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Abstract We consider the bilevel road pricing problem. In contrary to the Karush-Kuhn-
Tucker (one level) reformulation, the optimal value reformulation is globally and locally
equivalent to the initial problem. Moreover, in the process of deriving optimality conditions,
the optimal value reformulation helps to preserve some essential data involved in the traffic
assignment problem that may disappear with the Karush-Kuhn-Tucker (KKT) one. Hence,
we consider in this work the optimal value reformulation of the bilevel road pricing problem;
using some recent developments in nonsmooth analysis, we derive implementable KKT type
optimality conditions for the problem containing all the necessary information. The issue
of estimating the (fixed) demand required for the road pricing problem is a quite difficult
problem which has been also addressed in recent years using bilevel programming. We
also show how the ideas used in designing KKT type optimality conditions for the road
pricing problem can be applied to derive optimality conditions for the origin-destination
(O-D) matrix estimation problem. Many other theoretical aspects of the bilevel road pricing
and O-D matrix estimation problems are also studied in this paper.

Keywords Bilevel programming · Road pricing · O-D matrix estimation · Optimal value
function · Constraint qualifications · Optimality conditions

1 Introduction

In this paper, we consider the bilevel road pricing problem. In the literature, it has mainly
been addressed through the sensitivity analysis and KKT reformulation, as techniques for
the one level reformulation. These approaches present some weaknesses including the strong
requirements needed for the sensitivity analysis and the unbalanced relationship between the
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KKT reformulation and the initial problem (cf. Dempe and Dutta 2010). Moreover, in the
perspective of KKT type conditions for the road pricing problem, the KKT reformulation
may cost some essential data for the traffic assignment problem, given the linear structure
of the constraint set. Thanks to the optimal value function one level reformulation, these
difficulties can directly be dealt with and some new features of the bilevel road pricing
problem are highlighted.

The main concern in this paper is to design implementable KKT type optimality condi-
tions containing all the necessary information, in the perspective of new approaches to solve
the bilevel road pricing problem, in a rigorous way, and demanding not too strong require-
ments. It is well-known that the problem of estimating the O-D matrix, necessary in the
modeling process of the bilevel road pricing problem presents even more challenges. This
problem is also considered in this paper and KKT type optimality conditions are suggested,
thereby improving the work of Chen (1994) (also see Chen and Florian 1998), which is
discussed in Sect. 4.

In the rest of this section, we first introduce the traffic assignment and bilevel road pricing
problems, respectively. Some review of the methodological approaches is also discussed.
In Sect. 2 the optimal value function reformulation is introduced and analyzed. The KKT
type optimality conditions of the bilevel road pricing and demand adjustment problems are
discussed in Sects. 3 and 4, respectively.

We consider a transportation network G = (N ,A ), where N and A denote the set
of nodes and directed links (arcs), respectively. Let W ⊂ N 2 denote the set of origin-
destination (O-D) pairs. Each O-D pair w ∈ W is connected by a set of routes (paths)
Pw , each member of which is a set of sequentially connected links. We denote by P =⋃

w∈W Pw the set of all routes of the network and by α = |A |, ω = |W | and π = |P|,
the cardinalities of A , W and P, respectively. Let the matrix (Λ = [Λwp]) ∈ R

ω×π denote
the O-D-route incidence matrix in which Λwp = 1 if route p ∈ Pw and Λwp = 0 otherwise,
and the matrix (Δ = [Δap]) ∈ R

α×π denotes the arc-route incidence matrix with Δap = 1 if
arc a is in route p and Δap = 0 otherwise. The network is assumed to be strongly connected,
that is, at least one route joins each O-D pair.

We also consider the column vectors (d = [dw]) ∈ R
ω , (q = [qp]) ∈ R

π+ and (v = [va]) ∈
R

α to denote the travel demand, the route flow and arc flow, respectively. The column vectors
(c = [cp]) ∈ R

π+ and (τ = [τa]) ∈ R
α denote the route capacity and arc toll, respectively.

A route flow q is feasible if it does not exceed the capacity and satisfies the O-D demand
constraint Λq = d . Let us denote by Q the set of such flows, then

Q = {q ∈ R
π
+|q ≤ c,Λq = d}. (1.1)

A link flow v is feasible if there exists a feasible route flow q such that the flow conservation
constraint Δq = v, is satisfied. Hence,

V = {v ∈ R
α|∃q ∈ Q,Δq = v} (1.2)

denotes the set of feasible link flows. We let the function t from R
α × R

α to R
α denote the

route cost, that is for each a ∈ A , the component ta(v, τ ) of the vector t (v, τ ) gives the
traffic cost on the arc a, under the flow-toll couple (v, τ ). We assume that the route cost is
additive, thus the components of c(v, τ ) = Δ�t (v, τ ) give the cost on each route p ∈ P.
Finally, we introduce the vector ϑ(v, τ ) = [ϑw(v, τ )] ∈ R

ω of minimum cost between each
O-D pair w ∈ W , that is ϑw(v, τ ) = minp∈Pw cp(v, τ ).

Wardrop’s user equilibrium principle (Wardrop 1952) states that for every O-D pair w ∈
W , the travel cost of the routes utilized are equal and minimal for each individual user, that
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is for each w ∈ W and p ∈ Pw , we have
{

cp(v, τ ) = ϑw(v, τ ) if qp > 0

cp(v, τ ) ≥ ϑw(v, τ ) if qp = 0
(1.3)

for any fixed toll pattern τ ∈ Γ . It follows from Beckmann et al. (1956) that for every
fixed toll pattern τ ∈ Γ , the Wardrop’s user equilibrium problem (1.3) is equivalent to the
parametric optimization problem

minimize f (v, τ ) =
∑

a∈A

∫ va

0
ta(s, τ )ds

subject to v ∈ V,

(1.4)

provided that for each link a ∈ A , the link cost takes the form ta(va, τ ); that is, it does not
depend on the flow on the other links. In other words, the link costs are separable with respect
to the link flows. In addition, they should also be continuous and positive. These assumptions
will be maintained for the rest of the paper such that for each toll pattern τ , Wardrop’s user
equilibrium arc flow will be defined as the solution of the optimization problem (1.4) also
called the traffic assignment problem.

We now consider a road authority who intends to improve the circulation on the network
G . He/she chooses road pricing as a method to modify the behavior of the road users, by
setting tolls on some links of the network to discourage the use of the tolled links in favor
of some perhaps abandoned of less used ones. For some simplification in the presentation
of the model, we first assume that all the links are tolled (we can have τa = 0 for some link
a ∈ A ). Later in Sect. 3, we will discuss a possible way to introduce some fairness in the
model. The bilevel formulation of this problem enables the road authority to decide while
considering the reactions of the road users. If we assume that for each toll pattern τ , the road
users choose their origin-destination pairs in a way that favors the road authority, then the
problem to be solved by the authority is the so-called optimistic bilevel problem to

minimize F(v, τ )

subject to τ ∈ Γ,v ∈ S(τ),
(1.5)

where F(v, τ ) is the disutility function of the road authority who is also called the leader,
Γ is a closed set representing the set of feasible tolls, and for any given toll τ ∈ Γ , S(τ)

denotes the set of optimal link flows for the collection of all the road users also called the
follower. In other words, S(τ) is the solution set of the traffic assignment problem (1.4)
under the toll pattern τ . As was mentioned by Dempe and Zemkoho (2008), the model in
(1.5) can be altered to tackle other hierarchical problems like the reduction of road accidents
in some developing countries. The modification consist of separating the road users in two
categories: the heavy goods vehicles and the rest of the users. Hence, only the heavy goods
vehicles may be charged a toll equivalent to the level of risk to which they expose the
other road users, by using the corresponding link. In the same way, the problem of reducing
the level of pollution caused by heavy goods vehicles on some links of a network can be
addressed. Many other economical or traffic improvements goals can be achieved by road
pricing. A major deciding factor is the leader or road authority’s objective function. Various
expressions of F(v, τ ) have been considered in the literature, including that of minimizing
the total travel time experienced by all vehicles

F(v, τ ) =
∑

a∈A

vata(va, τa). (1.6)



226 Ann Oper Res (2012) 196:223–240

The total revenue arising from toll charges can also be maximized, hence the authority’s cost
function takes the form

F(v, τ ) =
∑

a∈A

vaτa. (1.7)

A combination of objectives (1.6) and (1.7) is also possible through a weighted sum or the
maximization of the ratio of the total revenue to the total cost, that is the function:

F(v, τ ) =
∑

a∈A

vaτa

/∑

a∈A

vata(va, τa). (1.8)

To solve problem (1.5), two approaches have mainly been used:
The sensitivity analysis which essentially consist of computing the derivative or general-

ized derivative, when it exists, of the link flow function v(.), after ensuring that it is locally
well-defined. Some approximation techniques, like the Taylor expansion theorem, are then
used to obtain a local approximation of v(.) which is inserted in the upper level function
F(v, τ ), such that the problem to be solved is

minimize F(v(τ), τ )

subject to τ ∈ Γ.
(1.9)

For an extensive review on sensitivity analysis methods used in the literature to obtain the
derivative of the link flow v(.) of the traffic assignment problem (1.4), we refer the inter-
ested reader to the paper of Lu (2008). Applications of sensitivity analysis techniques to
solution methods for bilevel transportation problems include the works of Chiou (2005),
Friesz et al. (1990), and Josefsson and Patriksson (2007) for network designing; Yang et al.
(1992), and Yang (1995) for the O-D matrix estimation; and Yang and Lam (1996), Yang
and Yagar (1994), Yang and Bell (1997), and Patriksson and Rockaffelar (2002) for the road
pricing problem. It may be important to mention that Robinson (2006) discovered an error
in one of the main results used in the sensitivity analysis technique suggested by Patriksson
(2004) and that was applied in Josefsson and Patriksson (2007). The interested reader is
referred to Dempe (1993), Ralph and Dempe (1995), and Dempe and Vogel (2001) for sen-
sitivity analysis in more general optimization problems; and to Dempe and Schmidt (1996)
for application of a sensitivity analysis technique in general bilevel programming problems.
A major draw back of most of the sensitivity analysis approaches are the strong assumptions
required in order to have the local uniqueness of the optimal solution of the traffic assign-
ment problem. For instance, it is usually required that for each a ∈ A , the link cost function
ta is strictly increasing in the first argument; which makes this approach not applicable in
the simple case where the lower level disutility function f (v, τ ) is linear or bilinear. Sec-
ondly, Netter (1972) proved that in reality it is not always possible to have uniqueness of the
optimal flows in the context of multiclass users like for the road accident reduction problem
mentioned earlier in this section.

The KKT reformulation which consist in replacing the lower level problem (1.4) repre-
sented in (1.5) through the solution set S(τ) by its Karush-Kuhn-Tucker (KKT) conditions.
This approach has been used by Labbée et al. (1998), Dewez et al. (2008), Heilporn et al.
(2010), etc., in order to solve the bilevel road pricing problem. In most of these papers, the
leader’s cost function takes the bilinear form (1.7) and after the KKT reformulation a new
transformation is made, to obtain a 0-1 mixed integer programming problem, and heuristics
are then developed to solve the latter problem. It may also be of interest to remind that in
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the latter works the link-node model is considered for the traffic assignment problem instead
of the link-route formulation used in (1.4). For more details on the link-node and link-route
formulations of the traffic assignment problem and relations between them, we refer the in-
terested reader to the book of Patriksson (1994). The main difficulty faced by this approach
is that the KKT reformulation of the bilevel road pricing problem (1.5) may not be equiva-
lent to the initial problem when local solutions are considered; see Dempe and Dutta (2010).
Hence, considering the fact that problem (1.5) is a typical nonconvex optimization problem,
as to be discussed in the next section, the idea of computing global optimal solutions is
hypothetical.

In the next section, we consider the optimal value reformulation of the bilevel road pric-
ing problem which has been given no attention, to the best of our knowledge, although it
potentially helps to avoid the main difficulties raised by the first two approaches.

2 The optimal value function approach

The optimal value function of the traffic assignment problem (1.4) is given as

ϕ(τ) := min{f (v, τ )|v ∈ V }. (2.1)

It can easily be shown that the bilevel road pricing problem (1.5) is globally and locally
equivalent to the following problem called the optimal value reformulation:

minimize F(v, τ )

subject to

{
f (v, τ ) ≤ ϕ(τ),

τ ∈ Γ, v ∈ V.

(2.2)

In contrary to the sensitivity analysis model in the previous section, no requirement of
uniqueness of the optimal flows for the traffic assignment problem (1.4) is needed. An-
other advantage of the optimal value reformulation as compared to the KKT reformulation
is that in the process of deriving optimality conditions, the latter reformulation usually re-
quires second order derivatives for the functions involved in the lower level problem. Not
only second order derivatives are already demanding for a solution process but this may be
even more harmful in the context of problem (1.5) since some essential data could disappear
from the optimality conditions, given that the constraints of the traffic assignment problem
(1.4) are linear and one may also have situations where there is no congestion in the network,
cf. Dempe and Zemkoho (2011a).

The optimal value reformulation (2.2) was introduced in bilevel programming by Outrata
(1990) and to the best of our knowledge it was first used in the field of bilevel transportation
by Chen (1994). Chen (1994), and Chen and Florian (1998) derived Fritz-John’s type opti-
mality conditions for the O-D demand adjustment problem in the reformulation analogous
to (2.2). An augmented Lagrangean method was then suggested to solve the latter problem,
but with the possibility that the multiplier attached to the leader’s cost function could vanish,
the Fritz-John’s type conditions may not be indicated for this algorithm to work efficiently.
For this reason, we will show later in this paper, how KKT type optimality conditions could
be derived for the O-D matrix estimation problem. Meng et al. (2001) also used the optimal
value function approach to tackle the network design problem. But some strong assumptions
were made, including that all the link costs ta , a ∈ A are strictly increasing w.r.t. va , in or-
der to obtain the differentiability of the optimal value function. As already mentioned above,
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such a requirement is not applicable in the case where f is bilinear, that is when there is no
congestion in the network. An augmented Lagrangean method was also proposed for this
problem, but with different stopping criteria. It may be of interest to remind that, mathemat-
ically, the bilevel network design and the road pricing problem have the same structure: the
lower level problem is parameterized only in the route users total cost function represented
by f in our case. At the difference that instead of the toll as in the road pricing problem, the
parameter represents the capacity enhancement for the network design problem.

For the rest of the paper, unless otherwise stated, the leader’s cost function F and the
route users’ total cost function f are assumed to be continuously differentiable. One of
the major challenges for the optimal value reformulation (2.2) of our bilevel road pricing
problem (1.5) is the presence of the optimal value function ϕ. This function is typically a
nonsmooth function. In fact, even in the simplest case where the follower’s cost function
takes the bilinear form f (v, τ ) = v�τ , ϕ is a piecewise linear function. Secondly, the con-
straint function (v, τ ) → f (v, τ ) − ϕ(τ) may not be convex, even in the situation where f

would be convex in (v, τ ), in which case we would have a difference of convex functions.
Nevertheless we will show in Theorem 2.1 below that ϕ is locally Lipschitz continuous.
Thus problem (2.2) can be considered as a Lipschitz optimization problem with a special
constraint f (v, τ ) − ϕ(v) ≤ 0, called the optimal value constraint. For the investigation of
such a problem we need some nonsmooth tools. In this paper, we use the normal cone and
subdifferential of Mordukhovich, which are defined respectively as:

NC(x) := {u ∈ R
n|∃uk → u,xk → x(xk ∈ C) : uk ∈ N̂C(xk)},

∂ψ(x) := {u ∈ R
n|(u,−1) ∈ Nepiψ(x,ψ(x))},

where x ∈ C (closed set) and x ∈ domψ (ψ : R
n → R), respectively. Furthermore, N̂C and

epiψ denote the Fréchet normal cone to C and the epigraph of ψ , respectively. It is worth
mentioning that ∂ψ(x) is nonempty and compact when ψ is Lipschitz continuous around x

and further we have ∂ψ(x) = {∇ψ(x)} when ψ is continuously differentiable. Also let us
mention that N̂C(x) and NC(x) both coincide with the ordinary normal cone in the sense
of convex analysis provided that the set C is convex. In the case where φ and ψ are locally
Lipschitz continuous around x, the sum rule

∂(λφ + μψ)(x) ⊆ λ∂φ(x) + μ∂ψ(x), (2.3)

with λ and μ being nonnegative real numbers, and the convex hull property

co∂(−ψ)(x) = −co∂ψ(x), (2.4)

where coA represents the convex hull of A, will also be of great utility in the sequel. For
more details on these tools, the interested reader is referred to the books of Rockafellar and
Wets (1998) and Mordukhovich (2006).

From now on, it will also be important to notice that the set of feasible link flows can be
written as the image of the set of route flows Q via the linear application q → Δq , that is in
other words V := ΔQ.

Theorem 2.1 (Sensitivity analysis of the traffic assignment value function for the road pric-
ing problem) The optimal value function ϕ (2.1) is Lipschitz continuous around any τ ∈ Γ ,
and its Mordukhovich subdifferential is obtained as

∂ϕ(τ) ⊆ {∇τ t (v, τ )|v ∈ S(τ)}, (2.5)
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where ∇τ t (v, τ ) := [∫ va

0
∂ta
∂τa

(s, τ )ds]a∈A .

Proof We have Q ⊆ |c|B, where B is the unit ball of R
π and |c| := max{ci |i = 1, . . . , π}

(c is the route capacity vector). Hence V := ΔQ ⊆ Δ(|c|B) is a closed and bounded set
given that q → Δq is a continuous function and Q is also a closed set. In addition to the
continuous differentiability of f , it follows from Mordukhovich (2006) that inclusion (2.5)
holds true and from Mordukhovich and Nam (2005) that ϕ is locally Lipschitz continuous. �

Theorem 2.2 (Existence of solution for the bilevel road pricing problem) Problem (2.2) has
at least one optimal solution provided that the set of feasible tolls Γ is bounded.

Proof Since Γ is closed by definition, the feasible set of problem (2.2) is compact, taking
into account the compactness of V (see Proof of Theorem 2.1). Moreover, considering the
locally Lipschitz continuity of the optimal value function ϕ (2.1) (cf. Theorem 2.1), the
result follows from the famous Weierstraß theorem. �

At this level, it is clear that the bilevel road pricing problem faces many challenges in-
cluding the nonsmoothness and the nonconvexity as already illustrated. We now add to this
list the fact that most of the well-known constraint qualifications (CQs) fail for problem
(2.2). For more details on this issue, the interested reader is referred to Dempe and Zemkoho
(2011b) and references therein. Nonetheless, it is worth to mention that the failure of the un-
derlined CQs for the optimal value reformulation (2.2) of the bilevel road pricing problem
(1.5) is due to the optimal value constraint f (v, τ ) ≤ ϕ(τ). In the next section we will in-
troduce the partial calmness, a CQ that will help move this constraint to the authority’s cost
function F . Hence it will then be easier to derive KKT type optimality conditions for the
bilevel road pricing problem.

3 Optimality conditions

In order to ease the presentation of optimality conditions for the bilevel road pricing problem
(1.5), the estimation of the normal cone to the joined upper and lower level feasible set is
necessary, i.e. we have to compute NV ×Γ . From now on we consider the set of feasible tolls
as

Γ := {τ ∈ R
α|ς ≤ τ ≤ κ}, (3.1)

where ς, κ ∈ R
α represent the minimum and the maximum tolls, respectively. Consider a

feasible point (v, τ ) to problem (2.2), then we have

NV ×Γ (v, τ ) = NV (v) × NΓ (τ). (3.2)

Now let us denote by

A ς := {a ∈ A |τ a = ςa}
the set of all the links of the network having the minimum toll. We remind that since the
aim of the toll setting is to encourage road users to utilize some abandoned or less utilized
routes, then we may have ςa = 0, for some a ∈ A . Hence to correct the unfairness in our
model, we may assume that

∅ �= A o := {a ∈ A |τ a = ςa = 0} ⊂ A ς ;
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thus, allowing some links to be toll-free. We further define the set

A κ := {a ∈ A |τ a = κa}

of links with maximum tolls. It is worth mentioning that the restriction that the tolls should
not exceed some certain amount is of great importance for social considerations since the
road users and the community in general should not have the feeling that the road authority
just intends to make as much money as possible. Finally, let

A γ := {a ∈ A |ςa < τa < κa};

then, A ς ,A κ and A γ form a partition of A . Thus, A = A ς ∪ A κ ∪ A γ .
To make the further explanations more clear, we make the following technical assump-

tion: We assume that A is an ordered set; hence, each link a ∈ A is associated with an
index |a| ∈ N and we define the α-dimensional vector

ea := (0, . . . ,0,1,0, . . . ,0)�, (3.3)

where 1 is at position |a|, in order to symbolize the utilization of the corresponding link by
a road user. Then it follows from Rockafellar and Wets (1998, Theorem 6.46) that

NΓ (τ) =
{

−
∑

a∈A ς

λς
a ea +

∑

a∈A κ

λκ
ae

a
∣
∣(λς

a )a∈A ς ≥ 0, (λκ
a)a∈A κ ≥ 0

}

. (3.4)

Next, we compute NV (v); for this, it may be preferable to first compute NQ(q), where q

is a feasible route flow verifying v = Δq . We recall that Q is defined as in (1.1). We also
assume that P is an ordered set such that for a route r ∈ P, we associate an index |r| ∈ N

and we define the π -dimensional vector er as in (3.3). We consider the set

Po := {r ∈ P|qr = 0}

of unused routes of the network and the set

Pc := {r ∈ P|qr = cr}

of routes used at their full capacity. Then P can be partitioned into P0,Pc and Pu,
where Pu is the set of routes used but which are not at full capacity. Thus, P = Po ∪
Pc ∪ Pu.

We now consider the collection [Λw]w∈W of rows of the O-D-route incidence matrix Λ.
Then, we have the equality

NQ(q) =
{ ∑

r∈Pc

λc
re

r −
∑

r∈Po

λo
r e

r +
∑

w∈W

λwΛ�
w

∣
∣(λo

r )r∈Po ≥ 0, (λc
r )r∈Pc ≥ 0

}

, (3.5)

from Rockafellar and Wets (1998, Theorem 6.46). On the other hand, V = ΔQ, with q →
Δq being a linear function and Q a convex set. Hence, it follows from Rockafellar and Wets
(1998, Theorem 6.43) that
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NV (v) =
{

u ∈ R
α
∣
∣Δ�u =

∑

r∈Pc

λc
re

r −
∑

r∈Po

λo
r e

r +
∑

w∈W

λwΛ�
w,

(λo
r )r∈Po ≥ 0, (λc

r )r∈Pc ≥ 0

}

. (3.6)

The computation of the normal cone NV ×Γ (v, τ ) can be summarized in the following result
while considering equality (3.2).

Lemma 3.1 (Normal cone to the joined feasible set of the bilevel road pricing problem)
(v∗, τ ∗) ∈ NV ×Γ (v, τ ) if and only if there exists q ∈ R

π , with 0 ≤ q ≤ c, Λq = d and Δq = v

such that (Δ�v∗, τ ∗) ∈ NQ(q) × NΓ (τ).

As already mentioned in the previous section, we will use the partial calmness condition,
as a CQ to derive KKT type necessary optimality conditions for the bilevel road pricing
problem. This condition was introduced by Ye and Zhu (1995).

Definition 3.1 (The partial calmness concept) Problem (2.2) will be said to be partially
calm at one of its optimal solutions (v, τ ) if and only if there exists μ > 0 such that (v, τ )

is an optimal solution to the partially penalized problem to

minimize F(v, τ ) + μ(f (v, τ ) − ϕ(τ))

subject to τ ∈ Γ, v ∈ V.
(3.7)

Theorem 3.1 (Necessary optimality conditions for the bilevel road pricing problem) Let
(v, τ ) be a local optimal solution to problem (2.2), which is assumed to be partially calm
at (v, τ ). Then there exist μ > 0, (λς , λκ, λo, λc, λω), and q ∈ R

π , vs ∈ S(τ), ηs ≥ 0, s =
1, . . . , α + 1 with

∑α+1
s=1 ηs = 1 such that

∇τF (v, τ ) + μ∇τ t (v, τ ) − μ

n+1∑

s=1

ηs∇τ t (vs, τ ) =
∑

a∈A ς

λς
a ea −

∑

a∈A κ

λκ
ae

a, (3.8)

Δ�(∇vF (v, τ ) + μt(v, τ )) =
∑

r∈Po

λo
r e

r −
∑

r∈Pc

λc
re

r −
∑

w∈W

λwΛ�
w, (3.9)

0 ≤ q ≤ c, Λq = d, Δq = v, (3.10)

λς = (λς
a ) ≥ 0, λκ = (λκ

a) ≥ 0, λo = (λo
r ) ≥ 0, λc = (λc

r ) ≥ 0, λω = (λw).

(3.11)

Proof Since problem (2.2) is partially calm at (v, τ ), there exists μ > 0 such that (v, τ )

solves problem (3.7). Since F and f are continuously differentiable and ϕ is locally Lips-
chitz continuous (see Theorem 2.1) then it follows from Mordukhovich (2006, Proposition
5.3) that

0 ∈ ∂
(
F + μ(f − ϕ)

)
(v, τ ) + NV ×Γ (v, τ ).

Hence, from the sum rule (2.3) and the convex hull property (2.4), there exists (v∗, τ ∗) ∈
NV ×Γ (v, τ ) such that

∇F(v, τ ) + μ∇f (v, τ ) + (v∗, τ ∗) ∈ {0} × μco∂ϕ(τ). (3.12)
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Applying Lemma 3.1, we can also find τ ∗ ∈ co ∂ϕ(τ) and (λς , λκ, λo, λc, λω), q ∈ R
π (cf.

(3.4) and (3.5)) satisfying (3.10)–(3.11) such that

∇vF (v, τ ) + μ∇vf (v, τ ) + v∗ = 0, (3.13)

Δ�v∗ =
∑

r∈Pc

λc
re

r −
∑

r∈Po

λo
r e

r +
∑

w∈W

λwΛ�
w, (3.14)

∇τF (v, τ ) + μ∇τ f (v, τ ) −
∑

a∈A ς

λς
a ea +

∑

a∈A κ

λκ
ae

a = μτ ∗. (3.15)

Applying Caratheodory’s theorem (see for example Rockafellar and Wets 1998), τ ∗ ∈
co∂ϕ(τ) implies the existence of vs ∈ S(τ) (cf. Theorem 2.1) and ηs ≥ 0, s = 1, . . . , α + 1
with

∑α+1
s=1 ηs = 1 such that

τ ∗ =
α+1∑

s=1

ηs∇τ f (vs, τ ).

Combining (3.13)–(3.15) and the latter equality, we have the result. �

Next, we derive KKT conditions for problem (1.5) without the convex combination on
the Mordukhovich subdifferential of the value function (2.1).

Corollary 3.1 (Optimality conditions without the convex combination) Let (v, τ ) be a local
optimal solution to problem (2.2), which is assumed to be partially calm at (v, τ ), with
S(τ) = {v}. Then there exist μ > 0, (λς , λκ, λo, λc, λω), and q ∈ R

π such that relationships
(3.9)–(3.11), together with the following condition are satisfied:

∇τF (v, τ ) =
∑

a∈A ς

λς
a ea −

∑

a∈A κ

λκ
ae

a.

Proof It from the proof of the previous theorem by noting that with S(τ) = {v}, we have
from Theorem 2.1 that

co∂ϕ(τ) = {∇τ f (v, τ )}
which implies the result by substituting the latter expression of co∂ϕ(τ) in (3.12). �

It should be clear that the condition S(τ) = {v} imposed in this corollary is far away
from the usual strong assumptions made in the sensitivity analysis approaches mentioned in
the Introduction. In fact, in the latter cases, it is usually required that the traffic assignment
problem admits a unique optimal solution in a certain neighborhood. In particular, the strict
monotonicity of the link costs ta(a ∈ A ), often needed is not satisfied in the framework of
Theorem 3.2 below.

For the next result, we assume that the cost function of the traffic assignment problem is
bilinear, i.e. f (v, τ ) = v�τ and the set of feasible tolls coincides with the whole space, i.e.
Γ = R

α . This definition of f corresponds to the ideal case, where there is no congestion in
the network. This framework has been considered by many authors; see for example Labbée
et al. (1998), Dewez et al. (2008) and Heilporn et al. (2010).

Theorem 3.2 (Optimality conditions in the case of no congestion) Let (v, τ ) be a local
optimal solution to problem (2.2), then there exist ṽ ∈ S(τ), μ > 0, (λo, λc, λω) and q ∈ R

π

such that (3.10), together with the following conditions are satisfied:
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∇τF (v, τ ) + μ(v − ṽ) = 0, (3.16)

Δ�(∇vF (v, τ ) + μτ) =
∑

r∈Po

λo
r e

r −
∑

r∈Pc

λc
re

r −
∑

w∈W

λwΛ�
w, (3.17)

λo = (λo
r ) ≥ 0, λc = (λc

r ) ≥ 0, λω = (λw). (3.18)

Proof We recall from Dempe and Zemkoho (2011a, Theorem 4.2) that with f (v, τ ) = v�τ

and Γ = R
α , problem (2.2) is partially calm at (v, τ ). Hence, from the proof of Theorem 3.1,

we have that there exists (v∗, τ ∗) ∈ NV ×Γ (v, τ ) such that inclusion (3.12) holds. Considering
inclusion (2.5) of Theorem 2.1, we have

∂ϕ(τ) ⊆ S(τ) = co∂S(τ) (3.19)

given that S(τ) is convex in this case. The result then follows by applying Lemma 3.1 to
(3.12) while considering the last equality of (3.19) and the fact that

NV ×Γ (v, τ ) = NV (v) × {0}
since Γ = R

α . �

This result can easily be extended to the case where f (v, τ ) = u(τ)�v, with u : R
α →

R
α , considering Dempe and Zemkoho (2011b, Theorem 4.2) insuring the partial calmness

of problem (1.5) in this situation at every local optimal solution.
If S(τ) = {v}, it follows from (3.16) that ∇τF (v, τ ) = 0 which is a natural optimality

condition for the road authority’s problem to

minimize F(v, τ ) subject to τ ∈ R
α

provided that v is the unique optimal solution of the traffic assignment problem (1.4) where
the toll is fixed at τ = τ satisfying (3.10), (3.17) and (3.18). This observation could be of a
great utility in designing an algorithm for the bilevel road pricing problem in the case where
the total road cost is bilinear.

To conclude this section, we give a sufficient condition for problem (2.2) to be partially
calm when the total road cost takes a more general form as illustrated in the traffic assign-
ment problem (1.4).

Theorem 3.3 (A sufficient condition ensuring the partial calmness) Let (v, τ ) be a feasible
point to (2.2). We assume that for all a ∈ A , ta is increasing with respect to its first argu-
ment. Then problem (2.2) is partially calm at (v, τ ) provided that there exists α > 0 such that

∑

a∈A

ta(va, τ )ha ≥ α‖h‖, ∀v ∈ S(τ), h ∈ TV (v) ∩ NS(τ)(v), τ ∈ Γ. (3.20)

Proof Since for all a ∈ A , ta is increasing with respect to its first argument, then the func-
tion f is convex with respect to the link flow v. In addition to the convexity of V , it follows
from Ye (1998, Theorem 3.3) that there exists α > 0 such that

dS(τ)(τ ) ≤ α−1(f (v, τ ) − ϕ(τ)),∀(v, τ ) ∈ V × Γ,

provided that (3.20) holds true. Hence, the result follows from Ye and Zhu (1995). �

For more on the characterization of partial calmness, we refer the interested reader to
Dempe and Zemkoho (2010, 2011b), Ye and Zhu (1995) and Ye (1998).
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4 Estimation of the O-D matrix

The (fixed) demand vector d needed in the road pricing problem and particularly in the traf-
fic assignment problem (1.4), is a crucial datum given that a good decision process highly
depends on how accurate it is estimated. The origin-destination (O-D) matrix estimation or
O-D demand adjustment problem (DAP) is important not only for the road pricing problem,
but also for many other decision-making frameworks of transportation planing. The mod-
eling of this problem has evolved over the years, see Abrahamsson (1998), and Chen and
Florian (1998) for extensive reviews. The bilevel formulation was pioneered by Fisk (1988).
Since then, many researchers have adopted this model which usually takes the form:

minimize F(d, v)

subject to d ∈ D, v ∈ S(d),
(4.1)

where D ⊆ R
ω is a closed set and S(d) is the solution set of the traffic assignment problem

minimize f (d, v) :=
∑

a∈A

∫ va

0
ta(s)ds

subject to v ∈ V (d),

(4.2)

parameterized by d , also called O-D demand and representing the O-D matrix organized as
a vector. The set-valued mappings

V (d) := {v ∈ R
α|∃q ∈ Q(d),Δq = v} and Q(d) := {q ∈ R

π
+|q ≤ c,Λq = d}

denote the set of feasible link flows and feasible route flows, respectively, for a given demand
vector d . The upper level objective function F is usually of the form

F(d, v) := γ1F1(d, d̂) + γ2F2(v, v̂),

where d̂ represents the target O-D matrix that may be obtained from sample surveys, and v̂

denotes the vector of flows observed on some links of the network. The function F1(d, d̂)

represents the error measurement between the target O-D matrix d̂ and the estimated matrix
d , while F2(v, v̂) denotes the error measurement between the observed link flow v̂ and the
estimated flow v. The parameters γ1 and γ2 represent the uncertainty in the information
contained in d̂ and v̂, respectively. As for the total road cost function f , the expression in
(4.2) is mainly considered for illustrative purpose, since many other cost function models
exist in the literature, see Patriksson (1994) for details. It is however important to mention
that the function f in (4.2) is a convex function in (d, v), which appears to be an important
property for most of the results in this section. In the line of Migdalas (1995), the set D can
be considered analogously to Γ (3.1).

As mentioned in the Introduction of the paper, the sensitivity analysis has also been used
to tackle the O-D matrix estimation problem. We refer the interested reader to the papers
of Abrahamsson (1998), Codina and Montero (2006), Lundgren and Peterson (2008), and
Noriega and Florian (2009) for various methodological approaches in solving the problem.
Problem (4.1) can be reformulated as

minimize F(d, v)

subject to

{
f (d, v) − ϕ(d) ≤ 0,

d ∈ D,v ∈ V (d),

(4.3)
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with ϕ being the optimal value function of the traffic assignment problem (4.2). Chen (1994)
and Chen and Florian (1998) considered D := {d ∈ R

π |d ≥ 0} and did not impose capacities
on the route flows. For further simplification, they considered the constraint v = Δq as
exogenous, hence the simplified problem:

minimize F(d, v)

subject to

{
f (d, v) − ϕ(d) ≤ 0

d, q ≥ 0, Λq = d.

(4.4)

Fritz John’s type optimality conditions were then derived for (4.4). Our aim here is to suggest
Karush-Kuhn-Tucker (KKT) type optimality conditions for the more general problem with
the flow conservation constraint v = Δq being fully part of the feasible set of the traffic
assignment problem (4.2).

In order to write the optimality condition of (4.3) in a detailed form, we should be able to
compute or at least give an upper estimation of the Mordukhovich normal cone NgphV (d, v)

(recall that for a set-valued mapping M , (x, y) ∈ gphM if and only if y ∈ M(x)) and subd-
ifferential ∂ϕ(d), respectively. That is exactly what is done in Lemma 4.1 and Lemma 4.2,
respectively. These results were established by Dempe and Zemkoho (2010). We will not
present the proofs here since they require some sophisticated mathematical tools that we
do not intend to present here, notably the coderivative of Mordukhovich and some related
calculus rules. Let us just mention that these proofs fully take advantage of the structure of
the feasible set of the traffic assignment problem, that is, the fact that for a given demand d ,
the set of feasible link flows V (d) is obtained as the image of the set of feasible route flows
Q(d) via the mapping q → Δq .

Lemma 4.1 (Normal cone to the graph of V ) For any (d, v) ∈ gphV , we have

NgphV (d, v) ⊆
⋃

q∈H (d,v)

{(d∗, v∗) ∈ R
ω × R

α| (d∗,Δ�v∗) ∈ NgphQ(d, q)},

where H (d, v) and NgphQ(d, q) are given respectively as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H (d, v) := {q ∈ R
π |Δq = v, (d, q) ∈ gphQ},

NgphQ(d, q) = {( − ∑
w ∈ W λwew,

∑
r ∈ Pc(q)λc

re
r

− ∑
r ∈ Po(q)λo

r e
r + ∑

w ∈ W λwΛ�
w

) :
(λw)w∈W ∈ R

ω, (λo
r )r∈Po(q), (λ

c
r )r∈Pc(q) ≥ 0

}
.

(4.5)

Here, er and Λw are defined as in the previous section, while ew is the analog of ea (cf.
previous section) and H (d, v) denotes the set of route flows corresponding to the feasible
demand-link flow couple (d, v). Next, we provide an estimate for the subdifferential of the
optimal value function of the traffic assignment problem.

Lemma 4.2 (Sensitivity analysis of the traffic assignment value function of the DAP) As-
sume that the total road cost function f is convex in (d, v). Then, for every (d, v) ∈ gph� ,
the optimal value function ϕ of the traffic assignment problem (4.2) is Lipschitz continuous
around d and

∂ϕ(d) ⊆
⋃

q∈H (d,v)

⋃

(λω,λc,λ0)∈Λ(d,q)

{

−
∑

w∈W

λwe�
w + ∇df (d, v)

}

,
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where [ew]w∈W is the collection of rows of the identity matrix of R
ω×ω , whereas the set

Λ(d,q) of Lagrange multipliers for the traffic assignment problem (4.2) is given by:

Λ(d,q) :=
{

(λω,λc, λo)|λω = (λw), λc = (λc
r ) ≥ 0, λo = (λo

r ) ≥ 0,

−
∑

r∈Pc(q)

λc
re

r +
∑

r∈Po(q)

λo
r e

r −
∑

w∈W

λwΛ�
w = Δ�∇vf (d, v)

}

.

As already mentioned above, the convexity assumption on the total road cost function f

is automatically satisfied for the expression in (4.2).
Before we give the KKT type optimality conditions for the O-D matrix estimation prob-

lem, in the classical form, we remind that the characterization of partial calmness given
in Theorem 3.1 is a general result for bilevel programming, hence remains true for problem
(4.3). We first derive the optimality conditions of the latter problem in the simple case where
the road authority does not impose any constraint on the demand, that is, D := R

ω .

Theorem 4.1 (Optimality conditions for the DAP without upper level constraints) Let (d, v)

be a local optimal solution to problem (4.3), where f is convex in (d, v) and D := R
ω .

Assume that the problem is partially calm at (d, v). Then there exist μ > 0, q, q̃ ∈ R
π ,

(λω,λc, λo) and (̃λω, λ̃c, λ̃o) such that:

∇dF (d, v) −
∑

w∈W

(λw − μ̃λw)e�
w = 0, (4.6)

Δ�
(
∇vF (d, v) + μ∇vf (d, v)

)
=

∑

r∈Po(q)

λo
r e

r −
∑

r∈Pc(q)

λc
re

r −
∑

w∈W

λwΛ�
w, (4.7)

Δ�∇vf (d, v) = −
∑

r∈Pc (̃q)

λ̃c
re

r +
∑

r∈Po(̃q)

λ̃o
r e

r −
∑

w∈W

λ̃wΛ�
w, (4.8)

0 ≤ q ≤ c, Λq = d, Δq = v, (4.9)

0 ≤ q̃ ≤ c, Λq̃ = d, Δq̃ = ṽ, (4.10)

λω = (λw), λc = (λc
r ) ≥ 0, λo = (λo

r ) ≥ 0, (4.11)

λ̃ω = (̃λw), λ̃c = (̃λc
r ) ≥ 0, λ̃o = (̃λo

r ) ≥ 0. (4.12)

Proof Under the partial calmness of problem (4.3) at (d, v), there exists μ > 0 such that
(d, v) solves

minimize F(d, v) + μ(f (d, v) − ϕ(d))

subject to (d, v) ∈ gphV.
(4.13)

Applying Mordukhovich (2006, Proposition 5.3) to the latter problem, one gets

0 ∈ ∇F(d, v) + μ∇f (d, v) + ∂(−ϕ)(d) × {0} + NgphV (d, v). (4.14)

Applying Lemma 4.1, it then follows that there exist q ∈ R
π , (λω,λc, λo) satisfying (4.9)

and (4.11), respectively, and v∗ ∈ R
α such that:

−
∑

w∈W

λwe�
w + ∇dF (d, v) + μ∇df (d, v) ∈ μco∂ϕ(d), (4.15)
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Δ�v∗ =
∑

w∈W

λwΛ�
w +

∑

r∈Pc(q)

λc
re

r −
∑

r∈Po(q)

λo
r e

r , (4.16)

v∗ = −∇vF (d, v) − μ∇vf (d, v). (4.17)

Considering the convexity of the optimal value function ϕ we have co∂ϕ(d) = ∂ϕ(d). Then
applying Lemma 4.2 to (4.15), there exist q̃ ∈ R

π , and (̃λω, λ̃c, λ̃o) satisfying (4.8), (4.10)
and (4.12), respectively, such that (4.6) holds. Finally, (4.8) is obtained by inserting (4.17)
in equality (4.16). �

In the next theorem, we address the case where the demand vector d is nonnegative, as
considered by Chen (1994) (also see Chen and Florian 1998). It appears that the proof of the
optimality conditions result becomes a little bit complicate.

Theorem 4.2 (Optimality conditions for the DAP with upper level constraints) Let (d, v) be
a local optimal solution to problem (4.3), where f is convex in (d, v) and D := {d ∈ R

ω|d ≥
0}. Assume that the problem is partially calm at (d, v). Then there exist μ > 0, q, q̃ ∈ R

π ,
(λω,λc, λo) and (̃λω, λ̃c, λ̃o) such that relationships (4.7)–(4.12), together with the following
conditions are satisfied:

∇dF (d, v) −
∑

w∈W

(λw − μ̃λw)e�
w ≥ 0, (4.18)

d
�
(

∇dF (d, v) −
∑

w∈W

(λw − μ̃λw)e�
w

)

= 0. (4.19)

Proof Under the partial calmness of problem (4.3) at (d, v), there exists μ > 0 such that
(d, v) solves the counterpart of problem (4.13), where inclusion d ∈ D is part of the con-
straints. Now consider the set-valued mapping

Φ(d ′, v′) := {(d, v) ∈ D × R
α| (d + d ′, v + v′) ∈ gphV }.

Considering the expression of V (d) := ΔQ(d), the graph of Φ is obtained as:

gphΦ = {(d, v, d ′, v′)|∃q : 0 ≤ q ≤ c, d ≥ 0, Δq = v + v′, Λq = d + d ′}
= ∏

1,2,3,4{(d, v, d ′, v′, q)|0 ≤ q ≤ c, d ≥ 0, Δq = v + v′, Λq = d + d ′},
where

∏
1,2,3,4 denotes the canonical projection from R

ω × R
α × R

ω × R
α × R

π to R
ω ×

R
α × R

ω × R
α . Clearly, Φ is a polyhedral set-valued mapping in the sense of Robinson

(1981). Thus, Φ is calm (see e.g. Henrion et al. (2002) for the definition) at (0, d, v). Hence,
combining Mordukhovich (2006, Proposition 5.3) and Henrion et al. (2002, Corollary 4.2),
we have:

0 ∈ ∇F(d, v) + μ∇f (d, v) + μ∂(−ϕ)(d) × {0} + NgphV (d, v) + ND×Rα (d, v). (4.20)

Taking into account the expressions of NgphV (d, v) and ∂ϕ(d) from Lemma 4.1 and Lemma
4.2, respectively, there exist q, q̃ , (λω,λc, λo) and (̃λω, λ̃c, λ̃o) satisfying (4.9)–(4.11) and
(4.12), respectively, such that relationships (4.16)–(4.17), together with the following con-
dition are satisfied:

−∇dF (d, v) +
∑

w∈W

(λw − μ̃λw)e�
w ∈ ND(d). (4.21)
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As in the previous theorem, (4.7) follows from the combination of (4.16) and (4.17) while

(4.21) yields (4.18) and (4.19) considering the fact that ND(d) = {λ|λ ≤ 0, d
�
λ = 0}. �

Although the framework of this result is close to that of Chen (1994), as we set
D := {d ∈ R

ω|d ≥ 0}, the flow conservation constraint v = Δq is fully part of the feasi-
bility requirements of the traffic assignment problem in our result, which is the case for the
aforementioned works. Moreover, they imposed a framework ensuring the differentiability
of the value function ϕ of the traffic assignment problem (4.2). In fact, such strong condi-
tions would not change the outcome of our results above. Finally, it may be important to
mention that Chen (1994) substituted the components of the route flow qp by lpdw , where lp
is a path (route) flow proportion, which allows them to almost eliminate the demand vector
d from the feasible set of the traffic assignment problem.

5 Final remarks

The study made in this paper for the bilevel road pricing problem (1.5) with the functions
F and f being continuously differentiable can easily be extended to the case where these
functions are Lipschitz continuous. The set of feasible tolls Γ can also be replaced by any
convex set and, given that for the optimality conditions only an upper estimation of the
normal cone is needed, then results in the book by Rockafellar and Wets (1998) can be used
for this purpose, provided that Γ is defined by functions satisfying an appropriate constraint
qualification.

As already mentioned in Sect. 2, the network design and road pricing problems have the
same bilevel structure; that is, the parameter controlled by the leader appears in the cost func-
tion of the follower’s problem. Hence, the same techniques presented above can be applied
for the network design problem and similar results will be obtained for the corresponding
optimal value function, the constraint qualifications and the optimality conditions.
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