R2p
|(−χ, v) ∈ Θ}.

This means that gphNRp
−

= ϑ−1(Θ), where ϑ(χ, v) := (−χ, v) and for (χ, v) ∈ R2p, one obviously has

∇ ϑ(χ, v) =


−Ip O
O Ip


with Ip and O denoting the p × p identity and zero matrix, respectively. Hence, the Jacobian matrix ∇ ϑ(χ, v) is quadratic
and nonsingular and it follows from [20, Corollary 2.12] that

NgphNRp
−

(χ, v) = ∇ϑ(χ, v)⊤NΘ(ϑ(χ, v)),

given that gphNRp
−
andΘ are closed sets. The result then follows. �

Exploiting the polyhedrality of gphNRp
−
and Θ , the equality in the above result can also be proven, at least in the case

where χ = 0, by using a combination of [39, Proposition 1] and [22, Theorem 5].
In the next theorem, we present a slightly modified version of Theorem 6.1 in [1]. We also include a sketch of the proof

for further references in the rest of the paper, and also to simplify the comparison between the primal and classical KKT
reformulation approaches, in deriving necessary optimality conditions for the bilevel program (1.1).

Theorem 5.2. Let (x, y) be a local optimal solution of problem (1.5) (i.e. of (1.1)). Assume that the following assertions hold:

1. CQ (1.7) holds at (x, y)
2. The following set-valued mapping is calm at (0, x, y, u), for all u ∈ Λ(x, y)

M(ϑ) :=


(x, y, u)

[g(x, y)u

]
+ ϑ ∈ gphNRp

−


3. The following set-valued mapping is calm at (0, 0, x, y, u), for all u ∈ Λ(x, y)

P(z, ϑ) :=


(x, y, u)

[ G(x)
L(x, y, u)

]
+ z ∈ Rk

−
× {0m}


∩ M(ϑ).

Then, there exist (α, β, γ ) ∈ Rk+p+m and u ∈ Λ(x, y) such that the M-stationarity conditions (1.8)–(1.12) are satisfied, with
‖(α, γ )‖ ≤ r (for some r > 0).

Proof. We organize the proof in three steps in order to simplify further reference.
Step 1. Consider the following values for ψ andΛ, respectively:

ψ(x, y) := [G(x), x, y,−∇yf (x, y)], and Λ := Rk
−

× gphQ .

Then it follows from Proposition 3.1 that there exists (α, γ ) ∈ Rk+m, with ‖(α, γ )‖ ≤ r (for some r > 0) such that

0 ∈ ∇F(x, y)+

[
∇G(x)⊤α + ∇

2
xyf (x, y)

⊤γ

∇
2
yyf (x, y)

⊤γ

]
+ D∗Q ((x, y)| − ∇yf (x, y))(γ ) (5.2)
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providedΛ is closed and the set-valued mapping Ψ in (3.3) (withΩ := Rn
× Rm, ψ andΛ given as in the beginning of this

proof) is calm at (0, x, y). Obviously, the closedness of Λ is ensured by assumption 1, by a combination of Proposition 5.1
and Lemma 5.1. As for the calmness of Ψ , it is obtained by assumption 3. In fact the proof of the latter claim can be adapted
from the proof of Theorem 4.3 in [1].

Step 2. Under assumption 1 and 2, an upper bound for the coderivative of Q at (x, y,−∇yf (x, y)) is derived from Theorem
3.1 in [1]:

D∗Q ((x, y)| − ∇yf (x, y))(γ ) ⊆


u∈Λ(x,y)


(∇(∇yg(x, y)⊤u))⊤γ + ∇g(x, y)⊤D∗NRp

−
(g(x, y), u)(∇yg(x, y)γ )


.

Step 3. To conclude the proof, note that β ∈ D∗NRp
−
(g(x, y), u)(∇yg(x, y)γ ) if and only if (β,−∇yg(x, y)γ ) ∈

NgphNRp
−

(g(x, y), u). Hence, the result follows by considering the equality in Proposition 5.2. �

In our case, constraint G(x) ≤ 0 is included in ψ whereas it is part of Ω in [1]. The reason for this is to get a close link
between CQ (4.3) and assumptions 2 and 3. Also,Λ(x, y) is not a singleton as in [1]. To obtain this, at the place of assumption
1, it is required in [1] that ∇yg(x, y) have full rank. Finally, in contrary to Theorem 6.1 of [1], the multipliers α and γ are
bounded in Theorem 5.2 by a known number, somethingwhich can be useful when constructing an algorithm for the bilevel
program.

There are two equivalent ways to interpret the coderivative term in the right hand side of the inclusion in step 2 of
the proof of Theorem 5.2. The first one used in [40] consists in writing it directly in terms of g(x, y), u and ∇yg(x, y)γ .
It should however be mentioned that in [40], g does not depend on the parameter x. The second one that we have
used here consists in first computing the normal cone to the graph of NRp

−
at (g(x, y), u). Then, translating inclusion

(β,−∇yg(x, y)γ ) ∈ NgphNRp
−

(g(x, y), u), directly leads to theM-stationarity conditions in the sense of Definition 1.3.

At first view, it is not apparent that the optimality conditions in [40] are in fact equivalent to theM-stationarity conditions
in Definition 1.3. Moreover, a condition was later suggested in [41], in order to obtain S-type optimality conditions for an
OPEC from the M-ones. By the way, let us mention that in the case of our problem, the S-stationarity conditions defined
in [41] correspond to those of Definition 1.4. Hence, a CQ similar to the one suggested in [9] and called Partial MPEC LICQ
can also lead fromM- to S-type optimality conditions for OPEC. For problem (1.1), one can easily check that the Partial MPEC
LICQ takes the form:

∇G(x)⊤α + ∇xg(x, y)⊤β + ∇xL(x, y, u)⊤γ = 0
∇yg(x, y)⊤β + ∇yL(x, y, u)⊤γ = 0
βν = 0, ∇ygη(x, y)γ = 0

 H⇒ βµ = 0, ∇ygµ(x, y)γ = 0.

For a more clear comparison between the approach in the previous section and the current one, one should note that
assumption 2 and 3 of Theorem 5.2 are satisfied, provided that CQ (4.3) holds at (x, y, u), for all u ∈ Λ(x, y). This follows
similarly as in Remark 4.4. Hence, the following corollary of the last theorem.

Corollary 5.3. Let (x, y) be a local optimal solution of problem (1.1). Assume that the following assertions hold:
1. CQ (1.7) holds at (x, y)
2. CQ (4.3) holds at (x, y, u), for all u ∈ Λ(x, y).
Then, there exist (α, β, γ ) ∈ Rk+p+m and u ∈ Λ(x, y) such that the M-stationarity conditions (1.8)–(1.12) are satisfied, with
‖(α, γ )‖ ≤ r (for some r > 0).

If we neglect the bounds on the multipliers, the only difference between Corollaries 4.5 and 5.3 is that for the former,
the M-stationarity conditions (1.8)–(1.12) have to be satisfied for all u ∈ Λ(x, y), whereas for the latter, they have to hold
for some u ∈ Λ(x, y). It cannot be otherwise in the case of Corollary 5.3, if one considers the inclusion in Step 2 of the proof
of Theorem 5.2. This means that, for the bilevel optimization problem (1.1), if we adopt the definition of theM-stationarity
of a local optimal solution as in Definition 1.3, the primal KKT reformulation leads us to weaker conditions. Hence, one
could say that the gain we have with the primal KKT reformulation in terms of local optimal solution (cf. Theorem 1.1), is
lost when considering M-stationarity. From the view point of CQs, obviously, the same effort (i.e. in terms of CQs) leads to
M-type optimality conditions for the primal KKT reformulation, which are weaker than those obtained via the classical KKT
reformulation.

Moreover, the classical KKT reformulation provides a much bigger flexibility in designing surrogates for the other
optimality conditions known forMPCCs; see for example the S-type stationarity conditions obtained in Section 4.2. However,
it may be very difficult to derive S-type optimality conditions for an OPEC. The reason for this is that the Fréchet normal
cone does not have as good calculus rules as that of Mordukhovich.

For the last part of this section, we now introduce a concept of partial calmness/exact penalization for the primal KKT
reformulation of the bilevel programming problem, that will allow us to substantially weaken CQ (4.3), while still being
able to obtain the optimality conditions in Theorem 5.2. To bring the concept of partial calmness in Definition 3.6 to the
primal KKT reformulation (1.5), one possibility is to observe that

ψ(x, y) ∈ Λ ⇐⇒ ρ(x, y) := dΛoψ(x, y) = 0,
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whereΛ := gphQ , ψ(x, y) := (x, y,−∇yf (x, y)) and dΛ denotes the distance function.Hence, the primal KKT reformulation
can equivalently be written as

minimize F(x, y) subject to (x, y) ∈ X × Rm, ρ(x, y) = 0. (5.3)

Such a transformation for an OPEC has already been suggested in [37], but with no further details. We start by showing in
the next result that problem (5.3) leads to the same optimality conditions as in Theorem 5.2. Second, we show that the latter
reformulation of an OPEC induces new but not so fruitful ideas for CQs. x ∈ X will be said to be upper level regular if there
exists no nonzero vector α ≥ 0: α⊤G(x) = 0 and ∇G(x)⊤α = 0.

Theorem 5.4. Let (x, y) be a local optimal solution of (5.3) (i.e. of problem (1.1)). Assume that the following assertions hold:
1. x is upper level regular
2. assumption 1 and 2 in Theorem 5.2
3. ρ-partial calmness at (x, y).

Then, there exist (α, β, γ ) ∈ Rk+p+m and u ∈ Λ(x, y) such that the M-stationarity conditions (1.8)–(1.12) are satisfied, with
‖(α, γ )‖ ≤ r (for some r > 0).

Proof. Under assumption 3, it follows fromTheorem3.7, that there exists r1 > 0 such that (x, y) is a local optimal solution of

minimize F(x, y)+ r1ρ(x, y) subject to G(x) ≤ 0.

Hence, fromTheorems 2.1 and 4.2, there existsα, with ‖α‖ ≤ r2, for some r2 > 0 such that (1.10) and the following inclusion
hold

0 ∈ ∇F(x, y)+ (∇G(x)⊤α, 0)⊤ + r1∂ρ(x, y). (5.4)

Applying Theorem 2.2 to ρ, it follows that

∂ρ(x, y) ⊆


[∂⟨u∗, ψ⟩(x, y), , u∗

∈ B ∩ NΛ(ψ(x, y))], (5.5)

given thatΛ is (locally) closed and hence, ∂dΛ(a) = B ∩NΛ(a) for any a ∈ Λ; cf. [18, Example 8.53]. Thus, the combination
of (5.4) and (5.5) implies that there exists γ ∈ Rm, with ‖γ ‖ ≤ r1, such that inclusion (5.2) holds.

The rest of the proof then follows as that of Theorem 5.2. In this case, r can be chosen as r = min{r1, r2}. �

Remark 5.5. The need of the partial calmness in order to have ρ (composition of ψ and the distance function on Λ) as an
exact penalization term can be avoided by considering a classical result of Clarke [31, Proposition 2.4.3], which amounts to
saying that the distance function is automatically an exact penalty term provided the objective function (F in our case) is
Lipschitz continuous. To proceed, one should observe thatψ(x, y) ∈ Λ is also equivalent to dψ−1(Λ)(x, y) = 0. Hence, (x, y)
is a local optimal solution of problem (1.5) implies that, there exists r > 0 such that (x, y) is a local optimal solution of the
problem to

minimize F(x, y)+ rdψ−1(Λ)(x, y) subject to (x, y) ∈ X × Rm,

without any CQ. In exchange though, computing the basic subdifferential of the distance function dψ−1(Λ)would then require
an assumption closely related to the ρ-partial calmness, i.e. the calmness of a certain set-valued mapping.

Consider the set-valued mapping Ψ (ϑ) := {(x, y) ∈ X × Rm
|ψ(x, y) + ϑ ∈ Λ}, where ψ(x, y) := (x, y,−∇yf (x, y))

and Λ := gphQ . The next result helps to show that the ρ-partial calmness is closely related to the CQ in assumption 3 of
Theorem 5.2.

Theorem 5.6. Let (x, y) ∈ Ψ (0). Then, Ψ is calm at (0, x, y) if and only if the following set-valued mapping is calm at (0, x, y)Ψ (t) := {(x, y) ∈ X × Rm
|ρ(x, y) ≤ t}. (5.6)

This result established in [22], for the case where X × Rm corresponds to a normed space, remains valid in our setting.
Additionally, one can easily check that the calmness of Ψ is equivalent to the calmness of a set-valuedmapping obtained by
replacing ρ(x, y) ≤ t in (5.6) by ρ(x, y) + t ≤ 0. Hence, by the combination of Proposition 3.2 and Theorem 5.6, it is clear
that the calmness of

P(z, ϑ) := {(x, y, u) ∈ X × Rm
× Rp

|L(x, y, u)+ z = 0} ∩ M(ϑ)

at (0, 0, x, y, u), for all u ∈ Λ(x, y), is a sufficient condition for the ρ-partial calmness to hold. Here, Mis defined as in
assumption 2 of Theorem 5.2. Hence, a dual condition, similar to (and weaker than) CQ (4.3), sufficient for the ρ-partial
calmness, can be stated.

Moreover, applying Proposition 3.2, the ρ-partial calmness also inspires a different kind of CQ in the dual form. In fact, it
follows from Proposition 3.2, that a sufficient condition for the ρ-partial calmness to hold is that:

∂ρ(x, y) ∩ −NX×Rm(x, y) = ∅. (5.7)
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Proposition 5.3. If equality holds in (5.5), then CQ (5.7) fails at (x, y).

Proof. If equality holds in (5.5), then 0 ∈ ∂ρ(x, y) since as a normal cone, NΛ(ψ(x, y)) always contains the origin point. For
the latter reason, we also have 0 ∈ NX×Rm(x, y). Hence, the result. �

This behavior of CQ (5.7) is close to that of a similar CQ considered in [5] for the optimal value reformulation (1.14), where
instead of ρ(x, y) one has f (x, y)−ϕ(x). In the case of problem (1.14), the corresponding CQwas shown to automatically fail,
provided the value function is locally Lipschitz continuous. Even though one can easily construct examples where equality
holds in (5.5), the generalization of this fact would generally require the setΛ to be normally regular atψ(x, y), which may
not be easy to have given thatΛ is the graph of a normal cone mapping. Moreover, if we assume X to be convex, passing to
the boundary of NX×Rm generates a CQ, analogous to the one also considered in [5] for (1.14), that may have more chances
to be satisfied:

∂ρ(x, y) ∩ −bdNX×Rm(x, y) = ∅. (5.8)

Considering the abstract nature of CQ (5.8) (which is weaker than CQ (5.7)), an immediate attempt to write it in terms of
problem data, i.e. in a verifiable form, produces the following condition

∇g(x, y)⊤β + ∇x,yL(x, y, u)⊤γ ∉ bdNX×Rm(x, y) ∀u ∈ Λ(x, y), ∀γ ∈ Rm,

∀β ∈ D∗NRp(g(x, y), u)(∇yg(x, y)γ ), (5.9)

provided inclusion (5.5) holds, while noting that for A, B, C ⊆ Rl, A ⊆ B and B ∩ C = ∅ imply A ∩ C = ∅. It should however
be mentioned that CQ (5.9) also fails in many cases, in particular, if 0 ∈ bdNX×Rm(x, y).
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