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Abstract We consider the bilevel programming problem and its optimal value and
KKT one level reformulations. The two reformulations are studied in a unified manner
and compared in terms of optimal solutions, constraint qualifications and optimality
conditions. We also show that any bilevel programming problem where the lower level
problem is linear with respect to the lower level variable, is partially calm without any
restrictive assumption. Finally, we consider the bilevel demand adjustment problem in
transportation, and show how KKT type optimality conditions can be obtained under
the partial calmness, using the differential calculus of Mordukhovich.
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1 Introduction

In this paper we consider the (optimistic) bilevel programming problem also called
the leader’s/lower level problem, which is a special optimization problem partly con-
strained by a second (parametric) optimization problem known as the follower’s/lower
level problem. In order to write this problem as a one level mathematical programming
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problem, two major reformulations have been suggested in the literature [5], i.e. the
KKT reformulation and the optimal value reformulation. The KKT reformulation usu-
ally consists in replacing the follower’s problem by its Karush-Kuhn-Tucker (KKT)
conditions provided that the latter problem is convex in the lower level variable and
an appropriate constraint qualification (CQ) is satisfied. This reformulation introduces
new variables, thus complicating the task of constructing a solution point of the KKT
reformulation that would solve the original bilevel programming problem, hence the
two problems are not locally equivalent [6]. Although, as noticed in Sect. 3, the equiv-
alence with the (primal) KKT reformulation remains complete, if the normal cone
to the feasible set of the lower level problem is not explicitly computed. As for the
optimal value reformulation, it is obtained (without any assumption) by replacing the
lower level solution set by its description via the optimal value function. This refor-
mulation, introduced in [26], is also completely equivalent to the initial problem. It
should however be mentioned that the optimal value function is typically nonsmooth,
even when the functions involved are affine linear ones.

Most of the well-known CQs, irrespective of the reformulation, are known to fail for
the bilevel optimization problem; see e.g. [11,15,40]. In this paper, we derive neces-
sary optimality conditions for the aforementioned reformulations, under some weaker
CQs; and also analyze possible links between them. Considering the partial calmness
CQ, an important result is also proven: the bilevel programming problem where the
follower’s problem is linear in the lower level variable is partially calm at an arbitrary
local optimal solution. This result largely improves a result already established by Ye
[38], in the case where no constraint is imposed on the upper level variable.

Finally, in the last section of the paper, we consider an application of bilevel pro-
gramming in transportation. In fact, the demand adjustment problem (DAP) in road
networks has been modeled by Fisk [14] as a bilevel programming problem. But
like other bilevel transportation problems, the issue of optimality conditions has not
(or very little) been addressed in the literature. A reason for this may be that in addi-
tion to the general burdens of bilevel programs, i.e. the nonsmoothness, nonconvexity
and the failure of classical CQs, as mentioned above, the feasible set of the traffic
assignment problem has a special structure figuring an interplay between the route
and link flows, which does not seem easy to handle. Writing the set of feasible link
flows as a composition of two mappings, we use the sophisticated coderivative tool
of Mordukhovich, from the field of variational analysis, to obtain KKT type opti-
mality conditions for the DAP. Hence, greatly improving the works of Chen [3] and
Chen and Florian [4], where Fritz-John’s type optimality conditions were derived after
considering some important simplifications.

In the next section, we first present some basic notations and background mate-
rial to be used in the paper. Mainly, relevant properties of the generalized differential
theory of Mordukhovich (i.e. the Mordukhovich normal cone, subdifferential and
coderivative) are discussed. In Sect. 3, we introduce the optimistic bilevel program-
ming problem and the optimal value and KKT reformulations are considered. Their
relationships with the initial problem are studied and necessary optimality conditions
derived. In Sect. 4, we consider the partial calmness, which is the best known CQ for
the optimal value reformulation of the bilevel programming problem. Here we show
that it is automatically satisfied when the follower’s problem is linear in the lower
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level variable, under very fairly weak considerations. Finally, in Sect. 5, the DAP is
introduced and may be for the first time, KKT type necessary optimality conditions are
obtained under the partial calmness, which is satisfied at every local optimal solution
when the total cost of the route users is linear in the link flows.

2 Background material

In this section we present some basic concepts and notations used in this paper. More
details on the material, briefly discussed here can be found in the books of Mordukho-
vich [22] and Rockafellar and Wets [30]. We first consider some initial notations: Let
C be a subset of R

n, co C and bd C denote the convex hull and the boundary of C ,
respectively. For a matrix M,M� is the transposed matrix of M . For a ∈ R

n, a ≤ 0
should be understood componentwise. Finally, ‖ · ‖ denotes an arbitrary norm in R

n

and 〈·, ·〉 is used for the inner product of R
n .

A function χ : R
n → R

m is said to be locally Lipschitz continuous around x ∈ R
n

if there exist δ, κ > 0 such that

‖χ(x)− χ(y)‖ ≤ κ‖x − y‖, for all x, y ∈ x + δB,

where B is the unit ball of R
n and κ is called the Lipschitz constant. χ is locally

Lipschitz continuous if it is locally Lipschitz continuous around every point of R
n .

The function χ is said to be Lipschitz continuous if the above inequality holds with
δ = ∞. The local Lipschitz continuity of the real-valued function χ : R

n → R is
necessary for its convexity.

Next we assume that C is a closed subset of R
n . The Bouligand tangent cone to C

at some point x ∈ C is defined by

TC ( x ) := {x ∈ R
n| ∃tk ↓ 0, xk → x : x + tk xk ∈ C}

and the regular normal cone to C at x ∈ C is given as

̂NC ( x ) := {x∗ ∈ R
n| 〈x∗, x〉 ≤ 0, ∀x ∈ TC ( x )}

while the basic normal cone introduced by Mordukhovich is defined as

NC ( x ) := {x∗ ∈ R
n| ∃x∗

k → x∗, xk → x (xk ∈ C) : x∗
k ∈ ̂NC (xk)}

:= {x∗ ∈ R
n| ∃x∗

k → x∗, xk → x : x∗
k ∈ cone(xk − Π(xk,C))},

where “cone” stands for the conic hull of the set in question and Π for the Euclidean
projection on C . The second equality (more appropriate for our finite-dimensional
framework) corresponds to the initial version of the basic normal cone as introduced
in [21]. In contrast to the regular normal cone, which is always convex, the Mor-
dukhovich normal cone is generally nonconvex, thus cannot be polar to any tangential
approximation of C . Nevertheless, ̂NC ( x ) and NC ( x ) both coincide with the normal
cone of convex analysis when C is convex. Additionally, the Mordukhovich normal
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cone is contained in the Clarke normal cone for an arbitrary closed set C , and it induces
some major tools of Variational Analysis, i.e. the Mordukhovich subdifferential and
coderivative.

For a lower semicontinuous function χ : R
n → R, the Mordukhovich subdiffer-

ential of χ at x ∈ R
n is defined by

∂χ( x ) := {x∗ ∈ R
n|(x∗,−1) ∈ Nepiχ (x, χ( x ))},

where epiχ is the epigraph of χ . The Mordukhovich subdifferential is always non-
empty and compact when χ is locally Lipschitz continuous. Moreover

∂χ( x ) = {∇χ( x )
}

provided χ is continuously differentiable. The following convex hull property

co ∂(−χ)( x ) = −co ∂χ( x ), (2.1)

also holds true when χ is locally Lipschitz continuous. If the function χ : R
n → R

is convex, then ∂χ( x ) coincides with the subdifferential of convex analysis. Also,
if we consider two functions ϑ and χ , locally Lipschitz continuous around x , and
nonnegative real numbers λ and μ, we have the sum rule

∂(λϑ + μχ)( x ) ⊆ λ∂ϑ( x )+ μ∂χ( x ), (2.2)

where equality holds if ϑ or χ is continuously differentiable at x .
For the rest of this section we consider a set-valued mapping Φ : R

n ⇒ R
m , its

domain denoted by domΦ is the set of all x ∈ R
n such that Φ(x) �= ∅ and its graph

is given as

gphΦ := {(x, y) ∈ R
n × R

m | y ∈ Φ(x)}.

The coderivative of Φ at ( x, y ) ∈ gphΦ is a positively homogeneous mapping
D∗Φ( x, y ) : R

m ⇒ R
n defined for y∗ ∈ R

m as

D∗Φ( x, y )(y∗) := {

x∗ ∈ R
n| (x∗,−y∗) ∈ NgphΦ( x, y )

}

. (2.3)

Φ will be said to be inner semicompact at a point x , with Φ( x ) �= ∅, if for every
sequence xk → x with Φ(xk) �= ∅, there is a sequence of yk ∈ Φ(xk) that contains a
convergent subsequence as k → ∞. It follows that the inner semicompactness holds
whenever Φ is uniformly bounded around x , i.e. there exists a neighborhood U of x
and a bounded set C ⊂ R

m such that Φ(x) ⊆ C, ∀x ∈ U. The mapping Φ is inner
semicontinuous at ( x, y ) ∈ gphΦ if for every sequence xk → x there is a sequence
of yk ∈ Φ(xk) that converges to y as k → ∞. Clearly, the inner semicontinuity is
a property much stronger than the inner semicompactness and is a necessary condi-
tion for the following Aubin property to hold. The mapping Φ : R

n ⇒ R
m satisfies

123



The bilevel programming problem 451

the Aubin (or Lipschitz-like) property around the point ( x, y ) ∈ gphΦ if there are
neighborhoods U of x, V of y and a constant L > 0 such that

d(y, Φ(x2)) ≤ L‖x1 − x2‖, ∀x1, x2 ∈ U, ∀y ∈ Φ(x1) ∩ V,

where d stands for a distance on R
m × R

m . When the graph ofΦ is closed, the Aubin
property is equivalent to the so-called coderivative (or Mordukhovich) criterion; see
[22].

3 Optimal value versus KKT reformulation

We are mainly concerned in this section with analyzing the optimal value and KKT
reformulations of the bilevel programming problem in terms of CQs, stationary points,
local and global optimal solutions. A special attention will be given to similarities and
possible relationships between the two reformulations. We first start by presenting
these reformulations and the links between their optimal solutions and the initial
problem.

3.1 Reformulations and optimal solutions

We consider the optimistic bilevel programming problem to

minimize F(x, y) subject to x ∈ X ⊆ R
n, y ∈ Ψ (x), (3.1)

also called the leader’s/upper level problem, where X is a closed set, F : R
n×R

m → R

a continuously differentiable function and Ψ : R
n ⇒ R

m , a set-valued mapping
describing the solution set of the parametric optimization problem to

minimize f (x, y) subject to y ∈ K (x), (3.2)

K (x) being a closed subset of R
m for all x ∈ R

n and the function f : R
n × R

m → R

continuously differentiable as well. The difference between what is called the optimal
value reformulation of problem (3.1) and its so-called KKT reformulation resides in
the way the solution set Ψ (x) of the follower’s/lower level problem (3.2) is expressed
in order to have a one level optimization problem.

For the optimal value reformulation, the lower level solution set is chosen as:

Ψ (x) = {y ∈ K (x)| f (x, y) ≤ ϕ(x)},

where ϕ denotes the optimal value function of problem (3.2), defined as

ϕ(x) := min{ f (x, y)|y ∈ K (x)}.

For ϕ to be well-defined, we assume throughout the paper that the lower level prob-
lem (3.2) admits an optimal solution for each x ∈ X . We can then consider the
following reformulation of problem (3.1):
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minimize F(x, y) subject to (x, y) ∈ Ω, f (x, y) ≤ ϕ(x) (3.3)

withΩ := {(x, y) ∈ R
n ×R

m | x ∈ X, y ∈ K (x)}. Problem (3.3) is well-known as the
optimal value reformulation of the bilevel programming problem; such a technique to
rewrite a two level optimization problem is due to Outrata, cf. [26], who also suggested
an algorithmic approach for (3.3), see [27]. On the other hand, the theory on CQs and
optimality conditions for problem (3.3) may be traced back to the work of Ye and Zhu
[40]. For a recent review and new results on the latter issue, the interested reader is
referred to [11]. As far as optimal solutions of the optimal value reformulation are
concerned, we have the following trivial link with those of the initial problem.

Theorem 3.1 A point ( x, y ) is a local (resp. global) optimal solution of (3.1) if and
only if it is a local (resp. global) optimal solution of (3.3).

Meanwhile, if we assume the parametric problem (3.2) to be convex, i.e., the function
f (x, .) and the set K (x) are convex for all x ∈ X , then the lower level solution set
takes the form

Ψ (x) = {y ∈ R
m | 0 ∈ ∇y f (x, y)+ NK (x)(y)} (3.4)

where NK (x)(y) denotes the normal cone (in the sense of convex analysis) to K (x)
at y, provided y ∈ K (x), whereas NK (x)(y) := ∅, if y /∈ K (x). Hence, the bilevel
programming problem (3.1) can be reformulated as

minimize F(x, y) subject to (x, y) ∈ X × R
m, 0 ∈ ∇y f (x, y)+ NK (x)(y). (3.5)

The link between the two problems can be stated as follows:

Theorem 3.2 The lower level problem is assumed to be convex. Then, a point ( x, y )
is a local (resp. global) optimal solution of (3.1) if and only if ( x, y ) is a local (resp.
global) optimal solution of (3.5).

Problem (3.5), which is an optimization problem with generalized equation constraint
has been studied for example in [22,25,39], usually under the name of optimization
problem with variational inequality constraint. The reason for the latter appellation
is that under the convexity of K (x) for x ∈ X , one has the following well-known
expression for the normal cone in the sense of convex analysis

NK (x)(y) := {v ∈ R
m |〈v, u − y〉 ≤ 0, ∀u ∈ K (x)}.

If we insert this formula in (3.5), the aforementioned vocabulary is justified. Given
that the generalized equation defining the lower level solution set in (3.4) may also be
seen as a compact form of the Karush-Kuhn-Tucker (KKT) conditions of the lower
level problem, problem (3.5) could consequently be seen as a primal KKT reformu-
lation of the bilevel programming problem. Hence, problem (3.5) and its sparse form
below, see (3.6), may both be seen as KKT reformulations of the bilevel optimization
problem.
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Concretely, let us consider a rather simplified bilevel program (3.1) where

X := {x ∈ R
n|G(x) ≤ 0} and K (x) := {y ∈ R

m |g(x, y) ≤ 0},

with the functions G : R
n → R

k and g : R
n × R

m → R
p being sufficiently smooth

as required in the sequel. If in addition to the convexity of the function y → f (x, y)
and the set K (x), i.e. of y → g(x, y), an appropriate CQ, like the MFCQ is satisfied
at all points y ∈ Ψ (x), x ∈ X , then we have the following equality [30]:

NK (x)(y) = {∇y g(x, y)�u| u ≥ 0, u�g(x, y) = 0}.

Hence the following so-called KKT reformulation

minimize F(x, y)

subject to

⎧

⎨

⎩

G(x) ≤ 0, g(x, y) ≤ 0
u ≥ 0, u�g(x, y) = 0
∇y f (x, y)+ ∇y g(x, y)�u = 0,

(3.6)

given that the above formula for the normal cone induces the Karush-Kuhn-Tucker
type optimality conditions for the lower level optimization problem (3.2). Clearly,
problem (3.6) is also a mathematical programming problem with complementarity
constraints (MPCC), considering the embedded complementarity problem:

g(x, y) ≤ 0, u ≥ 0, u�g(x, y) = 0. (3.7)

We now have the following theorem, resulting from a recent study by Dempe and
Dutta [6], on the relationship between the bilevel program and its KKT reformulation
after the normal cone present in (3.5) is explicitly computed. Before, we recall that
Slater’s CQ is said to be satisfied for the lower level problem at x ∈ X , provided there
exists y(x) such that g(x, y(x)) < 0. Also, for a given point ( x, y ) of the graph of
Ψ , the set Λ( x, y ) denotes all the vectors u satisfying: u ≥ 0, u�g( x, y ) = 0 and
∇y f ( x, y )+ ∇y g( x, y )�u = 0.

Theorem 3.3 The lower level problem is assumed to be a convex one. Let ( x, y ) be a
global (resp. local) optimal solution of (3.1) and assume that Slater’s CQ is satisfied
at x. Then, for each u ∈ Λ( x, y ), the point (x, y, u) is a global (resp. local) optimal
solution of (3.6). Conversely, let Slater’s CQ be satisfied at all x ∈ X (resp. at x).
Assume that (x, y, u) is a global optimal solution (resp. local optimal solution for all
u ∈ Λ( x, y )) of (3.6). Then, ( x, y ) is a global (resp. local) optimal solution of (3.1).

Broadly, it is clear from this result that for global solutions, problem (3.6) is equivalent
to the initial problem (3.1). But, for local solutions, the requirement that (x, y, u) be
a local optimal solution of (3.6) for all u ∈ Λ( x, y ), before one can be sure that
( x, y ) is a local optimal solution for (3.1), is too strong. Not only it is not realistic
at a computational level, but one can easily construct examples of problems where a
local optimal solution of problem (3.6) is not a local optimal solution of (3.1), cf. [6].
Hence, it may be fair to say that computing the normal cone in (3.5) destroys the nice
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link, stated in Theorem 3.2, between the bilevel program (3.1) and its primal KKT
reformulation (3.5).

It is important to mention that the CQ (Slater) can not be dropped in any segment of
the above theorem [6]. This is the case for the convexity of the lower level problem as
well; otherwise a solution of the bilevel program need not even be a stationary point of
problem (3.6), see Mirrlees [20]. To circumvent this convexity assumption and some
possibly unwanted behavior that may occur using the optimal value reformulation,
Ye and Zhu [37] recently suggested a combination of the KKT and the optimal value
reformulations in order to obtain optimality conditions for the bilevel programming
problem. Concretely, it is assumed in [37], that the KKT conditions of the lower level
problem be satisfied without necessarily requiring the convexity of the lower level
problem and hence the following one level optimization problem is considered:

minimize F(x, y)

subject to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f (x, y)− ϕ(x) ≤ 0
G(x) ≤ 0, g(x, y) ≤ 0
u ≥ 0, u�g(x, y) = 0
∇y f (x, y)+ ∇y g(x, y)�u = 0.

An equivalence between this problem and the initial one (3.1) was established in
[37] around a predefined neighborhood of the considered point. For optimality condi-
tions, techniques known for MPCCs were applied under calmness and partial calmness
concepts tailored for the problem. We will not insist on this approach, since we are
interested exclusively in considering the KKT and optimal value reformulations sep-
arately, and looking at possible links between them. The interested reader is referred
to the aforementioned paper for further details.

3.2 CQs and stationary points

The well-known basic CQ, see e.g. [22,30], also called generalized MFCQ, reduces
in the case of the optimal value reformulation (3.3), to the following condition:

∂( f − ϕ)( x, y ) ∩ (−NΩ( x, y )) = ∅. (3.8)

It was shown in [11, Theorem 3.1] that this condition is violated at any feasible point
of (3.3) under the fairly mild assumption that the sum rule

∂(( f − ϕ)+ δΩ)( x, y ) ⊆ ∂( f − ϕ)( x, y )+ ∂δΩ( x, y )

be satisfied. By passing from the normal cone NΩ to its (topological) boundary, one
has the weaker CQ:

∂( f − ϕ)( x, y ) ∩ (−bd NΩ( x, y )) = ∅. (3.9)

Under this CQ, necessary optimality conditions were derived in [11] provided that
the lower level solution set-valued mapping Ψ is inner semicontinuous or inner semi-
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compact. In the next result, we consider the case where the optimal value function ϕ
is convex; and necessary optimality conditions are obtained under CQ (3.9), without
the need of the aforementioned requirements on Ψ .

Theorem 3.4 Let ( x, y ) be a local optimal solution to problem (3.3) and assume that
CQ (3.9) is satisfied at ( x, y ). We also let ϕ be convex and finite around x. Further-
more, assume that the functions G and g are convex and there exists (̃x, ỹ) such that
G (̃x) < 0 and g(̃x, ỹ) < 0. Then, there exists (λ, α, β, γ ) ∈ R+ × R

p × R
p × R

k

such that:

∇x F( x, y )+ ∇x g( x, y )�(α − λβ)+ ∇G( x )�γ = 0 (3.10)

∇y F( x, y )+ ∇y g( x, y )�(α − λβ) = 0 (3.11)

∇y f ( x, y )+ ∇y g( x, y )�β = 0 (3.12)

α ≥ 0, α�g( x, y ) = 0 (3.13)

β ≥ 0, β�g( x, y ) = 0 (3.14)

γ ≥ 0, γ�G( x ) = 0. (3.15)

Proof The convexity of the functions G and g imply the convexity of the setΩ . Being
convex and finite around x , the value function ϕ is locally Lipschitz continuity around
x [29]. Hence, it follows from [11, Lemma 3.3], [22, Proposition 5.3] and the sum
rule (2.2) that there exists λ ≥ 0 such that

0 ∈ ∇F( x, y )+ λ∇ f ( x, y )+ λ∂(−ϕ)( x )× {0} + NΩ( x, y ). (3.16)

We now recall that the convexity and finiteness of ϕ around x also imply ∂ϕ( x ) �= ∅,
cf. Rockafellar [29]. Hence, let x∗ ∈ ∂ϕ( x ). Since ∂ϕ( x ) coincides with the subdif-
ferential of ϕ in the sense of convex analysis (as mentioned in Sect. 1), then

ϕ(x)− ϕ( x ) ≥ 〈x∗, x − x〉, ∀x ∈ R
n .

Considering the definition of ϕ and the fact that y ∈ Ψ ( x ) (since ( x, y ) is feasible
to (3.3)) we have

f (x, y)− 〈x∗, x〉 ≥ f ( x, y )− 〈x∗, x〉, ∀(x, y) : g(x, y) ≤ 0,

which means that ( x, y ) is an optimal solution of the problem to

minimize f (x, y)− 〈x∗, x〉 subject to g(x, y) ≤ 0.

Hence, from the classical Lagrange multiplier rule, there exists β such that (3.12),
(3.14) and

x∗ = ∇x f ( x, y )+ ∇x g( x, y )�β (3.17)
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hold, given that there exists (̃x, ỹ) with g(̃x, ỹ) < 0. Moreover, since x̃ also satisfies
G (̃x) < 0, it follows from Rockafellar and Wets [30, Theorem 6.14] that

NΩ( x, y ) = {∇g( x, y )�α + (∇G( x )�γ, 0)|α ≥ 0, α�g( x, y ) = 0,
γ ≥ 0, γ�G( x ) = 0}. (3.18)

Combining (3.16)–(3.18), there exists (λ, α, β, γ ) satisfying (3.10), (3.12)–(3.15) and

∇y F( x, y )+ λ∇y f ( x, y )+ ∇y g( x, y )�α = 0 (3.19)

given that ∂(−ϕ)( x ) ⊆ −∂ϕ( x ), following (2.1) and considering the convexity of
ϕ. By inserting the expression of ∇y f ( x, y ) from (3.12) in Eq. (3.19), we recover
Eq. (3.11) and hence, the result. ��
The assumption that ϕ be finite around x seems superfluous given that it is required
in the previous subsection that the lower level problem admits an optimal solution for
each x ∈ X . But obviously, ϕ may happen not to be finite around x if x ∈ bd X (i.e.
G( x ) = 0, likely to occur). In order to avoid this ambiguity, one can simply assume
that X := R

n . Moreover, for the convexity of ϕ, in addition to the convexity of g, one
can consider the convexity of the lower level cost function f .

An example of bilevel programming problem where CQ (3.9) is satisfied can be
found in [11].

Remark 3.1 Optimality conditions similar to those in Theorem 3.4 were also obtained
by Dempe, Dutta and Mordukhovich [7,8] in the case where ϕ is convex and the partial
calmness CQ is satisfied. It was required in the latter papers that Ψ be inner semi-
compact or inner semicontinuous, which are rather strong assumptions. This also
justifies the difference between the proof of Theorem 3.4 and those in [7,8], where
the aforementioned assumptions are needed for the estimation of the subdifferential
of the optimal value function. Our approach is much closer to that of Ye [36], where
the above optimality conditions were obtained under different CQs. A more recent
result closely related to the one in the above theorem is given in [13], when the lower
level feasible set is defined by infinitely many inequality constraints. Here, the partial
calmness CQ was also used for the main problem (3.3), while a closeness qualifica-
tion condition was applied on the lower level constraint instead of the Slater CQ used
in Theorem 3.4. It is important to mention that CQ (3.9) is stronger than the partial
calmness used in [7,8], but the multiplier λ, simply nonnegative in Theorem 3.4, is
positive in [7,8] (cf. [11]).

Instead of (3.11), we could have adopted Eq. (3.19) as in [7,8]. But, as it will be clear
in what follows, Eq. (3.11) is chosen in order to search a closer relationship between
the optimality conditions of the optimal value and KKT reformulations.

Considering the primal KKT reformulation in (3.5), explicit optimality conditions
were recently obtained in [25,32]. In what follows, we rather focus our attention on the
KKT reformulation in (3.6). Let us first recall that the MFCQ also fails at any feasible
point of this problem. Flegel [15] showed that the Guignard CQ, as one of the weakest,
may have a greater chance to be satisfied for the more general MPCC. Hence, we apply
this CQ to problem (3.6), which is specific to our initial bilevel program (3.1).
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For an optimization problem to

minimize f (x) subject to g(x) ≤ 0, h(x) = 0, (3.20)

where the functions f : R
n → R, g : R

n → R
p and h : R

n → R
q are continuously

differentiable, if we denote by C the feasible set of problem (3.20), the Guignard CQ
is satisfied at x ∈ C , provided that

KC ( x )∗ = −̂NC ( x ), (3.21)

where the set in the left hand side of the equality denotes the dual cone of the linearized
tangent cone to C at x ∈ C :

KC ( x ) := {d ∈ R
n| ∇gi ( x )�d ≤ 0,∀i : gi ( x ) = 0

∇hi ( x )�d = 0,∀i : i = 1, . . . , q}.
Theorem 3.5 Assume that the lower level problem is a convex one and the MFCQ
is satisfied at all y ∈ Ψ (x), x ∈ X. Furthermore, let (x, y, u) be a local optimal
solution to problem (3.6) and the Guignard CQ be satisfied at (x, y, u). Then, there
exists (λ, α, γ, ν) ∈ R+ × R

p × R
k × R

m such that:

∇x F( x, y )+ ∇x g( x, y )�(α − λu)+ ∇G( x )�γ + ∇xL(x, y, u)�ν = 0 (3.22)

∇y F( x, y )+ ∇y g( x, y )�(α − λu)+ ∇yL(x, y, u)�ν = 0 (3.23)

∇y f ( x, y )+ ∇y g( x, y )�u = 0 (3.24)

α ≥ 0, α�g( x, y ) = 0 (3.25)

u ≥ 0, u�g( x, y ) = 0 (3.26)

γ ≥ 0, γ�G( x ) = 0 (3.27)

∇y g( x, y )ν − λg( x, y ) ≥ 0, u�(∇y g( x, y )ν) = 0, (3.28)

where L(x, y, u) := ∇y f (x, y)+ ∇y g(x, y)�u.

Proof From the discussion in the previous subsection, the convexity of the lower
level problem and the satisfaction of the MFCQ at all y ∈ Ψ (x), x ∈ X , are simple
formalities necessary to make sure that problem (3.6) is closely related to the initial
bilevel program (3.1), as summarized in Theorem 3.3. Now, let us set ψ(x, y, u) :=
(−u�g(x, y), g(x, y), G(x),−u)�, then (x, y, u) is a local optimal solution of the
problem

minimize F(x, y) subject to ψ(x, y, u) ≤ 0, L(x, y, u) = 0, (3.29)

since u�g(x, y) = 0 if and only if −u�g(x, y) ≤ 0, given that u ≥ 0 and g(x, y) ≤ 0.
Further let us denote by C the feasible set of the previous problem. It follows from
Mordukhovich [22, Proposition 5.1] that

−∇F(x, y, u) ∈ ̂NC (x, y, u),
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with F(x, y, u) := F(x, y). Applying the Guignard CQ, ∇F(x, y, u)∈ KC (x, y, u)∗;
i.e.

−∇F(x, y, u)�d ≤ 0, ∀d ∈ KC (x, y, u).

The rest of the proof then follows by the well-known Farkas’ Lemma of the
alternative. ��
It is worth mentioning that the equivalent transformation, in the above proof, of equa-
tion u�g(x, y) = 0 into an inequality helped to obtain the nonnegativity of the mul-
tiplier λ. Hence, contributing to establish an outlook closer to that of the optimality
conditions obtained for the optimal value reformulation. As far as condition (3.28)
is concerned, one can easily check that it is obtained by combining the derivative of
the Lagrangian function of problem (3.6) w.r.t. to u, and the complementarity system
resulting from the constraint −u ≤ 0. This leads to:

β = ∇y g( x, y )ν − λg( x, y ) and β ≥ 0, u�β = 0.

Hence, implying (3.28). We now provide an example of bilevel programming problem
where the Guignard CQ is satisfied for the KKT reformulation.

Example 3.1 We consider the problem to

minimize x + y subject to x ≥ 0, y ∈ S(x) := arg min{xy| y ≥ 0}.

In this case, f (x, y) = xy, X = {x ∈ R| x ≥ 0} and K (x) = {y ∈ R| y ≥ 0}. Hence,
the inclusion −∇y f (x, y) ∈ NK (x)(y) is equivalent to x ≥ 0 and xy = 0, given that
NK (x)(y) = {−u|u ≥ 0, uy = 0}. The above problem then takes the form

minimize x + y subject to x, y ≥ 0, xy = 0

and following Flegel [15], the Guignard CQ holds at the unique optimal solution point
(0, 0).

For some more details on the application of the Guignard CQ to MPCCs, we refer the
interested reader to the PhD thesis of Flegel [15].

Ye [36] mentioned that under a suitable CQ, the optimality conditions (3.22)–(3.27)
could be obtained. Theorem 3.5 suggests that the Guignard CQ is one of such CQs. But,
surprisingly, (3.28) is not among the conditions in [36]. It seems to have been omitted
purposely. In fact, if we drop condition (3.28), then, as observed in [36], the optimality
conditions of Theorem 3.4 and those of Theorem 3.5 coincide in two cases: (a) when
ν = 0 and (b) if the lower level problem is affine linear in (x, y). However, by observing
the optimality conditions in the results above, the following implication is obvious.

Assume that there exists v = (λ, α, γ, ν) such that (x, y, u, v) satisfies condi-
tions (3.22)–(3.28) with ν = 0 or ∇x,yL(x, y, u) = 0. Then (x, y, v′) (with v′ =
(λ, α, u, γ )) satisfies (3.10)–(3.15). Clearly, this implication is satisfied if the lower
level cost and constraint functions f and g are affine linear in (x, y). In general though,
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there is no relationship between the optimality conditions of the optimal value and KKT
reformulations of the bilevel programming problem; cf. e.g. Henrion and Surowiec
[16], for an illustrating example. This difference can be briefly explained as follows.

At first, consider the Lagrange function L(x, y, u) := ∇y f (x, y)+ ∇y g(x, y)�u,
present in the constraints of the KKT reformulation (3.6). The process of deriving opti-
mality conditions generates second order derivatives for f and g, something which
is not necessary when considering the generalized derivative of the value function
ϕ in the optimal value reformulation (3.3). On the other hand, the complementarity
system (3.7) embedded in problem (3.6) leads to various types of optimality condi-
tions known in the MPEC literature, such as the S, M and C types, just to name a few
[15,31]. It may be important to mention that the optimality conditions in Theorem 3.5
are closely related to the S type conditions. Our interest in the latter category of con-
ditions has been solely motivated by our aim to seek the closest link possible between
the optimality conditions of both reformulations. It is worth mentioning that there
are many other types of optimality conditions for the optimal value reformulation as
well. For instance, necessary optimality conditions for (3.3) have been obtained in
[7,11] highlighting a convex combination of an upper bound of the subdifferential of
ϕ. In [11], a new type of optimality conditions was also provided in the case where
the lower level problem is strongly stable in the sense of Kojima. Clearly, the variety
of optimality conditions for the KKT reformulation is due to the complementarity
system (3.7) while for the optimal value reformulation the difference between the
types of optimality conditions is justified by the existence of various estimates for the
subdifferential of ϕ.

Finally, on the CQs, as already mentioned above, the MFCQ fails for the optimal
value reformulation, see [11,40]. It also fails for the KKT reformulation when con-
sidered as a usual nonlinear optimization problem. But for the latter reformulation,
the MFCQ could regain its effectiveness provided a suitable transformation of the
feasible set is made, see e.g. [10,31]. For the partial calmness (equivalent to a partial
exact penalization) introduced by Ye and Zhu [40] for the optimal value reformula-
tion, it has been shown to be very effective for some classes of problems [7,11,38,40].
Moreover, the result of the next section (see Theorem 4.2) reinforces this fact since
it shows that problem (3.3) is partially calm if the follower’s problem is linear in the
lower level variable. For the KKT reformulation (3.6), the concept of partial exact
penalization is also applicable, see [10,41]. But in this case, the constraint of interest
is the complementarity slackness condition u�g(x, y) = 0, which is responsible for
the failure of the MFCQ. So, like the optimal value constraint f (x, y) − ϕ(x) ≤ 0
for the optimal value reformulation, the constraint u�g(x, y) = 0 can be moved to
the upper level objective function in problem (3.6) provided the uniform weak sharp
minimum condition known for the optimal value reformulation is satisfied [41]. For
problem (3.6), this approach would lead to the same optimality conditions as in The-
orem 3.5 [10]. For the weaker form of the MFCQ (3.9) applied in Theorem 3.4, the
same concept, i.e. a CQ with boundary, remains applicable but with a different form.
The interested reader is referred to [11] and references therein, for such results. But
it should be mentioned that such a CQ may not lead to the same type of optimality
conditions obtained in Theorem 3.5. As far as other CQs are concerned (including the
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Guingard CQ), their behavior on the optimal value and KKT reformulations still have
to be compared. This could be a topic for future research.

4 Partial calmness

From now on we focus our attention on the optimal value reformulation of the bilevel
programming problem (3.1). That is, the problem to

minimize F(x, y)

subject to

{

f (x, y) ≤ ϕ(x)
x ∈ X, y ∈ K (x).

(4.1)

Let ( x, y ) be a feasible point of (4.1). Problem (4.1) is partially calm at ( x, y ) if
there is a number μ > 0 and a neighborhood U of (x, y, 0) such that

F(x, y)− F( x, y )+ μ|u| ≥ 0,

for all (x, y, u) ∈ U feasible to the partially perturbed problem to

minimize F(x, y)

subject to

{

f (x, y)− ϕ(x)+ u = 0
x ∈ X, y ∈ K (x).

Our interest to the partial calmness is led by its capacity to help to move the opti-
mal value constraint function (x, y) → f (x, y) − ϕ(x) from the feasible set to the
upper level objective function, thus providing an order one exact penalty function. This
paves the way to more tractable constraints in the perspective of KKT type optimality
conditions for the bilevel programming problem.

Theorem 4.1 [40] Let ( x, y ) be a local optimal solution of problem (4.1). This prob-
lem is partially calm at ( x, y ) if and only if there exists λ > 0 such that ( x, y ) is a
local optimal solution of the partially penalized problem to

minimize F(x, y)+ λ( f (x, y)− ϕ(x))
subject to x ∈ X, y ∈ K (x).

From this result, it is clear that the optimality conditions derived in Theorem 3.4 could
also be obtained if we replace CQ (3.9) by the partial calmness. But, as mentioned
in Remark 3.1, the multiplier λ of Theorem 3.4 will be positive under the partial
calmness, even though the latter CQ, as shown in [11], is weaker than CQ (3.9).

In their seminal paper [40] where Ye and Zhu introduced the partial calmness, it
was proven that a bilevel programming problem with a lower level problem linear in
(x, y), is partially calm. We show in the next theorem that this proof can be adapted
to the case where the follower’s problem is linear only in the lower level variable y.
Clearly we consider the optimistic bilevel programming problem to

minimize F(x, y) subject to x ∈ R
n, y ∈ Ψ (x), (4.2)
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where the set-valued mapping Ψ : R
n ⇒ R

m describes the solution set of the para-
metric optimization problem to

minimize a(x)�y + b(x) subject to C(x)y ≤ d(x), (4.3)

with a : R
n → R

m, b : R
n → R,C : R

n → R
p×m and d : R

n → R
p. Next we

consider the following optimal value reformulation of problem (4.2):

minimize F(x, y)

subject to

{

a(x)�y + b(x) ≤ ϕ(x)
C(x)y ≤ d(x).

(4.4)

Theorem 4.2 Let ( x, y ) be an optimal solution of problem (4.4), the function F
be Lipschitz continuous and domΨ = R

n. Then, problem (4.4) is partially calm at
( x, y ).

Proof Consider a neighborhood U of (x, y, 0) and let (x ′, y′, u) ∈ U satisfying

a(x ′)�y′ + b(x ′)− ϕ(x ′)+ u = 0
C(x ′)y′ ≤ d(x ′). (4.5)

Since domΨ = R
n , let y(x ′) be a solution to the lower level problem (4.3) for the

parameter x ′, i.e. the couple (x ′, y(x ′)) is feasible to problem (4.4). Further let yo(x ′)
be the projection of y′ on Ψ (x ′) then, denoting by e = (1, . . . , 1)� a m-dimensional
vector, we have

‖y′ − yo(x ′)‖ = min
y

{‖y′ − y‖ : y ∈ Ψ (x ′)}
= min

ε,y
{ε : ‖y′ − y‖ ≤ ε, y ∈ Ψ (x ′)}

= min
ε,y

{ε : −εe ≤ y′ − y ≤ εe, y ∈ Ψ (x ′)}.

The last equality describes the linear program

min
ε,y

ε
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−εe + y ≤ y′
−εe − y ≤ −y′
a(x ′)�y ≤ ϕ(x ′)− b(x ′)
C(x ′)y ≤ d(x ′),

having as dual the problem

max
ξ1,ξ2,ξ3,ξ4

〈

(ξ1, ξ2, ξ3, ξ4)
�, (y′,−y′, ϕ(x ′)− b(x ′), d(x ′))�

〉

⎧

⎨

⎩

−e�ξ1 − e�ξ2 = 1
ξ1 − ξ2 + ξ3a(x ′)+ C(x ′)�ξ4 = 0
(ξ1, ξ2, ξ3, ξ4) ∈ R

m− × R
m− × R− × R

p
−.
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By inserting the constraint ξ1 − ξ2 + ξ3a(x ′)+C(x ′)�ξ4 = 0 in the objective function
of the dual problem, we have the equivalent problem

max
ξ1,ξ2,ξ3,ξ4

ξ3
(

ϕ(x ′)− a(x ′)�y′ − b(x ′)
) + (

d(x ′)− C(x ′)y′)�
ξ4

−e�ξ1 − e�ξ2 = 1, ξ1, ξ2, ξ3, ξ4 ≤ 0.

Thus there is at least one vertex (ξo
1 , ξ

o
2 , ξ

o
3 , ξ

o
4 ) of the system

− e�ξ1 − e�ξ2 = 1, ξ1, ξ2, ξ3, ξ4 ≤ 0 (4.6)

such that

‖y′ − yo(x
′)‖ = ξo

3

(

ϕ(x ′)− a(x ′)�y′ − b(x ′)
) + (

d(x ′)− C(x ′)y′)�
ξo

4 ,

which implies

‖y′ − yo(x
′)‖ ≤ ξo

3 u

given that (x ′, y′) satisfies (4.5). Also notice that u ≤ 0 considering the definition of
ϕ. Since the number of vertices satisfying (4.6) is finite, let ξ B

3 ∈ R be the smallest
(2m + 1)th component of such vertices, then

‖y′ − yo(x
′)‖ ≤ |ξ B

3 ||u|. (4.7)

On the other hand we recall that F is Lipschitz continuous. Denote by KF its Lips-
chitz constant, given that ( x, y ) is an optimal solution to problem (4.4) and (x ′, yo(x ′))
being feasible, we have

F(x ′, y′)− F( x, y ) ≥ F(x ′, y′)− F(x ′, yo(x ′))
≥ −KF‖y′ − yo(x ′)‖
≥ −μ|u|,

with μ = KF |ξ B
3 | and taking into account inequality (4.7). ��

In [12], a similar proof was already given for the simpler case where f (x, y) = x�y
and K (x) = {y|Ay = b, y ≥ 0}. It is easy to see that this case can simply be imbedded
in Theorem 4.2 by rearranging the lower level constraints as: Ay ≤ b, −Ay ≤ −b
and −y ≤ 0.

We now consider the bilevel programming problem (4.2) in the case where X �= R
n .

It is no more certain that this problem would be partially calm without an additional
assumption. For this reason we consider the following definition of the notion of
uniformly weak sharp minimum introduced in [40].

Definition 4.1 The family of parametric optimization problems {(3.2)|x ∈ X} is said
to have a uniformly weak sharp minimum if there exist μ > 0 such that

f (x, y)− ϕ(x) ≥ μ d(y, Ψ (x)), ∀y ∈ K (x), ∀x ∈ X.
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It can easily be shown that if the upper level objective function F is Lipschitz con-
tinuous in y uniformly in x , then the bilevel programming problem (3.1) is partially
calm at every local optimal solution, provided that the family of parametric optimi-
zation problems {(3.2)|x ∈ X} has a uniformly weak sharp minimum. Hence, this
concept has been adopted as a standard criterion for the partial calmness and many
sufficient conditions for the uniform weak sharp minimum have been given in the
literature [11,38,40,41]. Very recently though, Henrion and Surowiec [16] showed
that the calmness of the set-valued mapping

M(v) := {(x, y) ∈ Ω| f (x, y)− ϕ(x) ≤ v}

could be inserted between the uniform weak sharp minimum and the partial calmness.
Hence, providing a weaker sufficient condition for the latter to be satisfied. It should,
nevertheless, be mentioned that it was already clear from [11], see proof of Theorem
4.10, that the calmness of M is a sufficient condition for the partial calmness.

Ye [38] considered the bilevel programming problem (3.1) where the lower level
problem is defined as

min
y

{ f (x, y)| y ∈ R
m, g(x, y) ≤ 0}, (4.8)

with the functions f and g both linear in y and the following was proven:

Theorem 4.3 Assume that domΨ = X. Let

g(x, y)� := (g1(x, y), . . . , gp(x, y), f (x, y)− ϕ(x))

and assume that there exists μ > 0 such that

c(x) := sup
w, y′, I

{

wp+1| y′ ∈ Ψ (x), wi > 0, gi (x, y′) = 0, ∀i ∈ I
∥

∥

∥

∥

∥

∑

i∈I

wi∇y gi (x, y′)
∥

∥

∥

∥

∥

1

= 1,

vectors {∇y gi (x, y′)| i ∈ I } are linearly independent,
{p + 1} ⊆ I ⊆ {1, . . . , p + 1}}

≤ μ, ∀x ∈ X such that there exists I as in the previous line.

Then, there exist α > 0 such that:

f (x, y)− ϕ(x) ≥ μ−1α d(y, Ψ (x)), ∀y ∈ K (x), ∀x ∈ X.

We can easily observe that the follower’s problem (4.8) is nothing but the lower level
problem considered in (4.3). Hence if X = R

n , then the result in Theorem 4.2 remains
true for the bilevel programming problem (4.2) where the lower level problem is
defined in (4.8). It thus seems clear that in this case the assumption of Theorem 4.3,
which may be quite difficult to check (see Mangasarian and Shiau [18]), is not useful.
Nevertheless, when X �= R

n , the previous result takes all its importance.
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5 Application to the DAP

We consider a transportation network G := (N ,A), where N and A denote the set
of nodes and directed links (arcs), respectively. Let W ⊆ N 2 denote the set of ori-
gin-destination (O-D) pairs. Each O-D pair w ∈ W is connected by a set of routes
(paths) Pw, each member of which is a set of sequentially connected links. We denote
by P := ⋃

w∈W Pw the set of all routes of the network and by α := |A|, ω := |W|
and π := |P|, the cardinalities of A,W and P , respectively. Let the matrix (Λ :=
[Λwp]) ∈ R

ω×π denote the O-D-route incidence matrix in whichΛwp = 1 if route p ∈
Pw and Λwp = 0 otherwise, and the matrix (Δ := [Δap]) ∈ R

α×π denotes the arc-
route incidence matrix; hereΔap = 1 if arc a is in route p andΔap = 0 otherwise. The
network is assumed to be strongly connected, i.e. at least one route joins each O-D pair.

We also consider the column vectors (d := [dw]) ∈ R
ω, (q := [qp]) ∈ R

π+ and
(v := [va]) ∈ R

α to denote the travel demand, the route flow and arc flow, respec-
tively. Finally we denote by (c = [cp]) ∈ R

π+ the column vector denoting the route
capacity. For a given demand d, a route flow q is feasible if it does not exceed the
capacity and satisfies the O-D demand constraint Λq = d. Let us denote by Q the
set-valued mapping from R

ω to R
π describing the set of such flows, then

Q(d) := {q ∈ R
π+| q ≤ c, Λq = d}.

For a given demand d, a link flow is feasible if there is a corresponding feasible route
flow q such that the flow conservation constraint Δq = v, is satisfied. Hence, the
following set-valued mapping from R

ω to R
α

V (d) := {v ∈ R
α| ∃q ∈ Q(d), Δq = v},

denotes the set of feasible link flows. We let the separable function t from R
α to R

α

denote the route cost, i.e. for each a ∈ A, the component ta(va) of the vector t (v)
gives the traffic cost on the arc a, under the flow va . We assume the route cost to be
additive, thus the components of c(v) = Δ�t (v) give the cost on each route p ∈ P .
Finally, we introduce the vector ϑ(v) = [ϑw(v)] ∈ R

ω of minimum cost between
each O-D pair w ∈ W , i.e. ϑw(v) := minp∈Pw cp(v).

The user equilibrium principle of Wardrop [33] states that for every O-D pair
w ∈ W, the travel cost of the routes utilized are equal and minimal for each individual
user, i.e. for any route p ∈ P and O-D pair w ∈ W , we have

{

cp(v) = ϑw(v) if qp > 0
cp(v) ≥ ϑw(v) if qp = 0

for any given demand d. It follows from Beckmann, McGuire and Winsten [2] that for
any given demand d, obtaining Wardrop’s user equilibrium is equivalent to solving
the parametric optimization problem
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minimize f (v) :=
∑

a∈A

va
∫

0

ta(s)ds

subject to v ∈ V (d),

(5.1)

provided that each link cost function ta : R → R is continuous and positive. Prob-
lem (5.1) is known as the traffic assignment problem. In general, the total cost of
travel represented by f may have a more general expression. The interested reader
is referred to Patriksson [28] for a detailed discussion on this issue. In this paper, we
simply consider f in problem (5.1) to be a function of the demand d and the link flow v.

In transportation planing, the demand mentioned in the traffic assignment problem
above is a strategic data in a broader sense given that a comprehensive decision mak-
ing process highly depends on how accurate it is estimated. Fisk [14] has suggested a
bilevel formulation of the problem of estimating the origin-destination (O-D) matrix
(or the O-D demand adjustment problem (DAP)) from an outdated matrix and using
some observed traffic counts:

minimize F(d, v)
subject to d ∈ D, v ∈ Ψ (d) (5.2)

where D is a closed set andΨ (d) the solution set of the traffic assignment problem (5.1)
(where f (v) is replaced by f (d, v)) for a given O-D matrix d organized as a vector.
Here the leader’s cost function F may be the combination of the error measurements
between the target matrix and the observed traffic flows. For more details on the model
and some solution approaches, we refer the interested reader to Abrahamsson [1], Chen
[3], Chen and Florian [4], Fisk [14], Migdalas [19], Yang [34] and Yang et al. [35].

One interesting thing about the traffic assignment problem (5.1) or the DAP model
as a whole is the flow conservation constraint Δq = v materializing the relation
between the link flow v and the route flow q. A difficulty in handling this problem
seems to be caused by this constraint since it is not really clear w.r.t. which variable
between v and q the lower level problem should be considered. But what is perceivable
is that one may find many combinations of q that would give v. Thus, the uniqueness
of v would not imply that of q. We materialize this fact by explicitly defining the set
of feasible route flows for a given couple of demand and link flow, cf. (5.4). Then,
exploiting the mentioned flow conservation constraint (which also induces a special
structure for the feasible set of the traffic assignment problem, defined for each demand
vector d as the composition of the route flow set-valued mappings Q and the function
J : R

π → R
α , with J (q) := Δq such that V (d) := J ◦ Q(d)), we design a new esti-

mation of the subdifferential of the value function ϕ of the traffic assignment problem
leading, perhaps for the first time, to KKT type optimality conditions for the DAP.

We have from Theorem 3.1 that problem (5.2) can be reformulated as

minimize F(d, v)
subject to f (d, v) ≤ ϕ(d), (d, v) ∈ Ω, (5.3)
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whereΩ := (D ×R
α)∩gphV , with gphV representing the graph of the link flow set-

valued mapping V . Here,ϕ denotes the optimal value function of the traffic assignment
problem parameterized in the demand d. Chen [3] and Chen and Florian [4] suggested
Fritz John’s type optimality conditions for problem (5.3) after a number of simpli-
fications, including that of considering the flow conservation constraint Δq = v as
exogenous, thus dropping it in some sense. We do not make such simplifications here.
As already mentioned above V (d) := J ◦ Q(d) and we can easily observe that the
graph of Q is given by

gphQ = {(d, q) ∈ R
ω × R

π | − d +Λq = 0, 0 ≤ q ≤ c}.

For (d, q) ∈ gphQ, we consider the set

Po(q) := {r ∈ P|qr = 0}

of unused routes of the network and the set

Pc(q) := {r ∈ P|qr = cr }

of routes used at their full capacity. Then P can be partitioned into Po(q),Pc(q)
and Pu(q), where Pu(q) is the set of routes used but not at full capacity. Thus,
P = Po(q) ∪ Pc(q) ∪ Pu(q).

To make the further explanations more clear, we make the following technical
assumption: we assume that P is an ordered set such that for a route r ∈ P , we
associate an index |r | ∈ N and we define the π−dimensional vector er as

er := (0, . . . , 0, 1, 0, . . . , 0)�,

where 1 is at position |r |, in order to symbolize the utilization of the corresponding
route. Next we let [Λw]w∈W be the collection of rows of the O-D-route incidence
matrix Λ. Then, for (d, q) ∈ gphQ the normal cone to gphQ at (d, q) is given as

NgphQ(d, q) =
⎧

⎨

⎩

⎛

⎝−
∑

w∈W
λwew,

∑

r∈Pc(q)

λc
r er −

∑

r∈Po(q)

λo
r er +

∑

w∈W
λwΛ

�
w

⎞

⎠ :

(λw)w∈W ∈ R
ω, (λo

r )r∈Po(q), (λ
c
r )r∈Pc(q) ≥ 0

⎫

⎬

⎭

,

following Rockafellar and Wets [30, Theorem 6.46], where [ew]w∈W is the collection
of columns of the identity matrix of R

ω×ω.
We now provide some variational properties of the feasible link flows set-valued

mapping V , which will be very useful in deriving KKT type optimality conditions for
the DAP. For this purpose, we consider the following set of route flows corresponding
to a given feasible demand-link flow couple (d, v)
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H(d, v) := {q ∈ R
π |Δq = v, (d, q) ∈ gphQ}. (5.4)

Lemma 5.1 For any (d, v) ∈ gph V , we have

Ngph V (d, v) ⊆
⋃

q∈H(d,v)
{(d∗, v∗) ∈ R

ω × R
α| (d∗,Δ�v∗) ∈ Ngph Q(d, q)}.

Moreover, V is Lipschitz-like around (d, v), provided the following CQ holds at (d, v):

∑

r∈Pc(q)

λc
r er −

∑

r∈Po(q)

λo
r er +

∑

w∈W
λwΛ

�
w = 0

(λo
r )r∈P0(q), (λ

c
r )r∈Pc(q) ≥ 0

q ∈ H(d, v)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

�⇒ [λw = 0, w ∈ W]. (5.5)

Proof Let (d, v) ∈ gph V , by definition (d∗, v∗) ∈ Ngph V (d, v) if and only if we
have d∗ ∈ D∗V (d, q)(−v∗). Since Q(d) ⊆ |c|B, for all d ∈ R

ω, where B is the
unit ball of R

π and |c| := max{ci |i = 1, . . . , π} (c is the route capacity vector), then
the set-valued mapping (d, v) ⇒ Q(d) ∩ J−1(v) = H(d, v) is uniformly bounded
around (d, v). Hence, including the continuous differentiability of the function J , it
follows from Rockafellar and Wets [30, p. 454] that there exists q ∈ H(d, v) such that
d∗ ∈ D∗Q(d, q)(Δ�(−v∗)), that is (d∗,Δ�v∗) ∈ Ngph Q(d, q).

For the Lipschitz-like property of V , it follows from the upper estimate of Ngph V

in the theorem that

D∗V (d, v)(v∗) ⊆
⋃

q∈H(d,v)
{d∗ ∈ R

ω| (d∗,−Δ�v∗) ∈ Ngph Q(d, q)}.

Furthermore, if one considers the expression of the normal cone to the graph of Q,
one has

D∗V (d, v)(0) ⊆
⋃

q∈H(d,v)

⎧

⎨

⎩

−
∑

w∈W
λwew|

∑

r∈Pc(q)

λc
r er −

∑

r∈Po(q)

λo
r er +

∑

w∈W
λwΛ

�
w = 0

(λw)w∈W ∈ R
ω, (λo

r )r∈P0(q), (λ
c
r )r∈Pc(q) ≥ 0

⎫

⎬

⎭

.

We recall that V is Lipschitz-like around (d, v) provided the following coderivative
criterion of Mordukhovich, see [22], holds

D∗V (d, v)(0) = {0}.

Considering the latter inclusion, this is automatically satisfied under CQ (5.5). ��
Example 5.1 We consider the problem of Example 1 in the paper of Lu [17], with a
network of four links (α = 4), two O-D pairs (ω = 2) and four routes (π = 4). Further-
more, let the O-D-route incidence matrix (Λ) and the link-route incidence matrix (Δ)

123



468 S. Dempe, A. B. Zemkoho

be defined as in Lu’s Example, then it follows from [17] that for d = [20, 20]� and v =
[10, 10, 10, 10]�, one has v ∈ V (d) and H(d, v) = {q = [10, 10, 10, 10]�}. Clearly,
all the routes are used. If we set the route capacity vector to be [10, 30, 30, 10]�, mean-
ing that routes 1 and 4 are used at full capacity, while routes 2 and 3 are underused,
the left hand side of implication (5.5) reduces to

[λc
1 + λ1, λ1, λ2, λ

c
4 + λ2] = [0, 0, 0, 0], with λc

1, λ
c
4 ≥ 0.

This obviously implies that λ1 = λ2 = 0. Thus, CQ (5.5) is satisfied at (d, v).

Remark 5.1 For a given demand-link flow couple (d, v), if we assume that all routes
are used but not at full capacity, i.e.

Pc( q) = ∅ and Pc( q) = ∅, ∀ q ∈ H( d, v),

then CQ (5.5) reduces to the fulfillment of the implication:

∑

w∈W
λwΛ

�
w = 0 �⇒ [λw = 0, w ∈ W].

This amounts to saying that the O-D-route incidence matrix has full rank. This assump-
tion is satisfied for Λ in the network of the above example.

In order to focus on the main ideas we consider the simplified situation where D = R
ω

and the upper and lower level cost functions F and f are all continuously differen-
tiable. Nevertheless, all the results here can easily be extended to more general cases.
Let us denote by

Λ(d, q) =
⎧

⎨

⎩

(λω, λc, λo)|λω = (λw), λ
c = (λc

r ) ≥ 0, λo = (λo
r ) ≥ 0,

∑

r∈Po(q)

λo
r er −

∑

r∈Pc(q)

λc
r er −

∑

w∈W
λwΛ

�
w = Δ�∇v f (d, v)

⎫

⎬

⎭

the set of Lagrange multipliers for the traffic assignment problem. Then, the local
Lipschitz continuity and the subdifferential of the optimal value function of the traffic
assignment problem can be obtained as follows.

Theorem 5.1 Let d ∈ D such that for all v ∈ Ψ (d), CQ (5.5) holds at (d, v). Then,
the optimal value function ϕ of the traffic assignment problem is locally Lipschitz
continuous around d and

∂ϕ(d) ⊆
⋃

v∈Ψ (d)

⋃

q∈H(d,v)

⋃

(λω,λc,λ0)∈Λ(d,q)

{

−
∑

w∈W
λwew + ∇d f (d, v)

}

. (5.6)

Alternatively, if we assume that Ψ is inner semicontinuous at (d, v), and CQ (5.5)
holds at (d, v), then ϕ is also locally Lipschitz continuous around d and
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∂ϕ(d) ⊆
⋃

q∈H(d,v)

⋃

(λω,λc,λ0)∈Λ(d,q)

{

−
∑

w∈W
λwew + ∇d f (d, v)

}

. (5.7)

Proof We first start by noting that since J is a continuous function, we have
Ψ (d) ⊆ V (d) := J (Q(d)) ⊆ J (|c|B),∀d ∈ R

ω, with J (|c|B) bounded. This means
that the set-valued mapping Ψ is uniformly bounded, hence inner semicompact, cf.
Sect. 2. In addition to the Lipschitz-like property of V around (d, v), for all v ∈ Ψ (d)
(cf. Lemma 5.1), the value function ϕ is locally Lipschitz continuous following Mor-
dukhovich and Nam [23, Theorem 5.2].

On the other hand, with the continuous differentiability of f , it follows from
[24, Theorem 7] that

∂ϕ(d) ⊆
⋃

v∈Ψ (d)
{∇d f (d, v)+ D∗V (d, v)(∇v f (d, v))} (5.8)

considering the inner semicompactness of Ψ at d. Moreover, it follows from the
definition of the coderivative that d∗ ∈ D∗V (d, v)(∇v f (d, v)) if and only if
(d∗,−∇v f (d, v)) ∈ NgphV (d, v). Hence, from Lemma 5.1, there exists q ∈ H(d, v)
such that (d∗,−Δ�∇v f (d, v)) ∈ NgphQ(d, q), which implies the existence of
(λω, λc, λo), with λω = (λw), λ

c = (λc
r ) ≥ 0, λo = (λo

r ) ≥ 0 such that

d∗ = −
∑

w∈W
λwew (5.9)

Δ�∇v f (d, v) = −
∑

r∈Pc(q)

λc
r er +

∑

r∈Po(q)

λo
r er −

∑

w∈W
λwΛ

�
w. (5.10)

Hence, the inclusion in (5.6) follows by the combination of (5.8) and (5.9)–(5.10).
In the case where Ψ is inner semicontinuous, the local Lipschitz continuity and the

inclusion (5.7) follow similarly by applying [23, Theorem 5.2] and [24, Theorem 7],
respectively. ��
We are now able to give KKT optimality conditions for the DAP under the partial
calmness defined in Sect. 4.

Theorem 5.2 Let (d, v) be a local optimal solution to problem (5.3) and assume that
CQ (5.5) holds at (d, v), for all v ∈ Ψ (d). Furthermore, let problem (5.3) be partially
calm at (d, v). Then, there exist q ∈ R

π , μ > 0, (λω, λc, λo), and vs ∈ Ψ (d), qs ∈
R
π , (λωs , λ

c
s , λ

o
s ) and ηs ≥ 0, s = 1, . . . , ω + 1, with

∑ω+1
s=1 ηs = 1 such that

∇d F(d, v)+ μ∇d f (d, v)−
∑

w∈W
λwew + μ

ω+1
∑

s=1

ηs

⎛

⎝

∑

w∈W
λswew − ∇d f (d, vs)

⎞

⎠ = 0

Δ�(

∇vF(d, v)+ μ∇v f (d, v)
)

−
∑

r∈Po(q)

λo
r er +

∑

r∈Pc(q)

λc
r er +

∑

w∈W
λwΛ

�
w = 0
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Δ�∇v f (d, vs)+
∑

r∈Pc(qs )

λc
sr er −

∑

r∈Po(qs )

λo
sr er +

∑

w∈W
λswΛ

�
w = 0

0 ≤ q ≤ c, Λq = d, Δq = v

0 ≤ qs ≤ c, Λqs = d, Δqs = vs

λω = (λw), λ
c = (λc

r ) ≥ 0, λo = (λo
r ) ≥ 0

λωs = (λsw), λ
c
s = (λc

sr ) ≥ 0, λo
s = (λo

sr ) ≥ 0.

Proof Under the partial calmness, it follows from Theorem 4.1 that there existsμ > 0
such that (d, v) solves

minimize F(d, v)+ μ( f (d, v)− ϕ(d))
subject to (d, v) ∈ gph V .

Since gphV is closed and ϕ is locally Lipschitz continuous around d , it follows from
Mordukhovich [22, Proposition 5.3] that

0 ∈ ∂(F + μ( f − ϕ))(d, v)+ Ngph V (d, v). (5.11)

Considering the sum rule (2.2) and the convex hull property (2.1) we have

0 ∈ ∇F(d, v)+ μ∇ f (d, v)− μcoϕ(d)× {0} + Ngph V (d, v).

Hence it follows from Lemma 5.1 that there exist v∗ ∈ R
α, q ∈ R

π , μ > 0, and
(λω, λc, λo), with λω = (λw), λ

c = (λc
r ) ≥ 0, λo = (λo

r ) ≥ 0 such that

−
∑

w∈W
λwew + ∇d F(d, v)+ μ∇d f (d, v) ∈ μco∂ϕ(d) (5.12)

Δ�v∗ =
∑

w∈W
λwΛ

�
w +

∑

r∈Pc(q)

λc
r er −

∑

r∈Po(q)

λo
r er (5.13)

v∗ = −∇vF(d, v)− μ∇v f (d, v) (5.14)

0 ≤ q ≤ c, Λq = d, Δq = v. (5.15)

On the other hand, if we take d∗ ∈ coϕ(d), then we have from Caratheodory’s The-
orem (see e.g. Rockafellar [29]) that there exist ηs ∈ R and d∗

s ∈ ∂ϕ(d), with s =
1, . . . , ω + 1 such that d∗ = ∑ω+1

s=1 ηsd∗
s ,

∑ω+1
s=1 ηs = 1, ηs ≥ 0. Hence, the result

follows from (5.12)–(5.15) and the inclusion (5.6). ��
In the case where the solution set-valued mapping Ψ is inner semicontinuous, the fol-
lowing result can be stated and we omit the proof since it is analogous to the previous
one, given that only the estimation of the subdifferential of the optimal value function
differs.

Theorem 5.3 Let (d, v) be an optimal solution to problem (5.3), Ψ be inner semi-
continuous at (d, v) and CQ (5.5) be satisfied at (d, v). Furthermore, let problem
(5.3) be partially calm at (d, v). Then, there exist q ∈ R

π , μ > 0, (λω, λc, λo), and
qs ∈ R

π , (λωs , λ
c
s , λ

o
s ) and ηs ≥ 0, s = 1, . . . , ω + 1, with

∑ω+1
s=1 ηs = 1 such that
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∇d F(d, v)−
∑

w∈W
λwew + μ

ω+1
∑

s=1

ηs

∑

w∈W
λswew = 0

Δ�(

∇vF(d, v)+ μ∇v f (d, v)
)

−
∑

r∈Po(q)

λo
r er +

∑

r∈Pc(q)

λc
r er +

∑

w∈W
λwΛ

�
w = 0

Δ�∇v f (d, v)+
∑

r∈Pc(qs )

λc
sr er −

∑

r∈Po(qs )

λo
sr er +

∑

w∈W
λswΛ

�
w = 0

0 ≤ q ≤ c, Λq = d, Δq = v

0 ≤ qs ≤ c, Λqs = d, Δqs = v

λω = (λw), λ
c = (λc

r ) ≥ 0, λo = (λo
r ) ≥ 0

λωs = (λsw), λ
c
s = (λc

sr ) ≥ 0, λo
s = (λo

sr ) ≥ 0.

A generalization of Theorems 5.2 and 5.3 to the case where the set D is different from
R
ω is possible if we additionally require (d, v) to satisfy

Ngph V (d, v) ∩ (−ND×Rα (d, v)) = {0}

in order to add the normal cone ND×Rα (d, v) to the right hand side of the condition in
(5.11). For the inner semicontinuity of Ψ , this is automatically satisfied if we assume
that the solution of the traffic assignment problem is locally unique and determines
a continuous function. This is usually the case for most of the bilevel transportation
problems considered in the literature [3,34,35]. It is obtained by assuming that for
every link a ∈ A, the link cost ta is strictly increasing in va . Given that gph V is a
convex set, CQ (5.5) can be dropped in the above results, provided that the function
f is convex in (d, v), as it is the case in (5.1). In fact, in this case, ϕ would be convex
and hence, the approach to optimality conditions in Theorem 3.4 is more appropriate.
The interested reader is referred to [9] for a detailed discussion on this case. Finally,
as far as the partial calmness of the DAP is concerned, it follows from Theorem 4.2
that this will, for example, be satisfied if the traffic cost of the road users expressed
by f is linear in the link flow. That is, if there is no congestion in the network, this
function can take the form f (d, v) := ∑

a∈A αava , where αa denotes the fix cost of
travel for each traveler on link a which can represent a combination of the time spent
and the fuel consumed on this link.
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