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Abstract The paper is concerned with the optimistic formulation of a bilevel opti-
mization problem with multiobjective lower-level problem. Considering the scalar-
ization approach for the multiobjective program, we transform our problem into a
scalar-objective optimization problem with inequality constraints by means of the
well-known optimal value reformulation. Completely detailed first-order necessary
optimality conditions are then derived in the smooth and nonsmooth settings while
using the generalized differentiation calculus of Mordukhovich. Our approach is dif-
ferent from the one previously used in the literature and the conditions obtained are
new. Furthermore, they reduce to those of a usual bilevel program, if the lower-level
objective function becomes single-valued.

Keywords Semivectorial bilevel optimization · Multiobjective optimization ·
Weakly efficient solution · Optimal value function · Optimality conditions

1 Introduction

In this paper, we are concerned with an optimistic bilevel optimization with a mul-
tiobjective lower-level problem. This problem was labeled as “semivectorial bilevel
optimization problem” by Bonnel and Morgan [1]. In the latter work, a penalty ap-
proach was suggested to solve the problem in case of weakly efficient solutions in
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the lower-level problem. Another penalty method was developed in [2] in the case
where the multiobjective lower-level problem is linear. The problem is also investi-
gated in [3], when the upper-level objective function is vector-valued as well. Here,
the feasible set is shown to be the set of minimal points (w.r.t. a cone) of another (un-
perturbed) multiobjective optimization problem. Hence, the resulting problem is sim-
ply a multiobjective optimization problem over an efficient set, which is, of course,
also a very difficult class of problems. Using the Pascoletti and Serafini-type scalar-
ization, an adaptive parameter control approach, based on sensitivity results, is used
to approximate the solution set of the problem.

In [4], Bonnel derived necessary optimality conditions for the semivectorial bilevel
optimization problem in very general Banach spaces, while considering efficient and
weakly efficient solutions for the lower-level problem. Broadly speaking, the method
of Bonnel consists of inserting the weak or properly weak solution set-valued map-
ping of the lower-level problem in the upper-level objective function. The resulting
problem is a set-valued optimization problem. Necessary optimality conditions are
then derived through the notion of contingent derivative. The conditions obtained are
abstract in nature.

The aim of our paper is to also derive necessary optimality conditions for the
semivectorial bilevel optimization problem. Our approach is completely different
from that of Bonnel. Considering weakly efficient solutions for the lower-level prob-
lem, the classical scalarization technique is used to convert the problem into a usual
bilevel optimization problem, i.e., with a single-objective problem in the lower-level.
Since the Pareto front would rarely reduce to a single point, the optimal value function
reformulation appears to be one of the best approaches to transform the latter problem
into a single-level optimization problem with inequality constraints. Karush–Kuhn–
Tucker (KKT)-type optimality conditions are then derived for the problem in terms
of the initial data. A (non-classic) difficulty faced by our approach is that the full con-
vexity assumption, usually made on the lower-level objective function (see, e.g., [5])
to obtain the Lipschitz continuity of the value function, is not applicable here. This is
due to the new (scalarization) parameter entering the new lower-level objective func-
tion. We consider this parameter to be a variable for the upper-level objective, to be
sure that all the weak Pareto points are taken into account while looking for the best
choice for the leader.

The other two options we consider, ensuring the Lipschitz continuity of the value
function of the scalarized problem, are the inner semicompactness and the inner semi-
continuity (to be defined in the next section) of the solution set-valued mapping of the
new lower-level problem. A strange thing observed is that, under the inner semiconti-
nuity assumption, the necessary optimality conditions of the aforementioned optimal
value function reformulated problem are, in fact, independent of the restriction made
on the scalarization parameter.

In the next section, we first give some basic notions of multiobjective optimization
needed in the sequel. Relevant notions and properties from variational analysis will be
presented as well. In Sect. 3, we present the semivectorial bilevel optimization prob-
lem and give details on the transformation process leading to a single-level optimiza-
tion problem. In Sect. 4, KKT-type necessary optimality conditions are then derived
for the problem, while considering the instances where all functions involved are
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strictly differentiable and Lipschitz continuous, respectively. The special case where
the lower-level multiobjective problem is linear in the lower-level variable is studied
in Sect. 5. Some final comments are then provided in the last section.

2 Preliminaries

2.1 Multiobjective Optimization

Let C ⊂ R
p be a pointed (i.e., C ∩ (−C) = {0}) closed and convex cone with

nonempty interior introducing a partial order �C in R
p and let A be a nonempty

subset of R
p . z ∈ A is said to be a Pareto (resp., weak Pareto) minimal vector of A

w.r.t. C iff

A ⊂ z + [(Rp \ (−C)
)∪ {0}] (

resp., A ⊂ z + (Rp \ −intC
))

, (1)

where “int” denotes the topological interior of the set in question. Let us now con-
sider the multiobjective optimization problem w.r.t. the partial order induced by the
pointed, closed, and convex cone C:

minC f (x) s.t. x ∈ E, (2)

where f represents a vector-valued function and E the nonempty feasible set. Recall
that, for a nonempty set A ⊂ E, the image of A through f is defined by

f (A) := {f (x) : x ∈ A
}
.

A point x ∈ E is said to be an efficient (resp., weakly efficient) optimal solution of
problem (2) iff f (x) is a Pareto (resp., weak Pareto) minimal vector (1) of f (E). The
point x ∈ E is a local efficient (resp., weakly locally efficient) solution of problem (2)
iff there exists a neighborhood V of x such that, f (x) is a Pareto (resp., weak Pareto)
minimal vector of f (E ∩ V ).

To close this subsection, let us mention that a vector-valued function f : R
a → R

b

will be said to be C-convex, i.e., convex w.r.t. a partial order �C induced by a pointed,
closed, convex cone C, iff we have

f
(
λx1 + (1 − λ)x2

)�C λf (x1) + (1 − λ)f (x2), ∀x1, x2 ∈ R
a, ∀λ ∈ ]0,1[.

It should be clear that by definition, x �C y ⇔ y − x ∈ C. Details on the above
material, and more generally on multiobjective optimization, can be found in the
book by Ehrgott [6] and references therein.

2.2 Tools from Variational Analysis

The material presented here is essentially taken from [7, 8]. We start with the
Kuratowski–Painlevée outer/upper limit of a set-valued mapping Ξ : R

n ⇒ R
m,

which is defined at a point x as

Limsup
x→x

Ξ(x) := {v ∈ R
m : ∃xk → x, vk → v with vk ∈ Ξ(xk) as k → ∞}. (3)
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For an extended real-valued function ψ : R
n → R, the Fréchet subdifferential of ψ at

a point x of its domain is given by

∂̂ψ(x) :=
{
v ∈ R

n : lim inf
x→x

ψ(x) − ψ(x) − 〈v, x − x〉
‖x − x‖ ≥ 0

}

whereas the basic/Mordukhovich subdifferential of ψ is the Kuratowski–Painlevée
upper limit of the set-valued mapping ∂̂ψ at x:

∂ψ(x) := Limsup
x→x

∂̂ψ(x).

If ψ is a convex function, then ∂ψ(x) reduces to the subdifferential in the sense of
convex analysis, i.e.,

∂ψ(x) := {v ∈ R
n : ψ(x) − ψ(x) ≥ 〈v, x − x〉, ∀x ∈ R

n
}
. (4)

For a local Lipschitz continuous function, ∂ψ(x) is nonempty and compact. More-
over, its convex hull is the subdifferential of Clarke, i.e., one can define the Clarke
subdifferential ∂ψ(x), of ψ at x, by

∂ψ(x) := conv∂ψ(x). (5)

Here, “conv” stands for the convex hull of the set in question. Thanks to this link be-
tween the Mordukhovich and Clarke subdifferentials, we have the following convex
hull property which plays and important role in this paper:

conv∂(−ψ)(x) = −conv ∂ψ(x). (6)

For this equality to hold, ψ should be Lipschitz continuous near x. The partial basic
(resp., Clarke) subdifferential of ψ w.r.t. x is defined by

∂xψ(x, y) := ∂ψ(·, y)(x)
(
resp., ∂xψ(x, y) := ∂ψ(·, y)(x)

)
.

The partial subdifferentials w.r.t. the variable y can be defined analogously.
We now introduce the basic/Mordukhovich normal cone to a set Ω ⊂ R

n, at one
of its points x:

NΩ(x) := Limsup
x→x (x∈Ω)

N̂Ω(x), (7)

where N̂Ω(x) denotes the prenormal/Fréchet normal cone to Ω at x, defined by

N̂Ω(x) :=
{
v ∈ R

n : lim sup
x→x(x∈Ω)

〈v, x − x〉
‖x − x‖ ≤ 0

}
,

and “Limsup” stands for the Kuratowski–Painlevée upper limit defined in (3). The
set Ω will be said to be regular at a point x ∈ Ω iff we have NΩ(x) = N̂Ω(x).

A set-valued mapping Ξ : R
n ⇒ R

m will be said to be inner semicompact at a
point x, with Ξ(x) �= ∅, iff for every sequence xk → x with Ξ(xk) �= ∅, there is a
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sequence of yk ∈ Ξ(xk) that contains a convergent subsequence as k → ∞. It follows
that the inner semicompactness holds whenever Ξ is uniformly bounded around x,
i.e., there exists a neighborhood U of x and a bounded set Ω ⊂ R

m such that

Ξ(x) ⊂ Ω, ∀x ∈ U. (8)

The mapping Ξ is inner semicontinuous at (x, y) ∈ gphΞ iff for every sequence
xk → x there is a sequence of yk ∈ Ξ(xk) that converges to y as k → ∞. Obviously,
if Ξ is inner semicompact at x with Ξ(x) = {y}, then Ξ is inner semicontinuous
at (x, y). In general though, the inner semicontinuity is a property much stronger
than the inner semicompactness and it is a necessary condition for the Lipschitz-like
property to hold. For the definition of the latter notion and further details on these
properties, see [7] and references therein.

A closed set Ω will be said to be semismooth at x ∈ Ω iff for any sequence xk → x

with xk ∈ Ω and (xk −x)‖xk −x‖−1 → d , it holds that 〈x∗
k, d〉 → 0 for all selections

x∗
k ∈ ∂dΩ(xk). Here, dΩ(·) denotes the Euclidean distance from a given point to the

set Ω . An example of semismooth set is the convex set [9]. For more on the semis-
moothness, the interested reader is referred to the latter paper.

3 The Problem and Its Reformulation

The main focus of this paper is the following optimistic bilevel optimization problem

min
x,z

F (x, z) s.t. x ∈ X, z ∈ Ψwef(x), (9)

where the nonempty closed set X (resp., the function F : R
n × R

m → R) denotes the
upper-level feasible set (resp., objective function). The multifunction Ψwef represents
the weakly efficient optimal solution map of the multiobjective optimization problem

min
z R

l+ f (x, z) s.t. z ∈ K(x), (10)

with K : R
n × R

m ⇒ R
p being the lower-level feasible set-valued mapping, while

f : R
n × R

m → R
l is the lower-level multiobjective function. For simplicity in the

exposition, it will be assumed throughout the paper that the upper- and lower-level
feasible sets are respectively given by

X := {x ∈ R
n : G(x) ≤ 0

}
and K(x) := {z ∈ R

m : g(x, z) ≤ 0
}

(11)

with G : R
n → R

q and g : R
n × R

m → R
p . However, all the results here can easily

be extended to the more general operator constraints in sense of Mordukhovich [7].
The notation “min

z R
l+” in (10) is used to symbolize that optimal vector-values in our

lower-level problem are in the sense of weak Pareto minima w.r.t. an order induced
by the positive orthant of R

l . Fixing x := x, according to (1), a point z ∈ Ψwef(x) iff

f (x, z) − f (x, z) /∈ − intRl+, ∀z ∈ K(x).
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This corresponds to the notion of global weakly efficient solutions needed in this pa-
per since it is a usual thing in bilevel programming to consider only global solutions at
the lower-level. However, local Pareto optimal solutions can be defined analogously.
The notion of optimal solution for the upper-level problem is in the usual sense, i.e.,
(x, z) is said to be a local optimal solution for problem (9), iff there exists a neigh-
borhood U of this point such that

F(x, z) − F(x, z) ≥ 0, ∀(x, z) ∈ U : x ∈ X, z ∈ Ψwef(x).

The point (x, z) will be a global solution if U can be taken as large as possible.
One way to transform the lower-level problem (10) into a usual one-level opti-

mization problem is the so-called scalarization technique, which consists of solving
the following further parameterized problem:

min
z

f (x, y, z) := 〈y,f (x, z)
〉

s.t. z ∈ K(x), (12)

where the new parameter vector y is a nonnegative point of the unit sphere, i.e., y

belongs to

Y := {y ∈ R
l : y ≥ 0, ‖y‖ = 1

}
. (13)

Since it is a difficult task to choose the best point z(x) on the Pareto front for a given
upper-level strategy x, our approach in this paper consists to consider the set Y (13)
as a new constraint set for the upper-level problem. To proceed in this way, denote by
Ψ (x, y) the solution set of problem (12) in the usual sense, for any given parameter
couple (x, y) ∈ X × Y . When weakly efficient solutions w.r.t. R

l+ are considered for
the lower-level problem (10), the following relationship (see, e.g., [6]) relates the
solution set of this problem and that of (12):

Theorem 3.1 Assume that for all x ∈ X, the vector-valued functions g(x, ·) and
f (x, ·) are R

p
+-convex and R

l+-convex, respectively. Then, we have

Ψwef(x) = Ψ (x,Y ) :=
⋃{

Ψ (x, y) : y ∈ Y
}
. (14)

Hence, the semivectorial bilevel optimization problem (9) can be replaced by the
following bilevel optimization problem of the classical form:

min
x,y,z

F (x, z) s.t. (x, y) ∈ X × Y, z ∈ Ψ (x, y) (15)

where the restriction (13) on the new parameter of the lower-level problem acts like
additional upper-level constraints. The link between problems (9) and (15) will be
formalized in the next result. For this, note that a set-valued map Ξ : R

a ⇒ R
b is

closed at (u, v) ∈ R
a × R

b iff for any sequence (uk, vk) ∈ gphΞ with (uk, vk) →
(u, v), one has v ∈ Ξ(u). Ξ is said to be closed if it is closed at any point of R

a ×R
b .

Proposition 3.1 Consider problem (9)–(10), where g(x, ·) is R
p
+-convex and f (x, ·)

is R
l+-convex, for all x ∈ X. Then, the following assertions hold:
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(i) Let (x, z) be a local (resp., global) optimal solution of problem (9). Then, for
all y ∈ Y with z ∈ Ψ (x, y), the point (x, y, z) is a local (resp., global) optimal
solution of problem (15).

(ii) Let (x, y, z) be a local (resp., global) optimal solution of problem (15) and as-
sume the set-valued mapping Ψ is closed. Then, (x, z) is a local (resp., global)
optimal solution of problem (9).

Proof We provide the proofs of (i) and (ii) in the local cases. The global ones can be
obtained easily.

(i) Let (x, z) be a local optimal solution of problem (9) and assume there exists
yo ∈ Y with z ∈ Ψ (x, yo) such that (x, yo, z) is not a local optimal solution of prob-
lem (15). Then, there exists a sequence (xk, yk, zk) with xk → x, yk → yo, zk → z,
and (xk, yk) ∈ X × Y, zk ∈ Ψ (xk, yk) such that F(xk, zk) < F(x, z). By the equality
in (14), [yk ∈ Y, zk ∈ Ψ (xk, yk)] ⇒ zk ∈ Ψwef(x

k). In conclusion, we can find a se-
quence (xk, zk) → (x, z) with xk ∈ X, zk ∈ Ψwef(x

k) such that F(xk, zk) < F(x, z),
which contradicts the initial statement that (x, z) is a local optimal solution of prob-
lem (9), given that x ∈ X (since X is closed) and [y ∈ Y, z ∈ Ψ (x, yo)] ⇒ z ∈
Ψwef(x) by equality (14).

(ii) Assume that (x, y, z) is a local optimal solution of problem (15), but (x, z)

is not a local optimal solution of problem (9). Then, there is a sequence (xk, zk) ∈
gphΨwef with xk ∈ X and (xk, zk) → (x, z) such that F(xk, zk) < F(x, z). Now con-
sider the set-valued mapping:

Φ(x, z) := {y ∈ Y : z ∈ Ψ (x, y)
}

and observe that for any (x, z), we have Φ(x, z) ⊂ B(0,1) (unit ball of R
l). Hence,

Φ is uniformly bounded, thus inner semicompact at any point, cf. Sect. 2.2 (8). Since
(xk, zk) ∈ gphΨwef, it follows from equality (14) that we have Φ(xk, zk) �= ∅ and
with (xk, zk) → (x, z), the inner semicompactness of Φ implies that there exists a
sequence yk ∈ Φ(xk, zk) which has an accumulation point yo with yo ∈ Y (given
that Y is a closed set). Taking into account that the mapping Ψ is closed, we have
z ∈ Ψ (x, yo). Combining all these facts, it follows that we can find a sequence
(xk, yk, zk) → (x, yo, z) with (xk, yk, zk) feasible to (15) but with F(xk, zk) <

F(x, z), where (x, yo, z) is also a feasible point of problem (15) (since x ∈ X, given
that X is closed). This contradicts the fact that (x, y, z) is a local optimal solution
of (15). �

On the basis of this result, we will attempt to derive necessary optimality con-
ditions for the bilevel problem (9), by deriving those of the auxiliary problem (15).
A now classical way to convert the latter problem into an optimization problem with
more tractable constraints is the so-called optimal value reformulation

min
x,y,z

F (x, z) s.t. (x, y) ∈ X × Y, z ∈ K(x), f (x, y, z) ≤ ϕ(x, y), (16)

introduced by Outrata [10]. This follows obviously from the fact that

Ψ (x, y) := arg min
z

{
f (x, y, z) : z ∈ K(x)

}= {z ∈ K(x) : f (x, y, z) ≤ ϕ(x, y)
}
,

(17)
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where ϕ denotes the optimal value function of the scalarized lower-level problem
from (12):

ϕ(x, y) := min
z

{〈
y,f (x, z)

〉 : z ∈ K(x)
}
. (18)

Other approaches like the generalized equation or Karush–Kuhn–Tucker reformula-
tions can be considered for problem (15) as well, see, for example, [11–13] for de-
tails. However, we focus our attention here on reformulation (16) in order to develop
necessary optimality conditions for problem (9).

Remark 3.1 The scalarization approach used above for the multiobjective optimiza-
tion problem (10) was also used by Bonnel and Morgan [4, 14]. In [4], the set-valued
mapping Ψ (17) was then inserted in the upper-level objective function F and the no-
tion of contingent derivative applied to derive optimality conditions for the resulting
set-valued optimization problem. However, in the next section, we investigate neces-
sary optimality for problem (9) via problem (15) while using the link established in
Proposition 3.1(i). In [14], the same scalarization technique is used to reformulate a
semivectorial bilevel optimal control problem. An existence result is then provided
for the resulting counterpart of problem (15).

4 Necessary Optimality Conditions

In this section, we derive necessary optimality conditions for the optimal value refor-
mulation (16) of problem (9). To proceed, we first set

G (x, y, z) := f (x, y, z) − ϕ(x, y) and

Ω := {(x, y, z) : (x, y) ∈ X × Y, z ∈ K(x)
}
.

Then, problem (16) takes the following much simpler form with an abstract con-
straint:

min
x,y,z

F (x, z) s.t. (x, y, z) ∈ Ω, G (x, y, z) ≤ 0. (19)

In order to apply the approach of [15], we consider the following weak form of the
well-known basic constraint qualification (CQ)

∂G (x, y, z) ∩ −bdNΩ(x, y, z) = ∅. (20)

Here “bd” stands for the topological boundary of the set in question. If we drop
this boundary from the normal cone NΩ , one obtains the basic CQ introduced by
Mordukhovich, see, e.g., [7]. The latter condition cannot be satisfied for problem (19)
[15]. The weak basic CQ (20) emerged from [9] in the framework of the calmness
property for set-valued mappings, and it was shown in [15] to work for the optimal
value reformulation of bilevel optimization problem, in particular, when the simple
bilevel programming problem is considered.

It should be clear that CQ (20) is not enough to derive a completely detailed set
of optimality conditions for problem (9) in terms of initial data. Before introducing
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further CQs that would be needed, we first state in the next Lemma the simple fact
that the Mangasarian–Fromovitz constraint qualification (MFCQ) is automatically
satisfied for any point of Y (13).

Lemma 4.1 The MFCQ is satisfied for any point y ∈ Y .

This lemma implies that the additional constraint set Y (13) does not induce any
new constraint qualification (CQ) apart from (20) and the now often used lower- and
upper-level regularity conditions labeled as such in [5], which are defined respectively
as:

∑p

i=1 βi∇zgi(x, z) = 0

βi ≥ 0, βigi(x, z) = 0, i = 1, . . . , p

}

=⇒ βi = 0, i = 1, . . . , p, (21)

∑q

j=1 αj∇Gj(x) = 0

αj ≥ 0, αjGj (x) = 0, j = 1, . . . , q

}

=⇒ αj = 0, j = 1, . . . , q. (22)

Note that, in this case, the functions gi , i = 1, . . . , p and Gj , j = 1, . . . , q are as-
sumed to be strictly differentiable at (x, z) and x, respectively. Clearly, these are the
dual forms of the MFCQ for the lower-level constraints gi(x, z) ≤ 0, i = 1, . . . , p

(for a fixed parameter x := x) and the upper-level constraint system Gj(x) ≤ 0,
j = 1, . . . , q , respectively.

In next lemma, we highlight another particularity of the new constraint set Y (13),
i.e., the fact that the related Lagrange multipliers can be completely eliminated from
the optimality conditions. This point will be clearer in our main results.

Lemma 4.2 The set of vectors (x, y, z) ∈ R
n × R

l × R
m, γ ∈ R

l , zs ∈ R
l and

μ, r, vs ∈ R with s = 1, . . . , n + l + 1 satisfies the system

{
rf (x, z) − r

∑n+l+1
s=1 vsf (x, zs) − γ + μ.y = 0,

γ ≥ 0, γ �y = 0, ‖y‖ = 1
(23)

if and only if the following inequality is satisfied:

r

{[
l∑

k=1

yk

(

fk(x, z) −
n+l+1∑

s=1

vsfk(x, zs)

)]

.y

−
[

f (x, z) −
n+l+1∑

s=1

vsf (x, zs)

]}

≤ 0. (24)

Proof We have from the first equality of (23) that

γ = rf (x, z) − r

n+l+1∑

s=1

vsf (x, zs) + μ.y. (25)



J Optim Theory Appl (2013) 157:54–74 63

Inserting this value of γ in the equation γ �y = 0, we have that

μ = −ry�
[

f (x, z)−
n+l+1∑

s=1

vsf (x, zs)

]

= −r

l∑

i=1

yi

(

fi(x, z)−
n+l+1∑

s=1

vsfi(x, zs)

)

,

taking into account the fact that ‖y‖ = 1. Inserting the latter value of μ in γ (25),
while noting that γ ≥ 0, one has the result. �

We are now ready to state one of the main results of this paper, which provides
necessary optimality conditions for the auxiliary problem (19). We first concentrate
on the case where all the functions are strictly differentiable. The proof technique is
exactly that of [15, Theorem 3.5].

Theorem 4.1 Let (x, y, z) be a local optimal solution of problem (19), where the
functions f and g are strictly differentiable at (x, z), z ∈ Ψ (x, y), whereas F and
G are strictly differentiable at (x, z) and x, respectively. Assume that the solution
set-valued mapping Ψ (17) is inner semicompact at (x, y) while for all z ∈ Ψ (x, y),
the point (x, z) is lower-level regular (21). Furthermore, let the set Ω be regular
and semismooth at (x, y, z), while the point x is upper-level regular (22) and the
weak basic CQ (20) is satisfied at (x, y, z). Then, there exist r ≥ 0, α,β, βs, vs and
zs ∈ Ψ (x, y), with s = 1, . . . , n + l + 1 such that condition (24) holds, together with

∇xF (x, z) + r

l∑

k=1

yk∇xfk(x, z) +
q∑

j=1

αj∇Gj(x) +
p∑

i=1

βi∇xgi(x, z)

− r

n+l+1∑

s=1

vs

(
l∑

k=1

yk∇xfk(x, zs) +
p∑

i=1

βs
i ∇xgi(x, zs)

)

= 0, (26)

∇zF (x, z) + r

l∑

k=1

yk∇zfk(x, z) +
p∑

i=1

βi∇zgi(x, z) = 0, (27)

∀s = 1, . . . , n + l + 1,

l∑

k=1

yk∇zfk(x, zs) +
p∑

i=1

βs
i ∇zgi(x, zs) = 0, (28)

∀s = 1, . . . , n + l + 1, i = 1, . . . , p, βs
i ≥ 0, βs

i gi(x, zs) = 0, (29)

∀j = 1, . . . , q, αj ≥ 0, αjGj (x) = 0, (30)

∀i = 1, . . . , p, βi ≥ 0, βigi(x, z) = 0, (31)

∀s = 1, . . . , n + l + 1, vs ≥ 0,

n+l+1∑

s=1

vs = 1. (32)

Proof Under the assumptions of the theorem, it follows from [15, Theorem 3.1] that
there exists r ≥ 0 such that

0 ∈ ∇x,y,zF (x, z) + r∂G (x, y, z) + NΩ(x, y, z). (33)
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What simply remains to be done is evaluating the basic subdifferential of G and the
basic normal cone to Ω . Starting with Ω , let us note that it can be reformulated as:

Ω = {(x, y, z) : a(x, y, z) ≤ 0, b(x, y, z) = 0
}
,

with a(x, y, z) := [G(x), g(x, z),−y]� and b(x, y, z) := ‖y‖ − 1. Applying Theo-
rem 6.14 in [8], while performing some calculations, one obtains

NΩ(x, y, z) ⊂

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

∑q

j=1 αj∇Gj(x) +∑p

i=1 βi∇xgi(x, z)

−γ + μy
∑p

i=1 βi∇zgi(x, z)

⎤

⎥
⎦ :

αj ≥ 0, αjGj (x) = 0, j = 1, . . . , q

βi ≥ 0, βigi(x, z) = 0, i = 1, . . . , p

γk ≥ 0, γkyk = 0, k = 1, . . . , l

⎫
⎪⎬

⎪⎭
,

(34)

provided the following CQ holds

[∇a(x, y, z)�u + ∇b(x, y, z)�v = 0, u ≥ 0, u�a(x, y, z) = 0
] =⇒ u = 0, v = 0.

Considering Lemma 4.1, it is a simple exercise to check that the fulfillment of both
the lower-level (21) and upper-level (22) regularity conditions implies the satisfaction
of the latter implication.

As far as the function G is concerned, one can easily check that

∂G (x, y, z) ⊂
⎡

⎢
⎣

∑l
k=1 yk∇xfk(x, z)

f (x, z)
∑l

k=1 yk∇zfk(x, z)

⎤

⎥
⎦+ ∂(−ϕ)(x, y) × {0}. (35)

For the estimation of the basic subdifferential of −ϕ, first note that since the solution
set-valued mapping Ψ is inner semicompact at (x, y) and for all z ∈ Ψ (x, y), the
point (x, z) is lower-level regular (21), then it follows from [16, Theorem 7] that we
have

∂ϕ(x, y) ⊂
⋃

z∈Ψ (x,y)

⋃

β∈Λ(x,y,z)

{[∑l
k=1 yk∇xfk(x, z) +∑p

i=1 βi∇xgi(x, z)

f (x, z)

]}

.

(36)
Here, the lower-level Lagrange multipliers set Λ(x,y, z) is given by:

Λ(x,y, z) :=
{

β ∈ R
p : βi ≥ 0, βigi(x, z) = 0, i = 1, . . . , p,

l∑

k=1

yk∇zfk(x, z) +
p∑

i=1

βi∇zgi(x, z) = 0

}

. (37)
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The result then follows from a combination of (33)–(37) while using the Carathédory
theorem to compute an element of −conv ∂ϕ(x, y) ⊇ ∂(−ϕ)(x, y). �

Remark 4.1 In case one replaces the inner semicompactness of Ψ (17) in the above
theorem by the stronger inner semicontinuity, the optimality conditions obtained cor-
respond to those of Theorem 4.1 when Ψ (x, y) = {z} and Λ(x,y, z) = {γ }. More
formally, if we replace the inner semicompactness of Ψ at (x, y) by its inner semi-
continuity at (x, y, z) while assuming the satisfaction of the lower level regularity
only at (x, z), then there exist r ≥ 0, α,β, γ such that (27), (30), (31) and the follow-
ing conditions are satisfied:

∇xF (x, z) +
q∑

j=1

αj∇xGj (x) +
p∑

i=1

(βi − rγi)∇xgi(x, z) = 0, (38)

l∑

k=1

yk∇zfk(x, z) +
p∑

i=1

γi∇zgi(x, z) = 0, (39)

i = 1, . . . , p, γi ≥ 0, γigi(x, z) = 0. (40)

This is due to the fact that if the solution set-valued mapping Ψ is inner semicontinu-
ous at (x, y, z) and the point (x, z) is lower-level regular (21), then the value function
ϕ is also Lipschitz continuous near (x, y) and the Clarke subdifferential of ϕ can be
estimated as [17]:

∂ϕ(x, y) ⊂
⋃

β∈Λ(x,y,z)

{[∑l
k=1 yk∇xfk(x, z) +∑p

i=1 βj∇xgi(x, z)

f (x, z)

]}

.

One can easily check that the above necessary optimality conditions of problem (19)
(under the inner semicontinuity of the lower-level solution set-valued mapping Ψ

(17)) are in fact those of the problem:

min
x,y,z

F (x, z) s.t. x ∈ X, z ∈ Ψ (x, y). (41)

This means that under the above framework, the constraints described by Y (13) can
be dropped while deriving the necessary optimality conditions of problem (9), which
is a strange phenomenon.

Next, we extend the result in Theorem 4.1 to the case where the functions involved
in (9) are locally Lipschitz continuous. To proceed, we need the following nonsmooth
counterparts of the lower- and upper-level regularity conditions defined respectively
as:

∑p

i=1 βiz
∗
i = 0

βi ≥ 0, βigi(x, z) = 0, i = 1, . . . , p
(
x∗
i , z∗

i

) ∈ ∂gi(x, z), i = 1, . . . , p

⎫
⎪⎬

⎪⎭
=⇒ βi = 0, i = 1, . . . , p, (42)
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0 ∈∑q

j=1 αj∂Gj (x)

αj ≥ 0, αjGj (x) = 0, j = 1, . . . , q

}

=⇒ αj = 0, j = 1, . . . , q. (43)

Theorem 4.2 Let (x, y, z) be a local optimal solution of problem (19), where the
functions F and Gj, j = 1, . . . , q are Lipschitz continuous around (x, z) and x, re-
spectively. Assume that Ω is regular and semismooth at (x, y, z), where the weak
basic CQ (20) is also satisfied, and let x be upper-level regular in the sense of (43).
Then, the following assertions hold:

(i) Let the solution set-valued mapping Ψ (17) be inner semicompact at (x, y)

while for all z ∈ Ψ (x, y), the functions fk, k = 1, . . . , l and gi, i = 1, . . . , p

are Lipschitz continuous near the point (x, z), where the lower-level regularity
in the sense of (42) also holds. Then, there exist (x∗

F , z∗
F ) ∈ ∂F (x, z), r ≥ 0,

α,β, βs, vs and zs ∈ Ψ (x, y), with s = 1, . . . , n + l + 1 such that relationships
(24) and (29)–(32) are satisfied, together with the following conditions:

x∗
F + r

l∑

k=1

ykx
∗
k − r

n+l+1∑

s=1

vs

(
l∑

k=1

ykx
∗
ks +

p∑

i=1

βisu
∗
is

)

+
p∑

i=1

βiu
∗
i +

q∑

j=1

αjx
∗
Gj = 0, (44)

z∗
F + r

l∑

k=1

ykz
∗
k +

p∑

i=1

βiv
∗
i = 0, (45)

for s = 1, . . . , n + l + 1,

l∑

k=1

ykz
∗
ks +

p∑

i=1

βiv
∗
is = 0, (46)

where we have the following inclusions:

for j = 1, . . . , q, x∗
Gj ∈ ∂Gj (x), (47)

for k = 1, . . . , l,
(
x∗
k , z∗

k

) ∈ ∂fk(x, z), (48)

for i = 1, . . . , p,
(
u∗

i , v
∗
i

) ∈ ∂gi(x, z), (49)

for k = 1, . . . , l; s = 1, . . . , n + l + 1,
(
x∗
ks, z

∗
ks

) ∈ ∂fk(x, zs), (50)

for i = 1, . . . , p; s = 1, . . . , n + l + 1,
(
u∗

is , v
∗
is

) ∈ ∂gi(x, zs). (51)

(ii) Let the solution set-valued mapping Ψ (17) be inner semicontinous at (x, y, z)

while the functions fk , k = 1, . . . , l and gi , i = 1, . . . , p are Lipschitz continuous
near (x, z), where the lower-level regularity in the sense of (42) is also satisfied.
Then, there exist (x∗

F , z∗
F ) ∈ ∂F (x, z), r ≥ 0, α,β, γ such that conditions (30),
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(31), (40), and (45), hold along with

0 ∈ x∗
F + r

l∑

k=1

ykx
∗
k − r

(
l∑

k=1

ykx̃
∗
k +

p∑

i=1

γiũ
∗
i

)

+
p∑

i=1

βiu
∗
i +

q∑

j=1

αjx
∗
Gj = 0, (52)

l∑

k=1

ykz̃
∗
k +

p∑

i=1

γi ṽ
∗
i = 0, (53)

where inclusions (47)–(49) hold, together with the following ones:

for k = 1, . . . , l,
(
x̃∗
k , z̃∗

k

) ∈ ∂fk(x, z), (54)

for i = 1, . . . , p,
(
ũ∗

i , ṽ
∗
i

) ∈ ∂gi(x, z). (55)

Proof (i) Considering the Lipschitz continuity assumptions on the functions involved
in problem (19), it follows as in the proof of Theorem 4.1 that under CQ (20), while
considering [7, Proposition 5.3], we have

0 ∈ ∂x,y,zF (x, z) + r∂f (x, y, z) + r∂(−ϕ)(x, y) × {0} + NΩ(x, y, z), (56)

taking into account the fulfillment of the lower-level regularity of (x, z), z ∈ Ψ (x, y)

and the inner semicompactness of Ψ at (x, y), which both ensure the Lipschitz con-
tinuity of the value function ϕ near (x, y). As in the previous theorem, the only thing
that remains to be done is estimating the basic subdifferential of f , −ϕ and the ba-
sic normal cone to Ω . For the first term, note that since for all k = 1, . . . , l, fk is
Lipschitz continuous near (x, z), z ∈ Ψ (x, y), then applying the basic subdifferential
product rule of [7, Corollary 1.111] to f (x, y, z) := 〈y,f (x, z)〉 :=∑l

k ykfk(x, z),
we have the following inclusion after some calculations:

∂f (x, y, z) ⊂ f o(x, z) +
{

l∑

k=1

yk

(
x∗
k ,0, z∗

k

) : (x∗
k , z∗

k

) ∈ ∂fk(x, z), k = 1, . . . , l

}

,

(57)
where

f o(x, z) := (0, . . . ,0︸ ︷︷ ︸
n-times

, f (x, z),0, . . . ,0︸ ︷︷ ︸
m-times

)
,

while taking into account that yk ≥ 0 for k = 1, . . . , l.
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On the other hand, it follows from [16, Theorem 7(ii)] that under the assumptions
in Theorem 4.2(i), we have

∂ϕ(x, y) ⊂
⋃

z∈Ψ (x,y)

{
(
x∗, y∗) : (x∗, y∗,0

) ∈ ∂f (x, y, z) +
p∑

i=1

βi∂x,y,zgi(x, z),

βi ≥ 0, βigi(x, z) = 0, i = 1, . . . , p

}

.

Combining this inclusion with (57), it holds that

∂ϕ(x, y) ⊂
⋃

z∈Ψ (x,y)

{[∑l
k=1 ykx

∗
k +∑p

i=1 βiu
∗
i

f (x, z)

]

:

(x∗
k , z∗

k) ∈ ∂fk(x, z), k = 1, . . . , l,

(u∗
i , v

∗
i ) ∈ ∂gi(x, z), i = 1, . . . , p,

∑l
k=1 ykz

∗
k +∑p

i=1 βiv
∗
i = 0

βi ≥ 0, βigi(x, z) = 0, i = 1, . . . , p

}

.

Thus, applying the Carathédory theorem to convϕ(x, y), an upper estimate of the
basic subdifferential of −ϕ is obtained from the latter inclusion:

∂(−ϕ)(x, y) ⊂
{[

−∑n+l+1
s=1 vs(

∑l
k=1 ykx

∗
ks +∑p

i=1 βiu
∗
is)

−∑n+l+1
s=1 vsf (x, zs)

]

:
∑n+l+1

s=1 vs = 1 and zs ∈ Ψ (x, y), vs ≥ 0, s = 1, . . . , n + l + 1

(x∗
ks, z

∗
ks) ∈ ∂fk(x, zs), k = 1, . . . , l; s = 1, . . . , n + l + 1

(u∗
is , v

∗
is) ∈ ∂gi(x, zs), i = 1, . . . , p; s = 1, . . . , n + l + 1
∑l

k=1 ykz
∗
ks +∑p

i=1 βiv
∗
is = 0, s = 1, . . . , n + l + 1

βis ≥ 0, βisgi(x, zs) = 0, i = 1, . . . , p; s = 1, . . . , n + l + 1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(58)
Now, considering Lemma 4.1 and [8, Theorem 6.14], the upper- and lower-level reg-
ularity conditions in the sense of (43) and (42), respectively, are sufficient to derive
the following upper bound of the basic normal cone to Ω :

NΩ(x, y, z) ⊂
⋃
⎧
⎨

⎩

⎡

⎣

∑p

i=1 βiu
∗
i +∑q

j=1 αj∂Gj (x)

−γ + μy∑p

i=1 βiv
∗
i

⎤

⎦ :

(u∗
i , v

∗
i ) ∈ ∂gi(x, z), i = 1, . . . , p

αj ≥ 0, αjGj (x) = 0, j = 1, . . . , q

βi ≥ 0, βigi(x, z) = 0, i = 1, . . . , p

γk ≥ 0, γkyk = 0, k = 1, . . . , l

⎫
⎪⎪⎬

⎪⎪⎭
.

(59)
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The result of Theorem 4.2(i) follows from the combination of (56)–(57) and (58)–
(59), while noting that summing up only the middle terms (i.e., the y-components)
gives the system in (23), which is equivalent to (24) by Lemma 4.2.

(ii) The proof of this case is similar to the previous one with the difference that
the convexification process of ∂(−ϕ) in (58) can be avoided by applying [17, The-
orem 5.9], which gives the following upper bound for the Clarke subdifferential of
ϕ

∂ϕ(x, y) ⊂
⋃
{
(
x∗, y∗) : (x∗, y∗,0

) ∈ ∂f (x, y, z) +
p∑

i=1

βi∂x,y,zgi(x, z),

βi ≥ 0, βigi(x, z) = 0, i = 1, . . . , p

}

,

since Ψ is inner semicontinuous at (x, y, z) and the lower-level regularity in the sense
of (42) holds at (x, z). Finally, we get the result by considering the Clarke counterpart
of the subdifferential product rule in (57):

∂f (x, y, z) ⊂ f o(x, z) +
{

l∑

k=1

yk

(
x∗
k ,0, z∗

k

) : (x∗
k , z∗

k

) ∈ ∂fk(x, z), k = 1, . . . , l

}

,

which is obtained from [18, Proposition 2.3.13]. �

Clearly, the optimality conditions in this theorem coincide with those of The-
orem 4.1 and Remark 4.1, respectively, provided the functions are assumed to be
strictly differentiable.

As mentioned above, the weak basic CQ (20) has been shown to work in particular
for the simple bilevel programming problem. For further discussions on this CQ, see
[15] and references therein. Next, we consider another CQ, namely, the partial calm-
ness condition introduced in [19] and which has recently been highly investigated
and used to derive necessary optimality conditions for a classical optimistic bilevel
program via its optimal value reformulation.

Definition 4.1 According to [19], problem (16) will be partially calm at one of its
local optimal solutions (x, y, z) if and only if there exists r > 0 such that (x, y, z) is
a local optimal solution of the problem

min
x,y,z

F (x, z) + r
(
f (x, y, z) − ϕ(x, y)

)
s.t. (x, y) ∈ X × Y, z ∈ K(x). (60)

Theorem 4.3 Let (x, y, z) be a local optimal solution of problem (16), where the
functions F and Gj, j = 1, . . . , q are Lipschitz continuous around (x, z) and x, re-
spectively. Assume that problem (16) is partially calm at (x, y, z), while x is upper-
level regular in the sense of (43). Then, the following assertions hold:

(i) Let the solution set-valued mapping Ψ (17) be inner semicompact at (x, y) while
for all z ∈ Ψ (x, y), the functions fk, k = 1, . . . , l and gi, i = 1, . . . , p are Lip-
schitz continuous near the point (x, z), where the lower-level regularity in the
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sense of (42) is also satisfied. Then, there exist (x∗
F , z∗

F ) ∈ ∂F (x, z), r > 0,
α,β, βs, vs and zs ∈ Ψ (x, y), with s = 1, . . . , n + l + 1 such that relationships
(29)–(32) and (44)–(51) are satisfied, together with the following condition:

[
l∑

k=1

yk

(

fk(x, z) −
n+l+1∑

s=1

vsfk(x, zs)

)]

.y −
[

f (x, z) −
n+l+1∑

s=1

vsf (x, zs)

]

≤ 0.

(61)
(ii) Let the solution set-valued mapping Ψ (17) be inner semicontinous at (x, y, z)

while the functions fk, k = 1, . . . , l and gi, i = 1, . . . , p are Lipschitz continuous
near (x, z), where the lower-level regularity in the sense of (42) is also satisfied.
Then, there exist (x∗

F , z∗
F ) ∈ ∂F (x, z), r > 0, α,β, γ such that relationships (30)–

(31), (40), (45), (47)–(49), and (52)–(55) all hold.

Proof Under the partial calmness condition, (x, y, z) is a local optimal solution of
problem (60). Considering the estimates of the basic subdifferentials of f and −ϕ,
and the basic normal cone to Ω in the proof of the previous theorem, one has the
result by applying [7, Proposition 5.3] to problem (60). �

A few observations can be made on the link between Theorem 4.2 and Theo-
rem 4.3. Firstly, the additional assumptions imposed on the set Ω (i.e., the regularity
and semismoothness) in Theorem 4.2 are not necessary in Theorem 4.3. Secondly, re-
call that the weak basic CQ (20) strictly implies the partial calmness condition [15].
Clearly, the multiplier r is simply nonnegative under CQ (20) whereas it is strictly
positive under the partial calmness condition. Hence, the reason why condition (24)
takes the form (61). More detail on the link between (20) and the partial calmness
condition can be found in [15]. A class of bilevel programs with multiobjective lower-
level problem, which are automatically partially calm, in the sense of Definition 4.1,
will be discussed in the next section.

Combining the results of Proposition 3.1(i), Theorems 4.2, and 4.3, we can now
deduce necessary optimality conditions of our initial semivectorial bilevel program
(9) in the case where the functions involved are locally Lipschitz continuous. When
the functions are strictly differentiable, the corresponding optimality conditions can
be derived similarly by means of Theorem 4.1 and Remark 4.1.

Corollary 4.1 Let (x, z) be a local optimal solution of problem (9), where the func-
tions F and Gj, j = 1, . . . , q are Lipschitz continuous around (x, z) and x, respec-
tively; for all x ∈ X, the functions f (x, ·) and g(x, ·) are R

l+- and R
p
+-convex, re-

spectively. Let x be upper-level regular in the sense of (43) and assume that for all
y ∈ Y with z ∈ Ψ (x, y), Ω is regular and semismooth at (x, y, z), where the weak
basic CQ (20) also holds (resp., problem (19) is partially calm at (x, y, z)). Then, the
following assertions are satisfied:

(i) Assume that for all y ∈ Y with z ∈ Ψ (x, y), the solution set-valued map Ψ

(17) is inner semicompact at (x, y) while for all z ∈ Ψ (x, y), the functions
fk, k = 1, . . . , l and gi, i = 1, . . . , p are Lipschitz continuous near the point
(x, z), where the lower-level regularity in the sense of (42) is also satisfied. Then,



J Optim Theory Appl (2013) 157:54–74 71

for all y ∈ Y with z ∈ Ψ (x, y), there exist (x∗
F , z∗

F ) ∈ ∂F (x, z), r ≥ 0 (resp.,
r > 0), α,β, βs, vs and zs ∈ Ψ (x, y), with s = 1, . . . , n + l + 1 such that rela-
tionships (24) (resp., (61)), (29)–(32), and (44)–(51) are satisfied.

(ii) Assume that for all y ∈ Y with z ∈ Ψ (x, y), the solution set-valued mapping
Ψ (17) is inner semicontinous at (x, y, z) while the functions fk, k = 1, . . . , l

and gi, i = 1, . . . , p are Lipschitz continuous near (x, z), where the lower-level
regularity in the sense of (42) is also satisfied. Then, for all y ∈ Y with z ∈
Ψ (x, y), there exist (x∗

F , z∗
F ) ∈ ∂F (x, z), r ≥ 0 (resp., r > 0), α,β, γ such that

relationships (30)–(31), (40), (45), (47)–(49), and (52)–(55) all hold.

Remark 4.2 If we assume that the lower-level objective function is single-valued, i.e.,
if l := 1 in (10), then problem (9) reduces to a classical optimistic bilevel optimization
problem. In this case, the optimality conditions in Remark 4.1 and Theorem 4.2(ii)
are exactly those known for the problem

min
x,z

F (x, z) s.t. x ∈ G(x) ≤ 0, z ∈ Ψ (x), (62)

where

Ψ (x) := arg min
y

{
f (x, z) : g(x, z) ≤ 0

}
, with f : R

n × R
m → R,

obtained in the corresponding framework. Considering the optimality conditions of
the latter problem in a framework analog to that of Theorems 4.1 and 4.2(i), the
slight difference that occurs is the number of terms in the convex combination which
should be n+1 for problem (62) instead of n+1+1 if the latter results are used. The
additional 1 here represents the dimension of the space R, which can be intuitively be
adjusted to 0 considering the fact that the variable y is no longer a part of the problem.
For results on necessary optimality conditions of problem (62) via the optimal value
reformulation; see, e.g., [5, 15, 17, 19]. For the Karush–Kuhn–Tucker approach, see,
e.g., [7, 11–13].

5 Problem with Linear Multiobjective Lower-Level

In this section, we consider a semivectorial bilevel program, where the lower-level is
a multiobjective optimization problem which is linear in the lower-level variable:

min
x,z

F (x, z) s.t. x ∈ X, z ∈ Ψwef(x), (63)

with set X and the function F defined as in Sect. 3 while the set-valued mapping Ψwef
represents the weak Pareto optimal solution mapping of the problem:

min
z R

l+ A(x)z + b(x) s.t. C(x)z − d(x) = 0, z ≥ 0, (64)

with b : R
n → R

l and d : R
n → R

p being strictly differentiable functions. On the
other hand, A : R

n → R
l×m and C : R

n → R
p×m are defined by

A(x) := (akt (x)
)

1≤k≤l, 1≤t≤m
and C(x) := (cit (x)

)
1≤i≤p,1≤t≤m

.
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Here, the real-valued functions akt (1 ≤ k ≤ l, 1 ≤ t ≤ m) and cit (1 ≤ i ≤ p, 1 ≤ t ≤
m) are strictly differentiable.

This problem (with b(x) = 0) was treated in [4] as a special case. Considering the
approach developed in the previous section, we derive not only new necessary opti-
mality conditions for the problem, but also from a perspective completely different
from that of [4]. We start by recalling the optimal value reformulation of problem
(63) according to Sect. 3:

min
x,y,z

F (x, z)

s.t. (x, y, z) ∈ X × Y × R
m+, f (x, y, z) ≤ ϕ(x, y), C(x)z − d(x) = 0,

(65)

where Y is given in (13) and f and ϕ are defined respectively as:

f (x, y, z) := 〈y,A(x)z
〉+ 〈y, b(x)

〉
and

ϕ(x, y) := min
z

{
f (x, y, z) : C(x)z − d(x) = 0, z ≥ 0

}
.

(66)

As in the previous section, the following solution set-valued mapping of problem (64)
also plays an important role in analyzing the problem:

Ψ (x, y) := arg min
z

{
f (x, y, z) : C(x)z − d(x) = 0, z ≥ 0

}
. (67)

We show, in the next result, that the partial calmness condition in the sense of Defi-
nition 4.1 is automatically satisfied for problem (65).

Proposition 5.1 Let (x, y, z) be an optimal solution of problem (65), the function F

be Lipschitz continuous and domΨ = X×Y . Then, (65) is partially calm at (x, y, z).

Proof Observe that the function f in (66) can be written as

f (x, y, z) := 〈z,A(x)�y
〉+ 〈y, b(x)

〉
.

Then, proceeding as in the proof of [20, Theorem 4.2], we have the result. �

This result can be seen as an extension of [20, Theorem 4.2], where considering the
usual bilevel optimization problem, it was required that X := R

n. Clearly, one simply
needs to replace the condition domΨ = R

n in [20, Theorem 4.2] by domΨ = X.
As it will be obvious in the next result, the main implication of this result is that for
any given bilevel optimization problem where the lower-level problem is linear in the
lower-level variable, only the upper- and lower-level regularity conditions are needed
to derive necessary optimality. Hence, we define the lower-level regularity condition
corresponding to our problem (63):

∃ẑ : C(x)ẑ = d(x), ẑk > 0, k = 1, . . . , l

and C(x) has full row rank. (68)

The following result is a consequence of Theorem 4.1.
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Corollary 5.1 Let (x, z) be a local optimal solution of problem (63), where F and
G are strictly differentiable at (x, z) and x, respectively. Assume that x is upper-
level regular (22) and satisfies (68). Furthermore, let Ψ (67) be inner semicompact
at (x, y), for y ∈ Y with z ∈ Ψ (x, y). Then, for all y with z ∈ Ψ (x, y), there exist
r ≥ 0, α,β, βs, vs and zs ∈ Ψ (x, y), with s = 1, . . . , n+ l +1 such that relationships
(24) (with f (x, z) := A(x)z + b(x)) and (30), (32) all hold, together with

∇xF (x, z) + r

l∑

k=1

yk

m∑

t=1

zt∇akt (x) +
p∑

i=1

βi

(
m∑

t=1

zt∇cit (x) − ∇di(x)

)

− r

n+l+1∑

s=1

vs

[
l∑

k=1

yk

m∑

t=1

zts∇akt (x) +
p∑

i=1

βs
i

(
m∑

t=1

zts∇cit (x) − ∇di(x)

)]

+
q∑

j=1

αj∇Gj(x) = 0,

∇zF (x, z) + r

l∑

k=1

ykak(x) +
p∑

i

βici(x) ≤ 0,

z�
[

∇zF (x, z) + r

l∑

k=1

ykak(x) +
p∑

i

βici(x) ≤ 0

]

= 0,

∀s = 1, . . . , n + l + 1,

l∑

k=1

ykak(x) +
p∑

i

βsici(x) ≤ 0,

∀s = 1, . . . , n + l + 1, z�
[

l∑

k=1

ykak(x) +
p∑

i

βsici(x) ≤ 0

]

= 0.

6 Concluding Remarks

Combining the scalarization and optimal value approaches from multiobjective and
bilevel optimization, respectively, we have transformed a semivectorial bilevel opti-
mization problem into an equivalent single-level problem (cf. Proposition 3.1). De-
tailed necessary conditions, to characterize local optimal solutions of the problem,
were then provided, while using the weak basic CQ and the partial calmness con-
dition, respectively. It turns out that the partial calmness condition is automatically
satisfied, in the case where the lower-level problem is linear in the follower’s variable
(cf. Proposition 5.1).
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