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A simple approach to optimality conditions in minmax

programming

Alain B. Zemkoho*

Institut für Numerische Mathematik und Optimierung, TU Bergakademie Freiberg
Akademie Straße 6, 09596 Freiberg, Germany

(Received 1 August 2011; final version received 24 December 2011)

Considering the minmax programming problem, lower and upper
subdifferential optimality conditions, in the sense of Mordukhovich, are
derived. The approach here, mainly based on the nonsmooth dual objects
of Mordukhovich, is completely different from that of most of the previous
works where generalizations of the alternative theorem of Farkas have been
applied. The results obtained are close to those known in the literature.
However, one of the main achievements of this article is that we could also
derive necessary optimality conditions for the minmax program of the
usual Karush–Kuhn–Tucker type, which seems to be new in this field of
study.

Keywords: minmax programming; optimal value function; optimality
conditions; inner semicompact/semicontinuous set-valued mapping;
convexity; basic subdifferential and normal cone

AMS Subject Classifications: 49K35; 90C47; 90C30

1. Introduction

In this article, we consider the so-called minmax optimization problem

(P) minimize ’ðxÞ subject to x2X;

where the objective function ’ and feasible set X are given, respectively, as

’ðxÞ :¼ max
y
f f ðx, yÞj gðx, yÞ � 0g and X :¼ fx2R

n
jGðxÞ � 0g ð1:1Þ

with the functions f: R
n
�R

m
!R, g: R

n
�R

m
!R

p and G: R
n
!R

k. Problem (P)
may also be called the outer/upper level/leader’s problem whereas the parametric
problem maxyff ðx, yÞj gðx, yÞ � 0g is the inner problem. If the inequality g(x, y)� 0 is
replaced by an inclusion y2�(x), where �(x) stands for the solution set of a
minimization problem parametrized in x, one obtains the pessimistic reformulation
of the bilevel optimization problem [2]. The optimistic reformulation is obtained
similarly but with a minimization in the inner problem. The latter problems are much
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more complicated. A detailed discussion of optimality conditions in optimistic and

pessimistic bilevel programming, in the perspective of optimization problems with

value function objectives, can be found in [4] and [5], respectively. For a more general

overview of bilevel programming, the interested reader is referred to the monograph

by Dempe [2].
The minmax problem is said to be static or nonparametric if the inner constraint

g(x, y)� 0 is not perturbed, meaning that the outer problem is of the form

min
x2X

max
y2Y

f ðx, yÞ; ð1:2Þ

where Y is a nonempty closed set independent of x. This is the class of minmax

problem most often investigated in the literature, see e.g. [15] and references therein

or more recently, see the paper by Dhara and Mehra [7]. Ishizuka [8] was the first to

investigate necessary optimality conditions for the parametric minmax program (P).

Further results were obtained in his book with Shimizu and Bard [16].
Schmitendorf [15] and Ishizuka [8] and many other authors have used

generalizations of Farkas’ alternative theorem to derive necessary optimality

conditions for the minmax problem. Considering the static min/max program

(1.2), Dhara and Mehra first transformed it into a semi-infinite programming

problem

min z s.t. x2X

f ðx, yÞ � z, 8y2Y;

which was then converted to an optimization problem with finitely many constraints.

Approximate and limiting/lower subdifferential optimality were then derived for the

latter problem. Already, the transformation process in [7] seems to us to be quite

complicated.
In this article, we consider the more general minmax program (P). The intention

is to write lower and upper subdifferential optimality conditions. To proceed, we

take problem (P) as it is, that is, an optimization problem with value function

objective and by a well-known result by Mordukhovich [10], a necessary optimality

condition for a point x to solve (P) is that

02 @’ðxÞ þNXðxÞ ð1:3Þ

provided ’ is Lipschitz continuous near x. Here, @’ and NX denote the basic/limiting/

Mordukhovich subdifferential and normal cone, respectively. The definitions of

these objects are given in the following section. The condition in (1.3) represents

what Mordukhovich called lower subdifferential optimality conditions. This, in fact,

induces the usual optimality conditions. Hence, from time to time, the prefix ‘lower

subdifferential’ will be omitted in this article when such conditions are investigated.

The only thing that remains to be done here is estimating the basic subdifferential of

’ and the basic normal cone to X.
With the structure of (P), it may well happen that the objective function ’ be

concave. Hence, according to Mordukhovich [9], upper subdifferential optimality

conditions may be more suitable in such a case. An upper subdifferential necessary
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condition for x to be a local optimal solution of (P) is that

�b@þ’ðxÞ � bNXðxÞ ð1:4Þ

provided ’ is finite at x [9]. In (1.4), b@þ’ and bNX denote the Fréchet subdifferential

and normal cone, respectively. Their definitions are also provided in the following

section.
We have applied the approach in (1.3) for various instances of the problem data.

Namely, we have derived (lower subdifferential) optimality conditions for the

minmax problem (P) when the functions f, g and G are all locally Lipschitz

continuous (see Section 3), all smooth (see Section 5) and� f, gi, i¼ 1, . . . , p are all

convex (see Section 4). In the smooth case, upper subdifferential optimality

conditions were derived as well. In the smooth static case, the lower subdifferential

optimality conditions obtained here are close to those of [15] whereas in the smooth

parametric case, the upper conditions obtained have the same structure as those

of [8]. They even coincide in some cases. More interestingly, we have got

Karush–Kuhn–Tucker (KKT)-type optimality conditions for the minmax problem,

in the usual sense, that is, with no number attached to the gradient/generalized

gradient of the objective function f, cf. Theorem 3.2, Theorem 4.1 and Corollary 5.2.

To the best of our knowledge, such conditions have not been obtained before.
The constraint qualifications (CQs) used in this article are dual versions of the

Mangasarian–Fromovitz CQ (MFCQ) or its nonsmooth extensions. The Slater CQ

is also applied when the functions are convex. Most of the notations and vocabulary

are borrowed from Dempe et al. [3] and Mordukhovich [9]. Necessary basic tools

from variational analysis are presented in the following section and this article is

concluded in Section 6.

2. Tools from variational analysis

More details on the material briefly discussed in this section can be found in the

books by Mordukhovich [10] and Rockafellar and Wets [14]. We start with the

Kuratowski–Painlevée outer/upper limit of a set-valued mapping �: R
n
!! R

m, which

is defined at a point x as

lim sup
x!x

�ðxÞ :¼ v2R
m
j9xk! x, vk ! v with vk 2�ðxkÞ as k!1

� �
: ð2:1Þ

For an extended real-valued function  : R
n
! R, the Fréchet/viscosity (lower)

subdifferential of  at a point x of its domain is given by

b@ ðxÞ :¼ (v2R
n
jlim inf

x!x

 ðxÞ �  ðxÞ � hv, x� xi

kx� xk
� 0

)
;

whereas the the Fréchet/viscosity upper subdifferential of  at x is obtained as

b@þ ðxÞ :¼ �b@ð� ÞðxÞ: ð2:2Þ

Optimization 3387



As for the basic/limiting/Mordukhovich (lower) subdifferential of  , it is the
Kuratowski–Painlevée upper limit of the set-valued mapping b@ at x:

@ ðxÞ :¼ limsup
x!x

b@ ðxÞ:
The upper counterpart of the basic subdifferential can be defined analogously to (2.2)
via the lower basic subdifferential. If  is convex, then @ ðxÞ reduces to the
subdifferential in the sense of convex analysis, that is

@ ðxÞ :¼ fv2R
n
j ðxÞ �  ðxÞ � hv, x� xi, 8x2R

n
g: ð2:3Þ

For a local Lipschitz continuous function, @ ðxÞ is nonempty and compact.
Moreover, its convex hull is the subdifferential of Clarke, that is, one can define the
Clarke subdifferential @ ðxÞ of  at x by

@ ðxÞ :¼ co @ ðxÞ; ð2:4Þ

where ‘co’ stands for the convex hull of the set in question. Thanks to this link
between the Mordukhovich and Clarke subdifferentials, we have the following
convex hull property which plays and important role in this article:

co @ ð� ÞðxÞ ¼ �co @ ðxÞ: ð2:5Þ

For this equality to hold,  should be Lipschitz continuous near x.
The function  is said to be lower/subdifferentially/Clarke (resp. upper/

supperdifferentially) regular at x if one hasb@ ðxÞ ¼ @ ðxÞ ðresp. b@þ ðxÞ ¼ @þ ðxÞÞ: ð2:6Þ

Obviously,  is upper regular if and only if � is lower regular at the point in
question.

We now introduce the basic/limiting/Mordukhovich normal cone to a set ��R
n at

one of its points x

N�ðxÞ :¼ limsup
x!x ðx2�Þ

bN�ðxÞ ð2:7Þ

where bN�ðxÞ denotes the prenormal/Fréchet normal cone to � at x defined by

bN�ðxÞ :¼
n
v2R

n
j limsup
x!xðx2�Þ

hv,x� xi

kx� xk
� 0

o
and ‘limsup’ stands for the Kuratowski–Painlevée upper limit defined in (2.1).

A set-valued mapping �: R
n
!! R

m will be said to be inner semicompact at a
point x, if for every sequence xk ! x, there is a sequence of yk2�(xk) that contains a
convergent subsequence as k!1. It follows that the inner semicompactness holds
whenever � is uniformly bounded and has nonempty values around x, i.e. there
exists a neighbourhood U of x and a bounded set ��R

m such that

; 6¼ �ðxÞ � �, for all x2U: ð2:8Þ

The mapping � is inner semicontinuous at ðx, yÞ 2 gph� if for every sequence
xk ! x there is a sequence of yk2�(xk) that converges to y as k!1. Obviously, if
� is closed-graph and inner semicompact at x with �ðxÞ ¼ fyg, then � is inner
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semicontinuous at ðx, yÞ. In general though, the inner semicontinuity is a property
much stronger than the inner semicompactness and it is a necessary condition for the
Lipschitz-like property to hold. If � has a close graph, � is Lipschitz-like around
ðx, yÞ if and only if the following coderivative/Mordukhovich criterion holds [10]:

D��ðx, yÞð0Þ ¼ f0g: ð2:9Þ

For ðx, yÞ 2 gph� :¼ fðx, yÞ 2R
n
�R

m
j y2�ðxÞg, the coderivative of � at ðx, yÞ is a

homogeneous mapping D��ðx, yÞ: R
m
!!R

n, defined at v2R
m by

D��ðx, yÞðvÞ :¼ fu2R
n
jðu,�vÞ 2Ngph�ðx, yÞg: ð2:10Þ

Here, Ngph � denotes the basic normal cone (2.7) to gph�. Finally, let us mention the
calmness property that will also be useful in this article. The set-valued mapping �

will be said to be calm at some point ðx, yÞ 2 gph�, if there exist neighbourhoods U
of x, V of y, and a constant �4 0 such that

�ðxÞ \ V � �ðxÞ þ �kx� xkB, 8x2U

with B denoting the unit ball in R
m. � is automatically calm at ðx, yÞ, if it is

Lipschitz-like around the same point.

3. Minmax programs with Lipschitzian initial data

In this section, we are mainly concerned by the minmax problem (P) in the case
where all the functions f, g and G are locally Lipschitz continuous. Hence, by means
of the nonsmooth objects of Mordukhovich and Clarke, described in the previous
section, we will derive (lower subdifferential) necessary optimality conditions. The
regularity rules needed here are well-known nonsmooth counterparts of the MFCQ,
introduced by Mordukhovich [10] and Clarke [1], respectively. For the upper level
constraints represented in problem (P) by the set X, we define the following upper
level regularity at x:

02
Xk
j¼1

�j@Gj ðxÞ, �j � 0, �jGj ðxÞ ¼ 0, j ¼ 1, . . . , k

" #
¼) �j ¼ 0, j ¼ 1, . . . , k:

ð3:1Þ

A clear distinction has to be made between the ‘upper level regularity’, as a CQ and
the ‘upper regularity’ of a function given in (2.6). For the inner or lower level
constraints g(x, y)� 0, we first introduce the following independent CQs, that is

02
Xp
i¼1

�i@giðx, yÞ, �i � 0, �igiðx, yÞ ¼ 0, i ¼ 1, . . . , p
i
¼)�i ¼ 0, i ¼ 1, . . . , p

"
ð3:2Þ

and the next, which differs from the previous one by the fact that the multipliers
must not vanish but the x-component of the sum

Pp
i¼1 �i@giðx, yÞ:

ðx�, 0Þ 2
Xp
i¼1

�i@giðx, yÞ, �i � 0, �igiðx, yÞ ¼ 0, i ¼ 1, . . . , p

" #
¼)x� ¼ 0: ð3:3Þ

Condition (3.3) combined with (3.2) implies the satisfaction of the
coderivative criterion (2.9) for the set-valued mapping K(x) :¼ {y2R

m
jg(x, y)� 0}.

Optimization 5389



Hence, the fulfilment of the Lipschitz-like property for the latter multifunction,
see [10] for more details on this issue and other related properties. We cannot close
this list of basic-type CQs without mentioning the following stronger condition
which automatically ensures that (3.2) and (3.3) hold:

ðu, 0Þ 2
Xp
i¼1

�i@giðx, yÞ, �i � 0, �igiðx, yÞ ¼ 0, i ¼ 1, . . . , p

" #
¼) �i ¼ 0, i ¼ 1, . . . , p:

ð3:4Þ

Also of interest in this section and the subsequent ones are the inner semicompact-
ness and inner semicontinuity of the argminimum/solution set-valued mapping

SðxÞ :¼ argmin
y
f�f ðx, yÞj gðx, yÞ � 0g ð3:5Þ

of the optimization problem minyf�f ðx, yÞj gðx, yÞ � 0g parametrized in x.
Obviously, if one sets the associated optimal value function as

’oðxÞ :¼ min
y
f�f ðx, yÞj gðx, yÞ � 0g ð3:6Þ

then the value function ’(1.1) coincides with the negative of ’o, that is

’ðxÞ ¼ �’oðxÞ, for all x2X: ð3:7Þ

We start with the necessary optimality conditions of the minmax program in the case
where S (3.5) is inner semicompact.

THEOREM 3.1 (Lower subdifferential optimality conditions in the nonsmooth case
under the inner semicompactness of S ) Let x be an upper level regular local optimal
solution for (P), where the functions f, g and G are all locally Lipschitz continuous.
Furthermore, assume that S is inner semicompact around x and let CQs (3.2) and (3.3)
hold at ðx, yÞ, for all y2SðxÞ. Then, there are real numbers �j with j¼ 1, . . . , k, �si with
i¼ 1, . . . , p, s¼ 1, . . . , nþ 1, vs with s¼ 1, . . . , nþ 1 and vectors us2R

n, ys 2SðxÞ with
s¼ 1, . . . , nþ 1 such that: Xnþ1

s¼1

vsus 2
Xk
j¼1

�j@Gj ðxÞ; ð3:8Þ

8s ¼ 1, . . . , nþ 1, ðus, 0Þ 2 @ ð�f Þðx, ysÞ þ
Xp
i¼1

�si@giðx, ysÞ; ð3:9Þ

8s ¼ 1, . . . , nþ 1, i ¼ 1, . . . , p, �si � 0, �si giðx, ysÞ ¼ 0; ð3:10Þ

8j ¼ 1, . . . , k, �j � 0, �jGj ðxÞ ¼ 0; ð3:11Þ

8s ¼ 1, . . . , nþ 1, vs � 0,
Xnþ1
s¼1

vs ¼ 1: ð3:12Þ

Proof Since all the functions involved in (P) are assumed to be local Lipschitz
continuous, then combining the inner semicompactness of S around x and the
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fulfilment of CQs (3.2) and (3.3) at ðx, yÞ, for all y2SðxÞ, it follows from
[11, Theorem 5.2(ii)] (see also [10, Corollary 4.43]) that the value function ’o is
also Lipschitz continuous around x. Hence, applying [10, Proposition 5.3] we have
the following compact form of the optimality conditions of (P)

02 @’ðxÞ þNXðxÞ: ð3:13Þ

Considering the fact that ’¼�’o on X, the latter inclusion implies the following one

02�co @’oðxÞ þNXðxÞ ð3:14Þ

taking into account the convex property (2.5) which ensures that

@ ð�’oÞðxÞ � co @ ð�’oÞðxÞ ¼ �co @’oðxÞ:

Let us now recall that from the analogue of Theorem 8 in [13] (see also
[10, Corollary 4.36]), one has an upper estimate of the basic subdifferential of ’o as

@’oðxÞ �
[

y2SðxÞ

�
ujðu, 0Þ 2 @ ð�f Þðx, yÞ þ

Xp
i¼1

�i@giðx, yÞ

for i ¼ 1, . . . , p, �i � 0, �igiðx, yÞ ¼ 0

�
, ð3:15Þ

considering the inner semicompactness of S at x and the satisfaction of CQ (3.2) at
ðx, yÞ, for all y2SðxÞ.

Applying Carathéodory’s theorem, it follows from (3.15) that u2 co @’oðxÞ
implies the existence of �si with i¼ 1, . . . , p, s¼ 1, . . . , nþ 1, vs with s¼ 1, . . . , nþ 1
and vectors us2R

n, ys 2SðxÞ with s¼ 1, . . . , nþ 1 such that (3.9), (3.10), (3.12) and

u ¼
Xnþ1
s¼1

vsus:

Combining the latter with (3.14) while noting the fact that

NXðxÞ �
[(Xk

j¼1

�j@Gj ðxÞj for j ¼ 1, . . . , k, �j � 0, �jGj ðxÞ ¼ 0

)
ð3:16Þ

(under the upper level regularity), we have (3.8) and (3.11), which concludes the
proof. g

If instead of the inner semicompactness of S in the above theorem, one assumes
the stronger inner semicontinuity, one obtains conditions for (P) that would appear
to be very sharp in some cases, as it will be obvious in the subsequent sections. In the
next result, one would also impose the following stronger nonsmooth extension of
the MFCQ in terms of the Clarke subdifferential constructions:"

02
Xp
i¼1

�i@giðx, yÞ, �i � 0, �igiðx, yÞ ¼ 0, i ¼ 1, . . . , p

#
¼)�i ¼ 0, i ¼ 1, . . . , p:

ð3:17Þ

Considering the fact that @ � @ for a locally Lipschitz continuous function  , it is
clear that the latter condition implies (3.2).

Optimization 7391



THEOREM 3.2 (Lower subdifferential optimality conditions in the nonsmooth case

under the inner semicontinuity of S ) Let x be an upper level regular local optimal
solution for (P), where the functions f, g and G are all locally Lipschitz continuous.
Furthermore, assume that S is inner semicontinuous around ðx, yÞ and let CQs (3.17)

and (3.3) hold at ðx, yÞ. Then, there are real numbers �j with j¼ 1, . . . , k, �i with
i¼ 1, . . . , p and a vector u2R

n such that (3.11) and the following hold:

u2
Xk
j¼k

�j@Gj ðxÞ; ð3:18Þ

ðu, 0Þ 2�@f ðx, yÞ þ
Xp
i¼1

�i@giðx, yÞ; ð3:19Þ

8i ¼ 1, . . . , p, �i � 0, �igiðx, yÞ ¼ 0: ð3:20Þ

Proof The proof follows on the path of that of Theorem 3.1. To be more precise,
the local Lipschitz continuity of ’o (that is of ’) is also obtained from

[11, Theorem 5.2(i)] under (3.3), (3.17) and the inner semicontinuity of S around
ðx, yÞ. Furthermore, considering equality (2.4), it follows from (3.14) that

02�@’oðxÞ þNXðxÞ: ð3:21Þ

Theorem 4.8 in [12] gives the following upper estimate for the Clarke subdifferential

of ’o under the inner semicontinuity of S and CQ (3.17):

@’oðxÞ �

�
ujðu, 0Þ 2�@f ðx, yÞ þ

Xp
i¼1

�i@giðx, yÞ

for i ¼ 1, . . . , p, �i � 0, �igiðx, yÞ ¼ 0

�
, ð3:22Þ

where @ stands for the Clarke subdifferential (see Section 2) of the function in

question. Hence, combining (3.21), (3.22) and inclusion (3.16), we have the
result. g

Remark 3.1 (Inner semicompactness/inner semicontinuity) As noted in the above

results, the inner semicompactness and inner semicontinuity, respectively, have
played a major role. For the inner semicompactness, as mentioned in Section 2, it is

automatically satisfied if S is nonempty and uniformly bounded (2.8), which is a
weak requirement. As for the inner semicontinuity, it is obtained if S is Lipschitz-like

around the point in question. Conditions ensuring that the solution set-valued
mapping of an optimization problem is Lipschitz-like are developed in [5] under

various settings. This condition also automatically holds at ðx, yÞ provided S is
closed-graph and inner semicompact at x with SðxÞ ¼ fyg or if S is the solution

set-valued mapping of a parametric linear program with additive right-hand-side
perturbations. Further details and references on the inner semicontinuity of a
solution set-valued mapping can be found in [3, Remark 3.2].

Remark 3.2 (Convex combinations in necessary optimality conditions) If the
functions �f and gi, i¼ 1, . . . , p are assumed to be lower/subdifferentially/Clarke

8 A.B. Zemkoho392



regular (2.6) in Theorem 3.2, then the convex combination of subgradients of these
functions do not appear as it is the case in the optimality conditions of Theorem 3.1.
This allows getting optimality conditions, in terms of the basic lower subdifferential,
of the KKT-type in the usual sense, as no number will be attached to the generalized
gradient of the objective function f of the minmax program. This will be more clear
in Theorem 4.1 and Corollary 5.2 when we consider special lower regularity cases for
�f and gi, i¼ 1, . . . , p, that is, the full convexity and continuous differentiability,
respectively. To the best knowledge of the author, such optimality conditions have
not been obtained before for the minmax programming problem. It may also be
worth mentioning that the optimality conditions in Theorem 3.1 and Theorem 3.2
coincide if in the former result, the multiplier � is unique (see inclusion (3.15)), one
has SðxÞ ¼ fyg and the functions �f and gi, i¼ 1, . . . , p are lower regular at ðx, yÞ.

Remark 3.3 (On the CQs used in Theorems 3.1 and 3.2) In Theorem 3.1 (resp.
Theorem 3.2), CQs (3.2) and (3.3) (resp. (3.3) and (3.17)) could be replaced by the
single CQ (3.4) (resp. CQ (3.4) where @ substitutes @). Also of interest, let us mention
that in Theorem 3.1, CQ (3.2) at ðx, yÞ can be replaced by the weaker calmness of the
set-valued mapping v !! {(x, y)jg(x, y)þ v� 0} at ð0, x, yÞ, which is automatically
satisfied if the functions gi, i¼ 1, . . . , p are affine linear. The latter statement is valid
for the upper level regularity, used in both theorems, as well.

Remark 3.4 (On the CQ (3.3)) It is worth recalling that the combination of
CQs (3.2) and (3.3), including of course the inner semicompactness or semicontinuity
of S, is mostly to ensure the Lipschitz continuity of the value function ’ (1.1).
Otherwise, if the latter is not satisfied, we face two difficulties: (i) ’ is more likely
to be a upper semicontinuous function, which may not be a good news for the
application of the basic lower subdifferential, as it is usually required that the
objective function of the minimization problem be lower semicontinuous, cf.
[10, Proposition 5.3]. (ii) As mentioned in Section 2, one is sure that the basic lower
subdifferential of ’ is nonempty (and compact) if ’ is locally Lipschitz continuous.
Otherwise, condition (3.13) may make no sense.

We now come to our choice to consider conditions (3.2) and (3.3) simultaneously,
in order to secure the aforementioned Lipschitz continuity of ’ (1.1). In fact, most
often (especially in smooth case), one would consider only CQ (3.4), which is strong
enough to ensure the satisfaction of both (3.2) and (3.3), cf. Remark 3.3. But it seems
more strategic to consider the combination of the latter conditions. As a matter of
fact, in our minmax program (P), if we replace the inner constraint g(x, y)� 0 by the
inclusion y2�ðxÞ :¼ argminyffoðx, yÞj goðx, yÞg, conditions (3.2) and (3.4) do not
hold, cf. [6], whereas CQ (3.3) can be satisfied, see [5]. As it was the case in the latter
work, the fulfilment of CQ (3.3) while CQ (3.2) and (3.4) fail gives room to replace
(3.2) by a weaker condition, for example, the calmness of a certain set-valued
mapping (see Remark 3.3), thus helping to still secure the Lipschitz continuity of ’.

Remark 3.5 (Operator constraints in the minmax programming problem (P)) In
Theorem 3.1 and Theorem 3.2, only simple inequality constraints have been
considered for the outer problem (G(x)� 0) and for the inner problem (g(x, y)� 0).
However, these results and most subsequent ones remain valid if the more general
operator constraint structure z2�\ �1(�) (with  being a local Lipschitz
continuous function and � a closed set while z corresponds to x or (x, y)) is
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in consideration. One simply has to adjust the CQs and optimality conditions

accordingly. In particular, CQ (3.2) would take the form�
02 @hu, iðzÞ þN�ðzÞ, u2N�ð ðzÞÞ

�
¼)u ¼ 0:

The constraint structures treated in this article are particular operator constraints

with  :¼G, � :¼ R
k
�, � :¼R

n for the outer constraint and  :¼ g, � :¼ R
p
�,

� :¼R
n
�R

m for the inner one. The case where � :¼ gph� (with �ðxÞ :¼

argminyf foðx, yÞj goðx, yÞg) in the inner constraint is considered in [4]. Further details

on how to handle such constraints can be found in the book by Mordukhovich [10]

or Rockafellar and Wets [14].

To conclude this section, we consider the following so-called static or

nonparametric minmax problem intensively investigated in the literature, see

e.g. [15] and references therein and more recently [7,16]:

min
x2X

max
y2Y

f ðx, yÞ: ð3:23Þ

Here, X is defined as in (1.1) whereas Y is simply albeit a very general subset of R
m.

Apart of the Lipschitz continuity of the functions G and f, it will be required on the

inner problem only that Y be a bounded set. In the next lemma, we first provide the

relevant variational properties of the value function

’oðxÞ :¼ minf�f ðx, yÞj y2Yg:

The projection mapping from R
n
�R

m to R
n denoted by projRn is defined for

(x, y)2R
n
�R

m by projRnðx, yÞ ¼ x.

LEMMA 3.3 Assume that f is locally Lipschitz continuous and Y is a bounded set.

Then, the value function ’o is locally Lipschitz continuous and an estimate of its basic

subdifferential is obtained as

@’oðxÞ � [fprojRn@ ð�f Þðx, yÞj y2SðxÞg: ð3:24Þ

If in addition, �f is fully convex (resp. continuously differentiable), then one has

@’oðxÞ � [f@xð�f Þðx, yÞj y2SðxÞg resp. @’oðxÞ � f�rxf ðx, yÞj y2SðxÞgð Þ: ð3:25Þ

Proof The set Y being bounded, the set-valued mapping S is uniformly bounded

(2.8). Moreover, the set-valued mapping K(x) :¼Y is constant, and by the definition

of the coderivative (2.10), one has D*K(x, y)(0)¼ {0}, for all (x, y)2R
n
�Y¼: gph K,

considering that we always have 02NY( y). Therefore, by [11, Theorem 5.2], one has

the local Lipschitz continuity of ’o and by [13, Theorem 7], inclusion (3.24) is

obtained. The inclusions in (3.25) are trivial consequences of (3.24). g

THEOREM 3.4 (Lower subdifferential optimality conditions in the nonsmooth case

with nonparametric inner constraint) Let x be an upper level regular local optimal

solution for problem (3.23), where the functions f and G are all locally Lipschitz

continuous and the set Y is bounded. Then, there are real numbers �j with j¼ 1, . . . , k, vs
with s¼ 1, . . . , nþ 1 and vectors us2R

n, ys 2SðxÞ with s¼ 1, . . . , nþ 1 such that (3.8),

(3.11) and (3.12) are satisfied with

us 2 projRn@ ð�f Þðx, ysÞ: ð3:26Þ
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Proof It follows trivially by combining inclusion (3.14) of the proof of Theorem 3.1

and the upper estimate of @’oðxÞ (3.24) in the previous lemma. g

Remark 3.6 These conditions are close to those obtained by Dhara and Mehra [7].
However, in Theorem 4.3 of the latter paper, it is not required that the yss be

elements of the solution set SðxÞ. This makes them weaker than those obtained in
Theorem 3.4. It should however be mentioned that the limiting dual objects used

in [7] are limiting proximal sudifferentials and normal cones.

4. Minmax programs with convex and linear structures

In this section, we are interested in the situation where at least all the functions

involved in the inner problem, that is �f and gi, i¼ 1, . . . , p, are fully convex, which

means convex in (x, y). Hence, the following Slater CQ will be more appropriate
here: the Slater CQ will be said to hold for the system of inequalities g(x, y)� 0,

if there exist ðex,eyÞ satisfying
giðex,eyÞ5 0, whenever i ¼ 1, . . . , p: ð4:1Þ

The convexity of the components of G are not of a particular interest here since this
does not make any significant impact on the optimality conditions. However, if for

i¼ 1, . . . , p, Gi is convex, the upper level regularity could be replaced by its Slater
counterpart.

THEOREM 4.1 (Lower subdifferential optimality conditions in the nonsmooth and
fully convex case) Let x be an upper level regular local optimal solution for (P), where

G is locally Lipschitz continuous and �f, gi, i¼ 1, . . . , p are all convex in (x, y).
Furthermore, assume that CQ (4.1) holds and ’ is finite near x. Then, for y2SðxÞ, there
are real numbers �j with j¼ 1, . . . , k and �i with i¼ 1, . . . , p, such that (3.11), (3.20) and
the following hold:

02�@xð�f Þðx, yÞ �
Xp
i¼1

�i@xgiðx, yÞ þ
Xk
j¼k

�j@Gj ðxÞ; ð4:2Þ

02�@yð�f Þðx, yÞ �
Xp
i¼1

�i@ygiðx, yÞ: ð4:3Þ

Proof It is well-known that since the functions �f and g are convex in (x, y), the

value function ’o is also a convex function, see e.g. [16]. Furthermore, ’o is Lipschitz
continuous around x given that it is finite around this point. Hence, the optimality

condition (3.14) reduces to

02�@’oðxÞ þNXðxÞ: ð4:4Þ

with @’o also denoting the subdifferential of ’o in the sense of convex analysis.
Therefore, considering (2.3) and the fact that ðx, yÞ 2 gphS, u2 @’oðxÞ implies

�f ðx, yÞ � hu, xi � �f ðx, yÞ � hu, xi, 8 ðx, yÞ: gðx, yÞ � 0,
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which means that ðx, yÞ is an optimal solution of the problem

min
x, y
f�f ðx, yÞ � hu, xij gðx, yÞ � 0g:

Hence, applying the Lagrange multiplier rule for nonsmooth optimization problems

(see e.g. [10]) to the latter problem, it follows, under CQ (4.1), that there exists � such

that (3.20) and

ðu, 0Þ 2 @ ð�f Þðx, yÞ þ
Xp
i¼1

�i@giðx, yÞ: ð4:5Þ

In summary, an upper bound of the basic subdifferential of ’o can be estimated as

@’oðxÞ �
[

�2�ðx, yÞ

@xð�f Þðx, yÞ þ
Xp
i¼1

�i@xgiðx, yÞ

( )
, ð4:6Þ

taking into account that since �f and g are fully convex, one has the inclusions

@ ð�f Þðx, yÞ � @xð�f Þðx, yÞ � @yð�f Þðx, yÞ and @gðx, yÞ � @xgðx, yÞ � @ygðx, yÞ. In (4.6),

�ðx, yÞ denotes the set of Lagrange multipliers

�ðx, yÞ :¼

�
�j02 @yð�f Þðx, yÞ þ

Xp
i¼1

�i@ygiðx, yÞ

�i � 0, �igiðx, yÞ ¼ 0, i ¼ 1, . . . , p

�
:

Combining (4.4) and (4.6), one has the result. g

With the full convexity of �f, gi, i¼ 1, . . . , p, the optimality conditions of

Theorem 3.2 and Theorem 4.1 are in fact the same. It should however be mentioned

that there is no relation between convexity and inner semicontinuity, cf.

[3, Remark 3.2] for an illustration. It is now much clear that we have necessary

optimality conditions for the minmax program without a convex combination of the

generalized gradient of the objective function f. Hence, we have KKT-type

conditions in the usual sense.
We terminate this section by considering the special case of the above theorem,

where all the functions involved in (P) are affine linear.

COROLLARY 4.2 (Lower subdifferential optimality conditions for the minmax

problem with a linear structure): Let x be a local optimal solution of (P) in the

case where G(x) :¼Dxþ d, f (x, y) :¼ a>xþ b>y and g(x, y) :¼AxþByþ c, with the

sizes of the vectors a, b, c, d and the matrices A, B and D chosen accordingly. Then, for

y2SðxÞ, there are real numbers �j with j¼ 1, . . . , k and �i with i¼ 1, . . . , p, such that:

aþ
Xp
i¼1

�iAi þ
Xk
j¼1

�jDj ¼ 0;

bþ
Xp
i¼1

�iBi ¼ 0;

for j ¼ 1, . . . , k, �j � 0, �j ðDjxþ dj Þ ¼ 0;

for i ¼ 1, . . . , p, �i � 0, �iðAixþ Biyþ ciÞ ¼ 0:
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Proof Simply note that the functions G, f and g are all fully convex. Furthermore,

with the affine linearity of the function g, the inclusion in (4.6) is automatically

satisfied. For the fulfilment of the CQs, see Remark 3.3. g

5. Minmax programs with smooth initial data

We consider problem (P) in the case where all the functions f, gi, i¼ 1, . . . , p and Gj,

j¼ 1, . . . , k are continuously differentiable. Hence, the smooth counterpart of the

upper level regularity (3.1) takes the form

Xk
j¼1

�jrGj ðxÞ ¼ 0, �j � 0, �jGj ðxÞ ¼ 0, j ¼ 1, . . . , k

" #
¼) �j ¼ 0, j ¼ 1, . . . , k;

ð5:1Þ

whereas for the inner/lower level constraints, gi, i¼ 1, . . . , p, CQ (3.4) takes the form

Xp
i¼1

�irygiðx, yÞ ¼ 0, �i � 0, �igiðx, yÞ ¼ 0, i ¼ 1, . . . , p

" #
¼) �i ¼ 0, i ¼ 1, . . . , p:

ð5:2Þ

We do not consider the smooth counterparts of CQs (3.2) and (3.3). They can well be

introduced and handled as in Section 3 while considering the important point made

in Remark 3.4. The next result is a consequence of Theorem 3.1.

COROLLARY 5.1 (Lower subdifferential optimality conditions in the smooth case

under inner semicompactness) Let x be an upper level regular (5.1) local optimal

solution for (P), where f, gi, i¼ 1, . . . , p and Gj, j¼ 1, . . . , k are all continuously

differentiable. Furthermore, assume that S is inner semicompact around x and let the

lower level regularity (5.2) holds at ðx, yÞ, for all y2SðxÞ. Then, there are real numbers

�j with j¼ 1, . . . , k, �si with i¼ 1, . . . , p; s¼ 1, . . . , nþ 1, vs with s¼ 1, . . . , nþ 1 and

vectors ys 2SðxÞ with s¼ 1, . . . , nþ 1 such that (3.10)–(3.12) and

Xnþ1
s¼1

vs

�
rxf ðx, ysÞ �

Xp
i¼1

�sirxgiðx, ysÞ

	
þ
Xk
j¼1

�jrGðxÞ ¼ 0, ð5:3Þ

8s ¼ 1, . . . , nþ 1, ryf ðx, ysÞ �
Xp
i¼1

�sirygiðx, ysÞ ¼ 0: ð5:4Þ

In case S (3.5) is instead inner semicontinuous, one has the following corollary of

Theorem 3.2.

COROLLARY 5.2 (Lower subdifferential optimality conditions in the smooth case

under inner semicontinuity) Let x be an upper level regular (5.1) local optimal

solution for (P), where f, gi, i¼ 1, . . . , p and Gj, j¼ 1, . . . , k are all continuously

differentiable. Furthermore, assume that S is inner semicontinuous around ðx, yÞ and let

the lower level regularity (5.2) hold at ðx, yÞ. Then, there are real numbers �j with
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j¼ 1, . . . , k and �i with i¼ 1, . . . , p such that (3.11) and (3.20) and

rx f ðx, yÞ �
Xp
i¼1

�irxgiðx, yÞ þ
Xk
j¼1

�jrGðxÞ ¼ 0, ð5:5Þ

ry f ðx, yÞ �
Xp
i¼1

�irygiðx, yÞ ¼ 0: ð5:6Þ

If we replace the inner semicontinuity of S in this corollary by the full convexity

of �f and gi, i¼ 1, . . . , p, one would get the same optimality conditions by means of

Theorem 4.1. But as mentioned in the previous section, both assumptions are not

related.

COROLLARY 5.3 (Lower subdifferential optimality conditions in the smooth case with

nonparametric inner constraints) Let x be an upper level regular local optimal

solution for problem (3.23), where the functions f and G are all continuously

differentiable and the set Y is bounded. Then, there are real numbers �j with

j¼ 1, . . . , k, and vs with s¼ 1, . . . , nþ 1 and vectors ys 2SðxÞ with s¼ 1, . . . , nþ 1 such

that (3.11), (3.12) and

Xnþ1
s¼1

vsrx f ðx, ysÞ þ
Xk
j¼1

�jrGðxÞ ¼ 0: ð5:7Þ

These conditions are close to those of [15, Theorem 1]. But, if we consider the full

convexity on the data of the inner problem or the inner semicontinuity of S, as

intensively discussed above, the convex combination on the gradient of f is not

necessary and we get KKT-type conditions.

To end this section, we derive upper subdifferential optimality conditions for the

minmax program (P). For the remainder, a feasible point x of (P) will be said to

satisfy upper subdifferential optimality conditions if

�b@þ’ðxÞ � bNXðxÞ; ð5:8Þ

where b@þ’ðxÞ (resp. bNXðxÞ) denotes the upper Fréchet subdifferential of ’ (resp. the

Fréchet normal cone of X ) at x, cf. [9]. According to Mordukhovich [9], these

conditions are most suitable for a problem of minimizing a concave function. Let us

note that if the functions �f and gi, i¼ 1, . . . , p are fully convex, the minmax program

(P) falls in this category of problems. Hence, in the next theorem, we derive a

different kind of optimality conditions for (P) in the case where �f and gi, i¼ 1, . . . , p

are continuously differentiable and convex in (x, y).

THEOREM 5.4 (Upper subdifferential optimality conditions for the smooth minmax

program) Let x be an upper level regular (5.1) local optimal solution for (P), where f,

gi, i¼ 1, . . . , p and Gj, j¼ 1, . . . , k are all continuously differentiable and �f and gi,

i¼ 1, . . . , p are also convex in (x, y). Furthermore, let ’o be finite near x and assume

that S is inner semicompact at x and CQ (5.2) holds at ðx, yÞ. Then, one has

8�2R
p satisfying ð3:20Þ, ð5:6Þ, 9�2R

k verifying ð3:11Þ such that ð5:5Þ: ð5:9Þ
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Proof Since ’ is finite at x, one has from [9, Theorem 3.1(i)] that

�b@þ’ðxÞ � NXðxÞ: ð5:10Þ

As mentioned above, ’ is concave, since �f and gi, i¼ 1, . . . , p are all fully convex.
Hence, ’ is upper regular. Moreover, this function is finite around x. Hence,
Lipschitz continuous near the latter point. Therefore, one has from [9] thatb@þ’ðxÞ ¼ @’ðxÞ: ð5:11Þ

For the remainder of the reader, @’ stands for the Clarke subdifferential of ’ (2.4).
On the other hand, one has the following sequence of equalities thanks to the
plus/minus symmetry enjoyed by the latter subdifferential concept:

@’ðxÞ ¼ �@ð�’ÞðxÞ ¼ �@’oðxÞ: ð5:12Þ

More precisely, @’o is the subdifferential in the sense of convex analysis. Making the
corresponding substitution in inclusion (5.10), one has

@’oðxÞ � NXðxÞ: ð5:13Þ

We know from [16, Theorem 6.6.7] that under the assumptions of the theorem,
one has

@’oðxÞ ¼
[

�2�ðx, yÞ

�
�rx f ðx, yÞ þ

Xp
i¼1

�irxgiðx, yÞ

�
, ð5:14Þ

where the set of Lagrange multipliers �ðx, yÞ is obtained as

�ðx, yÞ :¼

�
�j�ryf ðx, yÞ þ

Xp
i¼1

�irygiðx, yÞ ¼ 0

�i � 0, �igiðx, yÞ ¼ 0, i ¼ 1, . . . , p

�
: ð5:15Þ

Combining (5.13) and (5.14) while taking into account the fact that

NXðxÞ ¼

(Xk
j¼1

�jrGj ðxÞj for j ¼ 1, . . . , k, �j � 0, �jGj ðxÞ ¼ 0

)
(under the upper level regularity (5.1)), one has the result. g

The first observation to make about these optimality conditions is that we have
the quantifier ‘for all’ attached to the multiplier � instead of ‘there exists’ in all the
other optimality conditions previously obtained in this article. This makes the
optimality conditions of Theorem 5.4 stronger than those of Corollary 5.2.
The optimality conditions of both results coincide if � is unique. This can be
ensured by replacing CQ (5.2) by the well-known linear independence CQ (LICQ).

The optimality conditions in Theorem 5.4 have the same structure as those
derived by Ishizuka [8]. In particular, condition (5.9) coincide with the optimality
conditions in Corollary 9.2.1 of his book with Shimizu and Bard [16], provided in the
latter result, the solution set of the inner problem is a singleton at x, that is,
argmaxyff ðx, yÞj gðx, yÞ � 0g ¼ fyg. It should however be mentioned that the
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approach used by Ishizuka [8] (see also [16, Chapter 9]) is completely different from
the one we have used here, since their results are based on nonconvex generalizations
of Farkas’ alternative theorem.

Remark 5.1 (Upper/superdifferential regularity of the value function ’ (1.1) without
full convexity) Following the proof of Theorem 5.4, the full convexity of �f and gi,
i¼ 1, . . . , p provided for two major things, that is, the Lipschitz continuity and
upper/supperdifferential regularity of ’ (1.1). The latter is in fact a main argument
for the suggestion in [9] to consider upper subdifferential optimality conditions.
The question now is how to get the upper regularity of ’ beyond the full convexity of
the functions �f and gi, i¼ 1, . . . , p. If the latter functions are continuously
differentiable and convex only in the inner variable y, the solution set-valued
mapping S (3.5) is uniformly bounded at x and there exits ey such that the Slater
CQ (4.1) holds at ðx,eyÞ, then, ’o is lower/subdifferentially regular at x if and only if

@’oðxÞ ¼
\

y2SðxÞ

[
�2�ðx, yÞ

n
� rx f ðx, yÞ þ

Xp
i¼1

�irxgiðx, yÞ
o" #
;

where the multipliers set �ðx, yÞ is defined in (5.15), cf. Shimizu et al.
[16, Theorem 6.5.5]. Hence, ensuring the upper regularity of ’ (1.1).

It is also an obvious fact, that if a function is strictly differentiable, then it is
upper regular. Furthermore, we know, see [10], that a locally Lipschitz continuous
function is strictly differentiable if it has a single (basic) subgradient. Hence,
combining the inner semicontinuity of S and the LICQ, one has the strict
differentiability of the value function ’ via the combination of [11, Theorem 5.2]
and [13, Corollary 4]. It should however be mentioned that the strict differentiability
of ’ is not interesting for deriving the upper subdifferential optimality conditions of
our minmax problem (P), as the latter conditions would coincide in this case with the
lower subdifferential ones.

6. Conclusions

We have investigated upper and lower subdifferential optimality conditions for the
minmax programming problem in various settings, that is, when the initial data is
Lipschitz continuous, convex or continuously differentiable. It results that in the
smooth static case, the lower subdifferential optimality conditions obtained here are
close to those of [15] whereas in the smooth parametric case our upper conditions
may be identical to those of [8,16]. Only simple inequality constraints have been
considered for the outer problem (G(x)� 0) and for the inner problem (g(x, y)� 0).
However, most of the results in this article remain valid if the more general operator
constraint structure z2�\ �1(�) (with  being a local Lipschitz continuous
function and � a closed set while z corresponds to x or (x, y)) is in consideration.
One simply has to adjust the CQs and optimality conditions accordingly, cf.
Remark 3.5.
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