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Abstract This paper deals with ill-posed bilevel programs, i.e., problems admitting mul-
tiple lower-level solutions for some upper-level parameters. Many publications have been
devoted to the standard optimistic case of this problem, where the difficulty is essentially
moved from the objective function to the feasible set. This new problem is simpler but there
is no guaranty to obtain local optimal solutions for the original optimistic problem by this
process. Considering the intrinsic non-convexity of bilevel programs, computing local opti-
mal solutions is the best one can hope to get in most cases. To achieve this goal, we start
by establishing an equivalence between the original optimistic problem and a certain set-
valued optimization problem. Next, we develop optimality conditions for the latter problem
and show that they generalize all the results currently known in the literature on optimistic
bilevel optimization. Our approach is then extended to multiobjective bilevel optimiza-
tion, and completely new results are derived for problems with vector-valued upper- and
lower-level objective functions. Numerical implementations of the results of this paper are
provided on some examples, in order to demonstrate how the original optimistic problem
can be solved in practice, by means of a special set-valued optimization problem.

Keywords Bilevel optimization · Multiobjective bilevel optimization · Set-valued
optimization · Variational analysis · Coderivative · Optimality conditions

Mathematics Subject Classification (2010) 90C26 · 90C31 · 90C46 · 65K10

� Alain B. Zemkoho
a.b.zemkoho@soton.ac.uk

1 School of Mathematics, University of Southampton, SO17 1BJ Southampton, UK

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s11228-016-0371-x-x&domain=pdf
mailto:a.b.zemkoho@soton.ac.uk


424 A. B. Zemkoho

1 Introduction

Most solution methods available in the current literature on bilevel optimization are
designed only for well-posed problems, i.e., for the case where the reaction of the lower-
level player is restricted to a unique optimal solution for each strategy of the upper-level
player; see, e.g., [5, 7, 8, 39]. Well-posedness can be explicitly expressed by considering the
model

(Pi) min
x

F (x, y(x)) s.t. x ∈ X, (1.1)

where F and X denote the upper-level objective function and feasible set, respectively,
while y(x) stands for the optimal solution of the lower-level optimization problem, which
can be formulated as

min
y

f (x, y) s.t. y ∈ K(x). (1.2)

Here, f and K(x) represent the lower-level objective and feasible set, respectively. Well-
posedness is also imposed or implicity assumed in a large number of solution methods made
for the standard optimistic bilevel optimization problem

(P ) min
x,y

F (x, y) s.t. x ∈ X, y ∈ S(x), (1.3)

which is actually designed to handle problems with multiple lower-level solutions. The set-
valued mapping S in the latter problem denotes the set of optimal solutions of the lower-level
problem (1.2), i.e., precisely,

S(x) := arg min
y

{f (x, y) : y ∈ K(x)}. (1.4)

More details on solution methods using explicitly or implicitly imposed well-posedness
can be found in [5, 7, 8, 24, 30, 31, 39] and references therein. It is important to note
that well-posed problems are naturally advantageous for the leader, but do not reflect most
real-world systems, where the reaction of the follower should be based on her/his best
interest, whether it suits the upper-level or not. This is the fair principle of freedom of
choice. If the follower decides to make choices in favor of the leader, we have the optimistic
bilevel optimization problem. Otherwise, the resulting problem is known as the pessimistic
bilevel optimization problem. To put the latter point into context, let us recall that from the
conceptual definition of the Stackelberg game [42], the bilevel program is a hierarchical
optimization problem involving an upper-level player (leader) and lower-level player (fol-
lower). It is assumed that the upper-level player, who is in control of the variable x, plays
first and the lower-level player reacts by choosing a value y (depending on x) under his/her
control. This leads to the problem

“min
x

”F(x, y) s.t. x ∈ X, y ∈ S(x). (1.5)

Clearly, in this problem, also known as the upper-level problem, the minimization is only
w.r.t. x, the variable controlled by the corresponding player. In the case where the problem
is well-posed, S(x) = {y(x)} for all x ∈ X. As mentioned above, the resulting problem is
either investigated in the form (1.1) or kept in the form (1.3) but the assumption is exploited
in solution procedures, see [5, 7, 8, 39] for details and related references.

Recall that as the minimization in (1.5) is only w.r.t. x, the quotation marks are used in
order to symbolize the ambiguity that appears for problems with multiple lower-level opti-
mal solutions. This corresponds to ill-posed bilevel programs. A number of authors have
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suggested regularization techniques to implement well-posed bilevel optimization tech-
niques in the framework of ill-posed programs. This is essentially equivalent to replacing
the lower-level problem (1.2) by

min
y

f (x, y) + απ(x, y) s.t. y ∈ K(x), (1.6)

where α and π are the regularization parameter and function, respectively. Under suitable
assumptions, this perturbation then forces the lower-level problem to approximately gener-
ate a unique optimal solution. π can be chosen as π(x, y) := F(x, y) (upper-level objective
function) [15] or π(x, y) := ‖y‖2 (Tikhonov regularization) [6, 9, 38]. It was shown in
[38], and to some extent in the other related references, that (1.6) often leads to solutions
that are far away from the real optimal solution. Thus, it is important to develop methods
that directly deal with ill-posed problems without modifying their nature. This is one of the
main goals of this paper.

The original optimistic approach to deal with ill-posed bilevel programs is the problem

(Po) min ϕo(x) s.t. x ∈ X (1.7)

where ϕo denotes the minimization two-level value function defined by

ϕo(x) := min
y

{F(x, y) : y ∈ S(x)}. (1.8)

From the economics viewpoint, this corresponds to a situation where the follower partic-
ipates in the profit of the leader, i.e., cooperation is possible between both players on the
upper-and lower-levels. Problem (P ) can be seen as a regularization of the original opti-
mistic problem given that the difficulty in the objective function of (Po) is essentially moved
to the constraint set in (P ), where the leader is assumed to have full control over both the
upper- and lower-level variables x and y, respectively. Moreover, problems (P ) and (Po)

are globally equivalent and a local optimal solution of (Po) implies a local optimal solution
of (P ). However, for the converse of the latter statement, a condition has to be satisfied, in
particular, the set-valued mapping

So(x) := arg min
y

{F(x, y) : y ∈ S(x)} (1.9)

has to be inner semicontinuous [13]. This assumption is strong and fails for very simple
examples, as shown in the latter reference. Because of the special structure of the above
models of the bilevel programs, they are all non-convex optimization problems. Thus it
would be important to develop solution methods that compute local optimal solutions for
(Po), as this is the best one can get in most instances.

Before providing a taste of the method investigated in this paper, it is worth mentioning
the pessimistic bilevel program

(Pp) min ϕp(x) s.t. x ∈ X, (1.10)

where, similarly to problem (1.7), ϕp stands for the maximization two-level value function

ϕp(x) := max
y

{F(x, y) : y ∈ S(x)}. (1.11)

Problem (Pp) reflects the fact that it would not always be possible for the leader to con-
vince the follower to make choices that are favorable for him/her. Hence it is necessary
for the upper-level player to bound damages resulting from undesirable selections at the
lower-level. One can easily construct examples showing that (Po) and (Pp) are completely
different from each other; see the example below and the other examples in Section 4.



426 A. B. Zemkoho

In this paper, we consider the alternative approach to deal with ill-posed bilevel programs
which consists to insert the lower-level solution mapping (1.4) in the upper-level objective
function. This leads to the problem

(Ps) min
x
F(x) := F(x, S(x)) s.t. x ∈ X, (1.12)

where the subscript s refers to the fact that this is a set-valued optimization problem. (Ps)

can be seen as an extension of the implicit function approach (1.1) to the context of ill-posed
bilevel programs. The natural example to motivate our discussion here, is the well-known
one by Lucchetti et al. [29], where

F(x, y) := x2 + y2, X := [−1, 1] andS(x) := arg min
y

{−xy : y ∈ [0, 1]}. (1.13)

One can check that S and F can be respectively obtained as

S(x) =
⎧
⎨

⎩

0 if x < 0,

1 if x > 0,

[0, 1] if x = 0,

and F(x) =
⎧
⎨

⎩

x2 if x < 0,

x2 + 1 if x > 0,

{y2 : y ∈ [0, 1]} if x = 0.

In Fig. 1, we map the objective “function” of (P ), (Po), (Pp) and (Ps), respectively. This
picture highlights the typical behavior of the corresponding graphs for ill-posed bilevel pro-
grams. Going from a smooth function F in (P ), the best we can usually get for ϕo and ϕp

is lower-semicontinuity and upper-semicontinuity, respectively, at points where S is multi-
valued [13]. As for F , it is set-valued at such points. To be precise, note that the graph of
F coincides with that of ϕo and ϕp at points where S (1.4) is single-valued. At the point
x̄ = 0, where S is multi-valued, F(x̄) is the interval connecting ϕo(x̄) and ϕp(x̄). In the
next section, we show that the graphs of F , ϕo and ϕp are closely related.

Fig. 1 Variation of the objective mapping with the problem reformulation
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To analyze the optimal solution of the problem, we consider the cone C := R+. Hence,
following Jahn [26], a couple (x̄, z̄) ∈ gphF := {(x, z) ∈ R

n ×R : z ∈ F(x)} will be said
to be a local Pareto optimal solution of (Ps) if there exists a neighborhood U of x̄ such that

(F(X ∩ U) − z̄)∩] − ∞, 0[= ∅. (1.14)

It would be said to be a global Pareto optimal solution if the neighborhood of x̄ can be taken
as large as possible, that is, U = R

n. Following this definition, we have the following three
cases for (1.13):

(a) For x < 0 and z = F(x) = x2, we have −x2 ∈ (F(X) − z)∩] − ∞, 0[. Hence (x, z)

cannot be a Pareto optimal point.
(b) For x > 0 and z = F(x) = x2 + 1, it holds that −x2 − 1 ∈ (F(X) − z)∩] − ∞, 0[.

Similarly, this means that (x, z) is not a Pareto optimal point.
(c) For x = 0, z ∈ F(x) means that there exists a ∈ [0, 1] such that z = a2. Now,

consider the case where we have z = a2 for some a ∈]0, 1]; then it follows that
−a2 ∈ (F(X) − z)∩] − ∞, 0[. This implies that no point of the form (0, a) with
a ∈]0, 1] can be a Pareto optimal solution of the problem. Finally, for z = a = 0,

F(X) − z = {x2 : x ∈ [−1, 1[} ∪ {x2 + 1 : x ∈]0, 1]} ⊆ [0, ∞[.
In conclusion, (0, 0) is the unique optimal solution of problem (1.13) in the sense of (1.14).
On the other hand, one can easily see from Fig. 1B that x = 0 is the optimal solution for
the original optimistic version (1.7) of the problem in (1.13). This observation motivates us
to look at what happens in a general framework. We actually prove, see next section, that
problems (Po) and (Ps) are globally and locally equivalent, without any assumption. Note
that (Pp) has no optimal solution.

It is worth to recall here that (1.12) and its link with the optimistic problem was men-
tioned in [7]. However, we are not aware of any thorough analysis of the problem. Recently,
a branch and bound method based on a semi-infinite reformulation was proposed in [43] to
compute approximate global optimal solutions of problems (Po) and (Pp). Using a KKT
reformulation for S (1.4), a combination of solvers is used in [4] to construct a procedure
to compute global optimal solutions for a special case of (Pp). For the first time, optimality
conditions for problems (Po) and (Pp) were derived in [13] and [14], respectively. Though
a small number of publications have recently focused on the computation of stationary/local
optimal solutions (without imposing lower-level uniqueness) of (P ), see [11, 27, 44], we
are not aware of any method that locally solves (Po). It is our opinion that the latter prob-
lem is the most important model in the context of ill-posed bilevel optimization. At first, as
already mentioned above, a local optimal solution of (Po) generates a local optimal solu-
tion of (P ), but the converse in not true, cf. [13]. In the latter paper, it is also shown that the
optimality conditions of (Po) are equivalent to those of (P ) under a mild assumption.

Secondly, note that for the bilevel program (1.5) where there is no perturbation in the
lower-level problem, i.e., K(x) := K for all x ∈ X, Molodtsov [32] proposed the following
family of problems in the form of (Po) to solve the corresponding pessimistic problem:

min
x∈X

ϕ
θ,ε
o (x) := min

y
{F(x, y) : y ∈ Sθ,ε(x)}

with

{
Sθ,ε(x) := {y ∈ K : f (x, y) − θF (x, y) ≤ ϕθ (x) + ε},
ϕθ (x) := min

y
{f (x, y) − θF (x, y) : y ∈ K},

(1.15)

where θ ≥ 0 and ε ≥ 0. Observe that if θ and ε are set to zero, we get problem (Po). Denote
by ϕ

θ,ε
oo the optimal value of a given problem from the family in (1.15) and let ϕpp be the
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optimal value of the corresponding pessimistic problem, (Pp). Then, it is shown in [32] that
we have

ϕpp = lim
n→∞ ϕθn,εn

oo if θn → 0+, εn → 0+ with
θn

εn

→ 0+

provided X and K are metric compact spaces and the functions F and f are continuous on
X ×K . This result is derived in [28] under weaker assumptions. The result clearly indicates
that solving problem (Po) will provide a new direction to develop solution methods for
the pessimistic bilevel program (Pp), which is the most difficult class of ill-posed bilevel
programs. Further recall that it was already shown in [14] that the optimality conditions of
(Pp) can be obtained from (Po). The latter point mainly followed from the stability analysis
of the two-level value function ϕo (1.8) developed in the paper [13]. It can easily be checked
that the stability/sensitivity analysis of this function leads to the stability/sensitivity analysis
of the problems (P ), (Po) and (Pp). In summary, studying problem (Po) provides a base
to solve problems (P ) and (Pp), and also to develop stability analysis results for the three
problems.

The aim of this paper is not to provide a formal algorithm for (Po), but rather a first
step towards that goal, consisting of a theoretical framework with numerical implementa-
tions, showing how the problem can be solved in practice via the set-valued problem (Ps).
The first motivation to consider this approach is that problem (Po) is a three-level optimiza-
tion problem while (Ps) is just two-level, thus simpler. Secondly, (Ps) is an extension of
the implicit function model (Pi), thus solution schemes known for the latter problem could
be implemented to the former one; cf. discussion in Section 5. The work in this paper can
also be put in the context of works developing equivalence between bilevel programs and
multiobjective/set-valued optimization problems. This aspect of research has drawn atten-
tion recently and a thorough review of the literature on related developments can be found
in [41]. The main idea in these works is to establish an equivalence between (P ) and a mul-
tiobjective program or an optimization problem over an efficient set. The results are based
on specially crafted order relations, which are sometimes difficult to work with and may
not be induced by cones with nice properties [22]. Our approach is completely different as
our focus is on problem (Po) and our equivalent problem is set-valued. Moreover, we go
a step further and provide a clear path to solve the new set-valued optimization problem.
Also observe that the order relation that we work with (1.14) is the simplest Pareto con-
cept induced by the most basic cone R+, which satisfies the properties relevant for tractable
solution procedures.

The remainder of the rest of the paper is as follows. Our main focus in the next section
is to formulate the observations made on the example above in the context of more gen-
eral problems. Thus, we first establish the link between the objective maps of (Po), (Pp)

and (Ps). Next, we investigate the relationships between all the models above, including
(Pi) and (P ), while particularly paying attention to the link between the set-valued model
and the original optimistic one. Optimality conditions are then derived from the perspec-
tive of (1.12) and shown to generalize all the results on optimistic bilevel optimization
currently available in the literature. In Section 3, another powerful aspect of our approach
is revealed, as we show that it helps to easily extend the results from the previous section
to multiobjective bilevel optimization. In particular, we derive completely new results for
parametric set-valued optimization, semivectorial bilevel optimization and multiobjective
bilevel programs with vector-valued upper-and lower-level objective functions. Numerical
implementations are provided in Section 4 in order to illustrate how the results of this paper
can be used to solve (Po) in practice by means of (Ps). Moreover, the examples considered
contribute to a better understanding of the models discussed above.
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2 Optimistic Bilevel Optimization

In this section we assume that the upper-and lower-level objective functions F and f are
defined from R

n ×R
m to R and are continuously differentiable, while the upper-and lower-

level feasible sets X and K(x), x ∈ X are respectively closed.

2.1 Relationships with the Set-Valued Model

The aim of this subsection is to confirm the observations made on the motivating example
above. Before moving to our main result here, establishing the equivalence between (Ps)

and (Po), we quickly show that the objective “functions” of (Ps), (Po) and (Pp) are closely
related. To proceed, we denote by |S(x)| the cardinality of S(x) and by Xu := {x ∈ X :
|S(x)| = 1} and Xm := {x ∈ X : |S(x)| ≥ 2}. It might also be useful to recall that for a
set-valued mapping �, gph � := {(x, z) : z ∈ �(x)} and the inclusion z ∈ �(x) becomes
an equality if � is a single-valued function. Furthermore, we assume from here on that the
two-level value functions ϕo (1.8) and ϕp (1.11) are well-defined, i.e., |ϕo(x)| < ∞ and
|ϕp(x)| < ∞, for all x ∈ X.

Theorem 2.1 The following properties are satisfied:

(a) (gphϕo ∪ gphϕp) ∩ (X × R) ⊆ gphF .
(b) Let F(x, y) := a(x)�y + b(x) with a : Rn → R

m and b : Rn → R, and assume that
S is convex-valued on Xm, i.e., S(x) is convex, for all x ∈ Xm. Then,

gphF ∩ (X × R) ⊇ {
(x, ϕo(x)) : x ∈ Xu

}

∪{
(x, λϕo(x) + (1 − λ)ϕp(x)) : x ∈ Xm, λ ∈ [0, 1]}, (2.1)

or equivalently, for all x ∈ X,

F(x)

{ = ϕo(x) = ϕp(x) if x ∈ Xu,

⊇ [ϕo(x), ϕp(x)] if x ∈ Xm.

Proof For (a), let (x, z) ∈ (gph ϕo ∪ gph ϕp) ∩ (X × R). Then, x ∈ X and z = ϕo(x) or
z = ϕp(x). In either case, it follows from the definition of the corresponding function that
we can find some y ∈ S(x) such that z = F(x, y). Thus, (x, z) ∈ gphF . As for (b), denote
by C the right-hand-side of (2.1) and let (x, z) ∈ C. If x ∈ Xu, we get

(x, z) = (x,F(x)) = (x, F (x, S(x)) = (x, ϕo(x)) = (x, ϕp(x)),

following the definitions of ϕo (1.8) and ϕp (1.11). On the other hand, if x ∈ Xm, then it
similarly follows that since ϕo and ϕp are well-defined, we can find some y′, y′′ ∈ S(x)

such that for all λ ∈ [0, 1],
λϕo(x) + (1 − λ)ϕp(x) = a(x)�(λy′ + (1 − λ)y′′) + b(x).

Since S is convex-valued, we have λy′ + (1 − λ)y′′ ∈ S(x). This implies that we have
z = a(x)�(λy′ + (1 − λ)y′′) + b(x) ∈ F(x), which terminates the proof.

In the next theorem, we prove that the original optimistic bilevel program is equivalent
to the set-valued model/implicit function-type problem in (1.12). For the latter problem,
we use the concept of Pareto optimal solution in (1.14), while for the former problem, the
standard notion from scalar objective optimization is applied.
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Theorem 2.2 The point x̄ is a local (resp. global) optimal solution of problem (Po) if and
only if there exists a vector z̄ ∈ F(x̄) such that (x̄, z̄) is a local (resp. global) Pareto optimal
solution of problem (Ps).

Proof We prove only the local case, as the global one can easily be shown in a similar
manner. As first step, we claim that (x̄, z̄) ∈ gphF is a local Pareto optimal solution of (Ps)

if and only if there exists a neighborhood U of x̄ and a vector ȳ ∈ S(x̄) such that we have
z̄ = F(x̄, ȳ) and

F(x̄, ȳ) ≤ F(x, y), ∀x ∈ X ∩ U, ∀y ∈ S(x). (2.2)

To check this, observe that (x̄, z̄) ∈ gphF is equivalent to saying that there exists ȳ ∈ S(x̄)

such that z̄ = F(x̄, ȳ). Inserting the latter value in (1.14), while noting that

F(X ∩ U) = {F(x, y) : x ∈ X ∩ U, y ∈ S(x)},
we can confirm that the statement is true.

Now, let x̄ be a local optimal solution of (Po); then, there exists a neighborhood U of x̄

such that we have ϕo(x̄) ≤ ϕo(x), ∀x ∈ X ∩ U . Considering the definition of ϕo, the latter
implies that we can find some ȳ ∈ S(x̄) such that

F(x̄, ȳ) = ϕo(x̄) ≤ ϕo(x) ≤ F(x, y), ∀x ∈ X ∩ U, ∀y ∈ S(x).

Comparing this relation with (2.2), it is clear that (x̄, z̄) ∈ gphF (with z̄ = F(x̄, ȳ)) is a
local Pareto optimal solution of (Ps).

Conversely, suppose that x̄ is not a local optimal solution of problem (Po), and let V(x̄)

denote the collection of all the neighborhoods of this point in R
n. Then it holds that

∀U ∈ V(x̄), ∃x∗ ∈ X ∩ U s.t.ϕo(x
∗) < ϕo(x̄).

This implies that we have

∀U ∈ V(x̄), ∃x∗ ∈ X ∩ U, ∃y∗ ∈ S(x∗) s.t.F(x∗, y∗) = ϕo(x
∗) < ϕo(x̄).

Finally, returning again to the definition of ϕo(x̄), it follows that

∀y ∈ S(x̄), ∀U ∈ V(x̄), ∃x∗ ∈ X ∩ U, ∃y∗ ∈ S(x∗)
s.t.F(x∗, y∗) = ϕo(x

∗) < ϕo(x̄) ≤ F(x̄, y).

Comparing this relation with (2.2), it clearly appears that the definition of the local Pareto
optimal solution is contradicted.

Clearly, to solve (Po), one would simply have to find a point on the graph of F corre-
sponding to an optimal solution of problem (Ps). The relationship, w.r.t. optimal solutions,
between the various formulation of bilevel optimization mentioned in the previous section
can be summarized as follows:

(Pp)
(∗∗)⇐⇒ (Pi)

(∗∗)⇐⇒ (Po) ⇐⇒ (Ps)

� (∗)

(P )

Here, (∗) is used to symbolize the fact that the standard and original optimistic problems
are equivalent only in the global sense as defined in [13, Proposition 6.9]. As for condition
(∗∗), it stands for the uniqueness of lower-level solutions for all upper-level parameter; i.e.,
S(x) = {y(x)} for all x ∈ X.
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2.2 Optimality Conditions

To proceed in this subsection, we recall some concepts from the literature on variational
analysis. For a closed set C ⊆ R

n, the Mordukhovich normal cone [33] to C is the set

NC(x̄) := {v ∈ R
n : ∃vk → v, xk → x̄ (xk ∈ C) withvk ∈ N̂C(xk)}, (2.3)

for x̄ ∈ C, where N̂C denotes the Fréchet normal cone to C studied for example in [35].
Note that if C := ψ−1(
), where 
 ⊆ R

m is a closed set and ψ : Rn → R
m a continuously

differentiable function at x̄, then we have

NC(x̄) ⊆ ∇ψ(x̄)�N
(ψ(x̄)), (2.4)

provided v = 0 whenever ∇ψ(x̄)�v = 0 with v ∈ N
(ψ(x̄)), see, e.g. [34]. Equality holds
in (2.4) if 
 is normally regular at ψ(x̄), i.e., N
(ψ(x̄)) = N̂
(ψ(x̄)). This is obviously
the case if 
 is a convex set. Finally, for a set-valued map � : Rn ⇒ R

m, the coderivative
[33] of � at some point (x̄, ȳ) ∈ gph � is a positively homogeneous set-valued mapping
D∗�(x̄|ȳ) : Rm ⇒ R

n, defined by

D∗�(x̄|ȳ)(v) := {u ∈ R
n : (u,−v) ∈ Ngph �(x̄, ȳ)}, (2.5)

for all v ∈ R
m. Here, Ngph � denotes the basic normal cone (2.3) to gph �.

Our main goal here is to derive the necessary optimality conditions of (Ps) and subse-
quently confirm the equivalence in the previous subsection with (Po) by showing how the
obtained result actually generalizes well-known ones on optimistic bilevel optimization. For
w ∈ {x, y} and q ∈ {n, m}, the following notations are used in the sequel:

∇wF(x, y) :=
[

∂F

∂w1
(x, y), . . . ,

∂F

∂wq

(x, y)

]�
, ∇F(x, y) :=

[
∇xF (x, y)�, ∇yF (x, y)�

]�
.

Theorem 2.3 Let (x̄, z̄) ∈ gphF be a local Pareto optimal solution of problem (Ps) and
assume that S (1.4) is closed, locally bounded around x̄ and

D∗S(x̄|y)(0) ∩ (−NX(x̄)) = {0} for all y ∈ S(x̄) s.t. z̄ = F(x̄, y). (2.6)

Then, there exists ȳ ∈ S(x̄) with z̄ = F(x̄, ȳ) such that we have

− ∇xF (x̄, ȳ) ∈ D∗S(x̄|ȳ)(∇yF (x̄, ȳ)) + NX(x̄). (2.7)

Proof To proceed, first note that F := F ◦ E with E(x) := (x, S(x)) for all x. One can
easily check that E is closed since S is assumed to be closed. It is also necessary to show
that F is closed. Hence, let (xk, zk) ∈ F such that (xk, zk) → (x̄, z̄). Then we can find a
sequence {yk} such that yk ∈ S(xk) and zk = F(xk, yk). Since S is locally bounded around
x̄, then the sequence {yk} is also bounded. Thus, by the Bolzano-Weierstrass theorem, we
can extract a convergent subsequence of this sequence, that we also denote by {yk} provided
there is no confusion. Taking into account the closedness of S, it follows that yk → ȳ ∈
S(x̄). Furthermore, observe that the continuous differentiability of F guaranties that z̄ =
F(x̄, ȳ). Thus z̄ ∈ F(x̄), implying that F is closed.

Let us now consider the set-valued mapping M(x, z) := E(x)∩F−1(z) and show that it
is locally bounded. Given that S is locally bounded around x̄, denote by U a neighborhood
of x̄ such that S(U) ⊆ V , where V is a bounded set in R

m. Now let W be a neighborhood
of z̄. Then we have

M(U × W) = E(U) ∩ F−1(W) = (U × S(U)) ∩ F−1(W) ⊆ U × S(U) ⊆ U × V.
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It is then obvious that by choosing U as a bounded neighborhood of x̄, which can be
done without lost of generality, we can conclude that M is locally bounded around (x̄, z̄).
Combining this with the closedness of E, we have from the coderivative chain rule by
Mordukhovich [34, Corollary 5.3] that

D∗F(x̄|z̄)(z∗) ⊆ {
D∗E(x̄|w̄)(∇F(w̄)z∗) : w̄ ∈ E(x̄) ∩ F−1(z̄)

}
. (2.8)

To fully formulate this estimate in terms of our problem data, we have to evaluate the
coderivative D∗E(x̄, w̄)(∇F(w̄)z∗). For this purpose, observe that the graph of E can be
rewritten as

gph E = {(x, y, z) : ψ(x, y, z) ∈ 
}
with ψ(x, y, z) := (x − y, y, z) and 
 := {0n} × gph S.

Obviously, 
 is closed given that S is closed; and one can easily verify that α = 0, β = 0
and γ = 0 for any triple (α, β, γ ) satisfying

∇ψ(x̄, ȳ, z̄)�(α, β, γ ) = 0 and(α, β, γ ) ∈ N
(ψ(x̄, ȳ, z̄)).

Thus, it follows from inclusion (2.4) that we have

Ngph E(x̄, ȳ, z̄) ⊆
{
(α,−α + β, γ ) : α ∈ R

n, (γ, β) ∈ Ngph S(ȳ, z̄)
}
.

Considering the definition of the coderivative, it follows that we have the inclusion

D∗E(x̄|(ȳ, z̄))(y∗, z∗) ⊆ y∗ + D∗S(ȳ|z̄)(z∗).
Inserting the latter in (2.8), we get

D∗F(x̄|z̄)(z∗) ⊆
{
∇xF (x̄, ȳ)z∗ + D∗S(x̄|ȳ)(∇yF (x̄, ȳ)z∗) :

ȳ ∈ S(x̄), F (x̄, ȳ) = z̄
} (2.9)

while considering the fact that w̄ ∈ E(x̄) reduces to w̄ = (x̄, ȳ) for some ȳ ∈ S(x̄).
Obviously, we can deduce that for z∗ = 0, it holds that

D∗F(x̄|z̄)(0) ⊆
{
D∗S(x̄|ȳ)(0) : ȳ ∈ S(x̄), F (x̄, ȳ) = z̄

}
.

This guaranties that (2.6) is a sufficient condition for the following equality to be satisfied:

D∗F(x̄|z̄)(0) ∩ (−NX(x̄)) = {0}. (2.10)

Hence, applying Theorem 4.5 from the paper by Ha [23], it follows that we can find some
z∗ ∈ C∗ with |z∗| = 1 such that

0 ∈ D∗F(x̄|z̄)(z∗) + NX(x̄) (2.11)

while taking into account that the set X is closed (by assumption, cf. Introduction) and the
set-valued mapping F is closed, as shown above. Inserting (2.9) in (2.11), we get (2.7)
while considering the fact that the cone C := R+ is self dual; thus, the only element of C∗
satisfying |z∗| = 1 is 1. This terminates the proof of the result.

We now analyze the link between this result and other known results on optimality con-
ditions for optimistic bilevel optimization. Considering the equivalence established above
between (Ps) and (Po), we start with the latter problem. If x̄ is a local optimal solution
of (Po) and S is closed, then we have the optimality condition (2.7) for some ȳ ∈ S(x̄),
provided that the mapping So (1.9) is inner semicompact at x̄ and the following QC holds:

∂∞ϕo(x̄) ∩ (−NX(x̄)) = {0}, (2.12)
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cf. [13, 35]. Note that by definition, ∂∞ϕo(x̄) := {v ∈ R
n : (v, 0) ∈ Nepiϕo(x̄, ϕo(x̄)} and

considering the fact that ϕo (1.8) is an optimal value function, it holds that

∂∞ϕo(x̄) ⊆
⋃

y∈So(x̄)

D∗S(x̄|y)(0) ⊆
⋃

y∈S(x̄)

D∗S(x̄|y)(0), (2.13)

see [35], where the second inclusion follows from So(x̄) ⊆ S(x̄), cf. (1.9). Condition (2.6) is
sufficient for (2.12) to hold. To be precise, assume that D∗S(x̄|y)(0)∩ (−NX(x̄)) = {0} for
all y ∈ S(x̄) (note that equality z = F(x̄, y) is not necessary here considering the structure
of (Po)). Then we can easily check that

⎡

⎣
⋃

y∈S(x̄)

D∗S(x̄|y)(0)

⎤

⎦
⋂

(−NX(x̄)) = {0} (2.14)

while taking into account the fact that we have 0 ∈ NX(x̄) and 0 ∈ D∗S(x̄|y)(0) for all
y ∈ S(x̄). The latter inclusion is induced by the positive homogeneity of the coderivative
map. Combining (2.13) and (2.14), it obviously follows that (2.12) is satisfied. As for the
inner semicompactness of So necessary for problem (Po), recall that it is automatically
satisfied if So is locally bounded. With the inclusion So(x) ⊆ S(x) for all x, this implies that
So is locally bounded under the local boundedness of S imposed in Theorem 2.3. Details on
the optimality conditions of (Po) can be found in [13].

For the link with the optimality conditions result for the standard optimistic problem, one
can easily check that for a local optimal solution (x̄, ȳ) of (P ), it holds that

0 ∈ ∇F(x̄, ȳ) + NgphS(x̄, ȳ) + NX×Rm(x̄, ȳ), (2.15)

provided the lower-level solution map S (1.4) is closed and the constraint qualification (CQ)

Ngph S(x̄, ȳ) ∩ (−NX×Rm(x̄, ȳ)) = {(0, 0)} (2.16)

is satisfied. Conditions (2.15) and (2.16) can easily be recast as (2.7) and (2.6), respectively.
The local boundedness of S and the quantifier “for all” (see QC (2.6)) are not needed for
(P ) because it is assumed here that the upper-level player is in control of both the upper-and
lower-level variables. These assumptions are needed in (Po) and (Ps) in order to mitigate
the choices of the lower-level player y ∈ S(x̄) as the leader does not have control over them.
Note that special cases of this result on (P ) are derived in [10, 21]. For further clarity on the
fact that the result in Theorem 2.3 will effectively lead to standard results in the literature
on KKT and value function reformulations of (Po) and (P ), the interested reader is referred
to [16–18] and to [45, 47, 48] for other approaches to derive optimality conditions for (P ).

Finally, considering (Pi) where the lower-level solution function y(.) is differentiable, all
the assumptions in Theorem 2.3 are satisfied, and it is well known that a necessary condition
of optimality for a point x̄ ∈ X is that

0 ∈ ∇xF (x̄, ȳ) + ∇y(x̄)�∇yF (x̄, ȳ) + NX(x̄);

see, e.g., [7, 39]. Obviously, the latter condition is the corresponding version of (2.7). The
case where the lower-level solution function y(.) is locally Lipschitz continuous and not
necessarily differentiable can also be obtained in a similar way, cf. [16].
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3 Multiobjective Bilevel Optimization

In this section, we consider problem (1.5), where the upper- and lower-level objective func-
tions are vector-valued and respectively defined by F : Rn×R

m → R
l1 and f : Rn×R

m →
R

l2 with l1 ≥ 1 and l2 ≥ 2 being natural numbers. Though some of the results in this sec-
tion will be valid for various solution concepts, we focus our attention on the case where
the lower-level solution set-valued mapping

Swef (x) := arg min
z

{f (x, z) : z ∈ K(x)} (3.1)

is made of weakly efficient points while the upper-level solution points will be understood in
the sense of Pareto. Concretely, we will write z̄ ∈ Swef (x̄) if and only if we have f (x̄, z̄) −
f (x̄, z) /∈ intRl2+ for all z ∈ K(x̄), whereas (x̄, zo) ∈ gphF will be a local optimal solution
of the corresponding set-valued model

min
x
F(x) := F(x, Swef (x)) s.t. x ∈ X, (3.2)

in the sense of Pareto, if and only if there exists a neighborhood U of the point x̄ such that
the equality (F(X ∩ U) − zo) ∩ (−R

l1+ \ {0l1}) = ∅ is satisfied.
First we consider the original optimistic version of the semivectorial bilevel program

min
x∈X

ϕo(x) := min
y

{F(x, y) : y ∈ Swef (x)}, (3.3)

which corresponds to the case where l1 = 1 and l2 ≥ 2. Here, the counterpart of Theorem
2.2 remains valid. Next, we state the result, but without the proof, as it follows exactly on
the path of the proof of Theorem 2.2. The case with l1 ≥ 2 and l2 ≥ 2 will be investigated
in a separate work, as it involves the extension of the concept of optimal value function to
the set-valued optimization framework, something which is out of the scope of this paper.

Theorem 3.1 If l1 = 1 and l2 ≥ 2, then x̄ is a local (resp. global) optimal solution of
problem (3.3) if and only if there exists a vector z̄ ∈ F(x̄) such that (x̄, z̄) is a local (resp.
global) Pareto optimal solution of problem (3.2).

Next, we derive the coderivative of the lower-level weakly efficient optimal solution
set-valued mapping Swef (3.1). Our approach is based on the sacalarization technique
well-known in multiobjective optimization. Thus, we consider the solution map Ss of the
scalarized problem, defined by

Ss(x, y) := arg min
z

{〈y, f (x, z)〉 : z ∈ K(x)
}

(3.4)

and which has the same structure as the solution map of our lower-level problem in the
previous section. Our aim is to write the coderivative of Swef in terms of the coderivative
of Ss , which can easily be obtained afterwards by using standard methods from stability
analysis of scalar objective optimization problems. To proceed, consider the set

Y := {y ∈ R
l2 : y ≥ 0, ‖y‖ = 1}

of scalarization parameters of (3.4) and let ȳ ∈ Y . We denote by I (ȳ) := {i ∈ {1, . . . , l2} :
ȳi = 0} and ei a unit vector from R

l2 having 1 as component at position i and 0 everywhere
else. Furthermore, we introduce a l2-dimensional vector with components

u
ȳ
i (α, β) :=

{
αȳi if ȳi > 0,

βi if ȳi = 0,
(3.5)
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for some (α, β) ∈ R×R
|I (ȳ)|
− , where |I (ȳ)| denotes the cardinality of the set I (ȳ). For any

given vector ȳ ∈ Y , we collect all the corresponding vectors from (3.5) in the set U(ȳ).
Then, we have the following result.

Proposition 3.2 Assume that K is convex-valued and f (x, .) is R
l2+-convex for all x ∈ X.

Furthermore, let Ss be closed, take z̄ ∈ Swef (x̄), and suppose that for all ȳ ∈ Y such that
z̄ ∈ Ss(x̄, ȳ), it holds that

[
(0, −u) ∈ D∗Ss((x̄, ȳ)|z̄)(0), u ∈ U(ȳ)

]
=⇒ u = 0. (3.6)

Then for all z∗ ∈ R
m, we have the following estimate for the coderivative of Swef :

D∗Swef (x̄|z̄)(z∗) ⊆
{
x∗ : (x∗,−ū) ∈ D∗Ss((x̄, ȳ)|z̄)(z∗),

ȳ ∈ Y, ū ∈ U(ȳ), z̄ ∈ Ss(x̄, ȳ)
}
.

(3.7)

Proof Start by noting that under the convexity assumptions on the lower-level problem,
Swef (x) = Ss ◦ Ys(x) for all x ∈ X, with Ys(x) := (x, Y ). Hence,

gph Ys = ψ−1(
) with 
 := {0n} × Y and ψ(x, y, z) := (x − y, z).

Observe that the set 
 is closed and it can easily be shown that the Mangasarian-Fromowitz
constraint qualification (MFCQ) is satisfied at any of its points. Hence, implying that 
 is
normally regular in the sense discussed in Subsection 2.2. Moreover, one can easily check
that α = 0 and β = 0 for any couple (α, β) satisfying

∇ψ(x̄, ȳ, z̄)�(α, β) = 0 and (α, β) ∈ N
(ψ(x̄, ȳ, z̄)).

Thus, it follows from (2.4) and the related discussion that we have the equality

Ngph Ys (x̄, ȳ, z̄) = {
(α, β, γ ) : α = −β, γ ∈ NY (z̄)

}
.

Subsequently, the definition of the notion of coderivative leads us to the formula

D∗Ys(x̄|(ȳ, z̄))(y∗, z∗) =
{ {y∗} if y∗ ∈ R

n and z∗ ∈ −NY (z̄),

∅ otherwise.
(3.8)

As far as the normal cone to Y is concerned, note that the MFCQ is is also satisfied at any
point of the set. Thus, we can easily check that

NY (z̄) =
{
αz̄ +

∑

i∈I (z̄)

βie
i : (α, β) ∈ R × R

|I (z̄)|
−

}
= U(z̄). (3.9)

Following the above expression of the coderivative of Ys , the kernel of the set-valued
mapping D∗Ys(x̄|(ȳ, z̄)) can be obtained as

ker D∗Ys(x̄|(ȳ, z̄)) := {(y∗, z∗) : 0 ∈ D∗Ys(x̄|(ȳ, z̄))(y∗, z∗)},
= {0} × (−NY (z̄)).

From this formula, we can observe that QC (3.6) is sufficient for the condition

D∗Ss((ȳ, v̄)|z̄)(0) ∩ ker D∗Ys(x̄|(ȳ, v̄)) = {0} (3.10)

to hold, for all (ȳ, v̄) ∈ M(x̄, z̄) := Ys(x̄) ∩ S−1
s (z̄).

Finally, consider some neighborhoods V and W of x̄ and v̄, respectively, where V is
bounded. Then we have

M(V × W) = Ys(V ) ∩ S−1
s (W) = (V × Y ) ∩ S−1

s (W) ⊆ V × Y.
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Since Y is a bounded set, it follows that M is locally bounded around (x̄, v̄). Combining this
with the fulfillment of (3.10), it follows from the chain rule by Mordukhovich [34, Theorem
5.1] that we have

D∗Swef (x̄|z̄)(z∗) ⊆ ⋃

(ȳ,v̄)∈M(x̄,z̄)

[
D∗Ys(x̄|(ȳ, v̄)) ◦ D∗Ss((ȳ, v̄)|z̄)(z∗)

]

= ⋃

(ȳ,v̄)∈M(x̄,z̄)

[
D∗Ys(x̄|(ȳ, v̄))(y∗, v∗) : (y∗, v∗) ∈ D∗Ss((ȳ, v̄)|z̄)(z∗)

]

= ⋃

ȳ∈Y : z̄∈Ss(x̄,ȳ)

{
x∗ : u ∈ NY (ȳ), (x∗,−u) ∈ D∗Ss((x̄, ȳ)|z̄)(z∗)

}

while taking into account that the set-valued mapping Ss is closed and (ȳ, v̄) ∈ M(x̄, z̄) is
equivalent to x̄ = ȳ, v̄ ∈ Y and z̄ ∈ Ss(ȳ, v̄). Hence, we get (3.7) by inserting Eq. (3.9) in
the above estimate of D∗Swef (x̄|z̄)(z∗).

Obviously, QC (3.6) automatically holds if Ss is single-valued and Lipschitz continuous
around (x̄, ȳ). Secondly, assume that the lower-level feasible set is defined by

K(x) := {z : gi(x, z) ≤ 0, i = 1, . . . , p} (3.11)

and the MFCQ holds at the point (x̄, z̄) for the inequalities defining K , w.r.t. z. Also assume
that the mapping Ss is inner semicontinuous at (x̄, ȳ, z̄), i.e., for any sequence (xk, yk) →
(x̄, ȳ), there exits a sequence zk ∈ Ss(x

k, yk) such that zk → z̄. Additionally, suppose that
the set-valued mapping

�(ϑ) :=
{

(x, y, z) :
[ 〈y, f (x, z)〉 − ϕ(x, y)

g(x, z)

]

+ ϑ ≤ 0

}

(ϕ corresponds to the optimal value function associated to (3.4)) is calm at (0, x̄, ȳ, z̄),
i.e., there exist neighborhoods V of 0, W of (x̄, ȳ, z̄), and a constant κ > 0 such that
�(ϑ) ∩ W ⊆ �(0) + κ‖ϑ‖B (unit ball centered at 0) for all ϑ ∈ V . Then,

D∗Ss((x̄, ȳ)|z̄)(z∗)

⊆
{[ ∑p

i=1(βi − λμi)∇xgi(x̄, z̄)

0

]

: (β, μ, λ) ∈ 
(x̄, ȳ, z̄, z∗)
}

,
(3.12)

where 
(x̄, ȳ, z̄, z∗) denotes the set of all multipliers (β, μ, λ) such that

z∗ + λ〈ȳ,∇zf (x̄, z̄)〉 +
p∑

i=1

βi∇zgi(x̄, z̄) = 0, (3.13)

λ ≥ 0, β ≥ 0, μ ≥ 0, β�g(x̄, z̄) = μ�g(x̄, z̄) = 0, (3.14)

see [13, 36]. It is clear that for any u ∈ U(ȳ) such that (0, u) is in the upper bound of
D∗Ss((x̄, ȳ)|z̄)(0) from (3.12), we have u = 0. This implies that QC (3.6) is automatically
satisfied in this case. Note that the addition of equality constraints in (3.11) is possible
without difficulties and does not change the aforementioned outcome on QC (3.6).

Recall that a different route is used in [25] to derive estimates of the coderivative of the
solution mapping of a parametric multiobjective optimization problem. The results in the
latter paper are written in terms of the frontier map, which is the extension of the notion
of optimal value function to multiobjective programs. The main advantage of our result is
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that it is obtained in terms of the coderivative of the solution map of a scalar objective opti-
mization problem, for which detailed estimates in terms of problem data are well-known in
the literature, see, e.g., [13, 37]. Using Proposition 3.2, we now derive necessary optimality
conditions for a local Pareto optimal solution of problem (3.2).

Theorem 3.3 Assume that K is convex-valued, f (x, .) is R
l2+-convex for all x ∈ X, and

let (x̄, zo) ∈ gphF be a local Pareto optimal solution of problem (3.2), where l1 ≥ 2
and l2 ≥ 2. Additionally, let Ss (3.4) be closed and locally bounded around x̄, i.e., for a
neighborhood V of x̄, Ss(V × Y ) ⊆ W with W being a bounded set in R

m. Furthermore,
suppose that QC (3.6) holds for all ȳ ∈ Y such that z̄ ∈ Ss(x̄, ȳ) and for all (y, u, z) with
y ∈ Y , u ∈ U(y), z ∈ Ss(x̄, y) and such that zo = F(x̄, z), it holds that

[
(x∗,−u) ∈ D∗Ss((x̄, y)|z)(0), x∗ ∈ −NX(x̄)

]
=⇒ x∗ = 0. (3.15)

Then, there exist z∗ ∈ R
l1+ with ‖z∗‖ = 1 and a vector (ȳ, ū, z̄) satisfying ȳ ∈ Y , ū ∈ U(ȳ),

z̄ ∈ Ss(x̄, ȳ) and zo = F(x̄, z̄), such that we have

− (∇xF (x̄, z̄)�z∗, ū) ∈ D∗Ss((x̄, ȳ)|z̄)(∇zF (x̄, z̄)�z∗) + NX(x̄) × {0l2}. (3.16)

Proof To follow the pattern of Theorem 2.3, let us first show that Swef is closed and locally
bounded under the assumptions made on Ss . In fact, let (xk, zk) be a sequence converging to
(x̄, z̄) and such that zk ∈ Swef (xk). Then there exists another sequence yk from Y and such
that zk ∈ Ss(x

k, yk). Given that Y is a compact set, then by Bolzano-Weierstrass’ theorem,
yk admits a convergent subsequence that we denote similarly, provided there is confusion,
and such that yk → ȳ ∈ Y . Moreover, considering the closedness of Ss , it follows that
z̄ ∈ Ss(x̄, ȳ). Thus, z̄ ∈ Swef (x̄) given that ȳ ∈ Y . Obviously, with Ss locally bounded
around x̄, it follows that Swef is locally bounded around this point.

Proceeding further as in Theorem 2.7, the next thing is show that the counterpart of (2.10)
is satisfied. First, note that we have from Proposition 3.2 that

D∗F(x̄|zo)(z∗) ⊆
{
∇xF (x̄, z̄)�z∗ + D∗Swef (x̄|z̄)(∇zF (x̄, z̄)�z∗) :

z̄ ∈ Swef (x̄), F (x̄, z̄) = zo
}

⊆
{
∇xF (x̄, z̄)�z∗ + x∗ : (x∗,−ū) ∈ D∗Ss((x̄, ȳ)|z̄)(z∗),

z̄ ∈ Ss(x̄, ȳ), F (x̄, z̄) = zo, ȳ ∈ Y, ū ∈ U(ȳ)
}

(3.17)

while taking into account that Ss(x̄, Y ) ∩ Ss(x̄, ȳ) = Ss(x̄, ȳ). Since, 0 ∈ U(ȳ), the origin
of R

n is an element of the right-hand-side set that results from the corresponding upper
estimate of D∗F(x̄|zo)(0) from the latter inclusion. Thus, the fulfillment of QC (3.15),
for all (y, u, z) with y ∈ Y , u ∈ U(y), z ∈ Ss(x̄, y) and such that zo = F(x̄, z), is
sufficient for the QC D∗F(x̄|zo)(0) ∩ (−NX(x̄)) = {0} to hold. This guaranties that the
counterpart of inclusion (2.11) is satisfied for problem (3.2). Proceeding further with the
counterpart of (2.11), we can find a vector x∗o ∈ NX(x̄) such that −x∗o is an element of
the right-hand-side set of the second inclusion in (3.17). Thus, we can subsequently find
a vector (ȳ, ū, z̄) satisfying ȳ ∈ Y , ū ∈ U(y), z̄ ∈ Ss(x̄, y)) and zo = F(x̄, z), such
that x∗ = −∇xF (x̄, z̄)�z∗ − x∗o and (x∗,−ū) ∈ D∗Ss((x̄, ȳ)|z̄)(z∗). This can easily be
rearranged to get the condition in (3.16).



438 A. B. Zemkoho

Obviously, assumption (3.15) is automatically satisfied if problem (3.2) has no upper-
level constraints. Secondly, if we suppose that the upper estimate of the coderivative of Ss

in (3.12) is valid, then condition (3.15) holds provided that we have

−∑p

i=1(βi − λμi)∇xgi(x̄, z̄) ∈ NX(x̄)

(β, μ, λ) ∈ 
(x̄, ȳ, z̄, 0)

}

=⇒
p∑

i=1

(βi − λμi)∇xgi(x̄, z̄) = 0

with 
(x̄, ȳ, z̄, 0) defined in (3.13)–(3.14). Trivially, this will occur for all problems where
the lower-level feasible constraint function g is independent of the upper-level variable, x.

It might also be useful to recall that if the lower-level problem is strongly convex, then
the weakly efficient solution concept used there coincides with the Pareto optimal solution
notion. In such a case we will have our result with the latter notion at both the upper-and
lower-levels of problem (3.3).

Theorem 3.3 provides, for the first time, necessary optimality conditions for bilevel opti-
mization problems involving vector-valued functions both at the upper-and lower-levels. To
highlight the relationship with existing results tailored to some special cases of the prob-
lem, we apply Theorem 3.3 to the case where the lower-and upper-level feasible sets are
defined as (3.11) and X := {

x : Gj(x) ≤ 0, j = 1, . . . , k
}
, respectively. The lower-level

(resp. upper-level) regularity holds at (x̄, z̄) (resp. x̄) if the MFCQ holds at this point, for
the inequalities defining K w.r.t. z (resp. X). For this result, we assume that the lower-level
problem is convex, i.e., the functions fk for k = 1, . . . l2 and gi for i = 1, . . . , p are all
convex w.r.t. z. For the ease of presentation, we consider the following conditions:

p∑

i=1

βi∇zgi(x̄, z̄) +
m∑

l=1

γl

⎡

⎣
l2∑

k=1

yk∇2
zzl

fk(x̄, z̄) +
p∑

i=1

ui∇2
zzl

gi(x̄, z̄)

⎤

⎦ = 0, (3.18)

−
m∑

l=1

γl∇zl
f (x̄, z̄) ∈ U(ȳ), (3.19)

l2∑

k=1

ȳk∇zfk(x̄, z̄) +
p∑

i=1

ui∇zgi(x̄, z̄) = 0, u ≥ 0, u�g(x̄, z̄) = 0, (3.20)

∇zgν(x̄, z̄)γ = 0, βη = 0, (3.21)

∀i ∈ θ : (βi > 0 ∧ ∇zgi(x̄, z̄)γ > 0) ∨ (βi∇zgi(x̄, z̄)γ = 0), (3.22)

α ≥ 0, α�G(x̄) = 0, (3.23)

where the index sets η, θ and ν, respectively given below, define the partition of the com-
plementarity system resulting from the optimality conditions of the lower-level problem:

η := η(x̄, z̄, ū) := {i = 1, . . . , p | ūi = 0, gi(x̄, z̄) < 0},
θ := θ(x̄, z̄, ū) := {i = 1, . . . , p | ūi = 0, gi(x̄, z̄) = 0},
ν := ν(x̄, z̄, ū) := {i = 1, . . . , p | ūi > 0, gi(x̄, z̄) = 0}.

Corollary 3.4 Let (x̄, zo) be a local optimal solution of problem (3.2) and let the upper-
level regularity be satisfied at x̄ while the set-valued mapping K (3.11) is locally bounded
around x̄. Furthermore, suppose that the following conditions are satisfied:

(a) For all (ȳ, z̄) such that ȳ ∈ Y and z̄ ∈ Ss(x̄, ȳ), the lower-level regularity condition is
satisfied at (x̄, z̄) and we have β = 0 and γ = 0 whenever (3.18)–(3.22) hold.
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(b) For all (ȳ, ū, z̄) with ȳ ∈ Y , ū ∈ U(ȳ), z̄ ∈ Ss(x̄, ȳ) and such that zo = F(x̄, z̄), we
have

∑k
j=1 αj∇Gj(x̄) = 0 whenever (3.18)–(3.23) hold together with
∑k

j=1 αj∇Gj(x̄) + ∑p

i=1 βi∇xgi(x̄, z̄)

+∑m
l=1 γl

[∑l2
k=1 yk∇2

xzl
fk(x̄, z̄) + ∑p

i=1 ui∇2
xzl

gi(x̄, z̄)
]

= 0.

Then, there exist (α, β, γ ) and (ū, ȳ, z̄, z∗) satisfying z∗ ∈ R
l1+, ‖z∗‖ = 1, ȳ ∈ Y ,

ū ∈ U(ȳ), z̄ ∈ Ss(x̄, ȳ) and zo = F(x̄, z̄), such that (3.19)–(3.23) hold together with the
following conditions:

∇xF (x̄, z̄)�z∗ + ∑k
jαj∇Gj(x̄) + ∑p

i=1 βi∇xgi(x̄, z̄)

+∑m
l=1 γl

[∑l2
k=1 yk∇2

xzl
fk(x̄, z̄) + ∑p

i=1 ui∇2
xzl

gi(x̄, z̄)
]

= 0,

∇zF (x̄, z̄)�z∗ + ∑p

i=1 βi∇zgi(x̄, z̄)

+∑m
l=1 γl

[∑l2
k=1 yk∇2

zzl
fk(x̄, z̄) + ∑p

i=1 ui∇2
zzl

gi(x̄, z̄)
]

= 0.

Proof Under the lower-level convexity, the function z → ∑l2
k=1 ykfk(x, z) is convex for all

(x, y) ∈ R
n × R

l2+. Hence, given that Y ⊂ R
l2+, it follows that Ss can be written as

Ss(x, y) :=
{
z ∈ R

l2 : 0 ∈
l2∑

k=1

yk∇zfk(x, z) + NK(x)(z)
}
.

Let (xk, yk, zk) ∈ gph Ss such that (xk, yk, zk) → (x̄, ȳ, z̄). Then under the lower-level
regularity, we can find a sequence uk ∈ 
(xk, yk, zk), where the set-valued map 
 defines
the set of Lagrange multipliers for the parametric problem (3.4):


(x̄, ȳ, z̄) := {
u ∈ R

p : (3.20) is satisfied
}
. (3.24)

It is well-known that the set-valued map 
 is upper-semicontinuous under the lower-level
regularity, see, e.g. [40]. Hence, there exists a convergent subsequence of uk , for which we
preserve the same notation, provided there is no confusion, such that uk → ū. Additionally,
taking into account the closedness of the map 
, we have ū ∈ 
(x̄, ȳ, z̄). It then follows
from the lower-level convexity that (x̄, ȳ, z̄) ∈ gph Ss . This means that Ss is closed. As
for the local boundedness of Ss , in the sense of Theorem 3.3, it follows from the local
boundedness of the set-valued mapping K .

Under assumption (a), it follows from [37] (also see related discussion in [13]) that

D∗Ss((x̄, ȳ)|z̄)(z∗) ⊆
⋃

ū∈
(x̄,ȳ,z̄)

⋃

(β,γ )∈
em
z (x̄,ȳ,z̄,ū,z∗)

{[
Hx(x̄, ȳ, z̄, β, γ )
∑m

l=1 γl∇zl
f (x̄, z̄)

]}

(3.25)

for all (ȳ, z̄) such that ȳ ∈ Y and z̄ ∈ Ss(x̄, ȳ). Recall that the map 
 is defined in (3.24),
while 
em

z is given by


em
z (x̄, ȳ, z̄, ū, z∗) :=

{
(β, γ ) : ∇zF (x̄, z̄)�z∗ + Hz(x̄, ȳ, z̄, β, γ ) = 0,

and (3.21) − (3.22) are satisfied
}

and for w ∈ {x, z}, Hw(x̄, ȳ, z̄, β, γ ) denotes the following expression:

p∑

i=1

βi∇wgi(x̄, z̄) +
m∑

l=1

γl

⎡

⎣
l2∑

k=1

yk∇2
wzl

fk(x̄, z̄) +
p∑

i=1

ui∇2
wzl

gi(x̄, z̄)

⎤

⎦ .
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Denote by �(x̄, ȳ, z̄) the upper bound of D∗Ss((x̄, ȳ)|z̄)(0) resulting from (3.25). One
can easily check that (3.6) holds if u = 0 whenever (0, u) ∈ �(x̄, ȳ, z̄) and u ∈ U(ȳ). Next,
observe that a vector (0, u) ∈ �(x̄, ȳ, z̄) if and only if we can find a vector (β, γ ) such that
(3.18)–(3.22) holds together with u = − ∑m

l=1 γl∇zl
f (x̄, z̄) and

p∑

i=1

βi∇xgi(x̄, z̄) +
m∑

l=1

γl

⎡

⎣
l2∑

k=1

yk∇2
xzl

fk(x̄, z̄) +
p∑

i=1

ui∇2
xzl

gi(x̄, z̄)

⎤

⎦ = 0.

In particular, the conditions (3.18)–(3.22) are satisfied. Thus, it follows from assumption (a)
in the corollary that γ = 0. This implies that u = − ∑m

l=1 γl∇zl
f (x̄, z̄) = 0. Hence, (3.6)

holds. Proceeding similarly, it can be shown that assumption (b) is a sufficient condition for
the fulfilment of QC (3.15). For the latter point, note that under the upper-level regularity
at x̄, x∗ ∈ NX(x̄) if and only if x∗ = ∑k

jαj∇Gj(x̄) with α satisfying (3.23). Finally, the
optimality conditions in the result are obtained by applying Theorem 3.3.

To the best of our knowledge, the first result on optimality conditions for semivectorial
bilevel programs (i.e., when l1 = 1 and l2 ≥ 2) was derived in [3]. These conditions,
which were abstract in nature, were obtained via the notion of contingent derivative using
a problem reformulation similar to (3.2). Detailed necessary optimality conditions for the
semivectorial bilevel programs were first obtained in [12] for the standard optimistic model
(P ). The conditions in the latter paper can easily be recovered from Theorem 3.3 while
implementing the optimal value function counterpart of Corollary 3.4 on the map Ss (3.4),
see, e.g., (3.12). It is however important to mention that Corollary 3.4 is the first result
providing necessary optimality for the semivectorial bilevel program via the Karush-Kuhn-
Tucker (KKT) approach.

If l1 ≥ 2 and l2 = 1 in the standard optimistic bilevel program (P ), we get the multiob-
jective bilevel pogram studied in [46]. The M-stationarity conditions obtained in this paper
are a special case of the conditions in Corollary 3.4. The slight difference with our result
is that the multiplier z∗ attached to the upper-level objective function in [46] is an element
of a special type of normal cone. Also note that in this case (i.e., where l2 = 1), condition
(3.19) is superfluous, given that we have Y = {1}, implying that U(ȳ) = R.

As already mentioned above, we are not aware of any result on optimality condi-
tions for a bilevel program with multiobjective upper- and lower-level problems. Corollary
3.4 provides the M-type optimality conditions for this class of problems. Following
the pattern of our work in [13], one can easily derive the other stationary concepts,
well-known in standard optimistic bilevel program, cf. [17–19], while using appropriate
transformations/reformulations for the set-valued map (3.4).

4 Illustrative Examples

This section illustrates the results of the last two sections on some examples. The focus
is on the connection between the objective “functions”, as discussed in Subsection 2.1,
and Theorems 2.3 and 3.3. For the latter results, the following steps are used to generate
stationary points in the sense of (2.7) and (3.16), respectively: (1) estimate the Fréchet
normal cone to the graph of S (resp. Ss); (2) deduce an estimate of the limiting normal
cone to the graph of S (resp. Ss) from (1); (3) deduce an estimate of the coderivative of S

(resp. Ss) from (2); (4) estimate the limiting normal cone to X; and (5) insert the estimates
of the coderivative of S (resp. Ss) and the normal cone to X in (2.7) or (3.16) and solve
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the resulting system. Note that Example 4.1 is the continuity of the problem discussed in
Section 1, while the problem in Example 4.2 is taken from [2] and the last example is also
an adaptation from a problem in the latter book.

Example 4.1 (one dimensional lower-level problem) We continue here with the example in
Section 1 (1.13). Clearly, S is closed and bounded given that its graph can be written as
gph S = A ∪ B ∪ C with A := [−1, 0] × {0}, B := [0, 1] × {1} and C := {0} × [0, 1]. The
Fréchet normal cone to gph S is obtained as

N̂gph S(x̄, ȳ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{0} × R := �1 if (−1 < x̄ < 0, ȳ = 0) ∨ (0 < x̄ < 1, ȳ = 1),

R+ × R− := �2 if x̄ = 0, ȳ = 0,

R− × R := �3 if x̄ = −1, ȳ = 0,

R− × R+ := �4 if x̄ = 0, ȳ = 1,

R+ × R := �5 if x̄ = 1, ȳ = 1,

R × {0} := �6 if x̄ = 0, 0 < ȳ < 1,

and we deduce the Mordukhovich normal cone while using (2.3):

Ngph S(x̄, ȳ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�1 if (−1 < x̄ < 0, ȳ = 0) ∨ (0 < x̄ < 1, ȳ = 1),

�2 ∪ �1 ∪ �6 if x̄ = 0, ȳ = 0,

�3 ∪ �1 if x̄ = −1, ȳ = 0,

�4 ∪ �1 ∪ �6 if x̄ = 0, ȳ = 1,

�5 ∪ �1 if x̄ = 1, ȳ = 1,

�6 if 0 < x̄ < 1, ȳ = 1.

Thus, for each (x̄, ȳ) ∈ R
2 with ȳ ∈ S(x̄) and each y∗ ∈ R we get

D∗S(x̄|ȳ)(y∗) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{0} if (y∗ ∈ R,−1 < x̄ < 0, ȳ = 0) ∨ (y∗ ∈ R, 0 < x̄ < 1, ȳ = 1)

∨(y∗ < 0, x̄ = 0, ȳ = 0) ∨ (y∗ > 0, x̄ = 0, ȳ = 1),

R if y∗ = 0, (x̄ = 0, ȳ = 0) ∨ (x̄ = 0, ȳ = 1) ∨ (0 < x̄ < 1, ȳ = 1),

R+ if (y∗ > 0, x̄ = 0, ȳ = 0) ∨ (y∗ ∈ R, x̄ = 1, ȳ = 1),

R− if (y∗ ∈ R, x̄ = −1, ȳ = 0) ∨ (y∗ < 0, x̄ = 0, ȳ = 1),

∅ if y∗ �= 0, 0 < x̄ < 1, ȳ = 1.

For the normal cone to X, we obviously have NX(x̄) = R− for x̄ = −1, NX(x̄) = R+
for x̄ = 1 and NX(x̄) = {0} otherwise. We can now proceed with the last step by first
noting that ∇F(x, y) = (2x, 2y)�. Inserting this in (2.7) and solving the resulting system,
we get two stationary points (x̄, ȳ) = (0, 0) and (x̄, ȳ) = (0, 1). Clearly, the solution of the
problem obtained in Section 1 is identified. Finally, note that since NX(x̄) = {0} for x̄ = 0,
QC (2.6) automatically holds.

Example 4.2 (two-dimensional lower-level problem with multiple values at all but a single
point) Consider the problem (1.5) with F(x, y) := −x + 10y1 − y2, X := [0, ∞[ and

S(x) := arg min
y

{−y1 − y2 : y ≥ 0, x − y1 ≤ 1, x + y2 ≤ 1, y1 + y2 ≤ 1}.

Simple calculations lead to the following values of S for x ≥ 0:

S(x) =
⎧
⎨

⎩

{(y1, 1 − y1) : x ≤ y1 ≤ 1} if 0 ≤ x < 1,

{(1, 0)} if x = 1,

∅ if x > 1.
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Fig. 2 As S is single-valued at a
single point, x̄ = 1, ϕo (in red,
upper line) and ϕp (in blue, lower
line) are distinct from each other
at all the other points. The graph
of F is the full triangle given that
F(x) = [ϕo(x), ϕp(x)] for all
x ∈ [0, 1[, meaning that equality
holds in Theorem 2.1

Obviously, gph S = {(x, y1, y2) : 0 ≤ x ≤ 1, x ≤ y1 ≤ 1, y2 = 1 − y1}. To evaluate the
Fréchet normal cone to the graph of S, we partition the set as follows:

�1 := {(x, y1, y2) : (x̄ = 0) ∧ (x̄ < ȳ1 < 1) ∧ (ȳ2 = 1 − ȳ1)},
�2 := {(x, y1, y2) : (x̄ = 0) ∧ (x̄ = ȳ1) ∧ (ȳ2 = 1 − ȳ1)},
�3 := {(x, y1, y2) : (x̄ = 0) ∧ (ȳ1 = 1) ∧ (ȳ2 = 1 − ȳ1)},
�4 := {(x, y1, y2) : (x̄ = 1) ∧ (ȳ1 = 1) ∧ (ȳ2 = 1 − ȳ1)},
�5 := {(x, y1, y2) : (0 < x̄ < 1) ∧ (x̄ < ȳ1 < 1) ∧ (ȳ2 = 1 − ȳ1)},
�6 := {(x, y1, y2) : (0 < x̄ < 1) ∧ (x̄ = ȳ1) ∧ (ȳ2 = 1 − ȳ1)},
�7 := {(x, y1, y2) : (0 < x̄ < 1) ∧ (ȳ1 = 1) ∧ (ȳ2 = 1 − ȳ1)}.

Proceeding as in the previous example, the Fréchet normal cone to the graph of S is given
by the following sequence of sets �i , i = 1, . . . , 7, at the corresponding points:

�1 := {(x, y1, y2) : x ≤ 0, y1 − y2 = 0} if (x̄, ȳ1, ȳ2) ∈ �1,

�2 := {(x, y1, y2) : y1 − y2 ≤ 0, x + y1 − y2 ≤ 0} if (x̄, ȳ1, ȳ2) ∈ �2,

�3 := {(x, y1, y2) : x ≤ 0, y1 − y2 ≥ 0} if (x̄, ȳ1, ȳ2) ∈ �3,

�4 := ⋃

t≥0
{(x, y1, y2) : t − x ≤ 0, t − x − y1 + y2 ≤ 0} if (x̄, ȳ1, ȳ2) ∈ �4,

�5 := {(x, y1, y2) : x = 0, y1 − y2 = 0} if (x̄, ȳ1, ȳ2) ∈ �5,

�6 := {(x, y1, y2) : x ≥ 0, x + y1 − y2 = 0} if (x̄, ȳ1, ȳ2) ∈ �6,

�7 := {(x, y1, y2) : x = 0, y1 − y2 ≥ 0} if (x̄, ȳ1, ȳ2) ∈ �7.

Subsequently, by also applying the Painlevé-Kuratowski upper limit, we arrive at

Ngph S(x̄, ȳ1, ȳ2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1 if (x̄, ȳ1, ȳ2) ∈ �1,

�2 ∪ �1 ∪ �5 ∪ �6 if (x̄, ȳ1, ȳ2) ∈ �2,

�3 ∪ �1 ∪ �7 if (x̄, ȳ1, ȳ2) ∈ �3,

�4 ∪ �5 ∪ �6 ∪ �7 if (x̄, ȳ1, ȳ2) ∈ �4,

�5 if (x̄, ȳ1, ȳ2) ∈ �5,

�6 if (x̄, ȳ1, ȳ2) ∈ �6,

�7 if (x̄, ȳ1, ȳ2) ∈ �7.
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By definition of the coderivative (2.5), this leads to the following equality

D∗S(x̄|(ȳ1, ȳ2))(y
∗
1 , y∗

2 ) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

] − ∞, y∗
1 − y∗

2 ] if y∗
1 ≥ y∗

2 , (x̄, ȳ1, ȳ2) ∈ �2,

[y∗
1 − y∗

2 ,∞[ if y∗
1 > y∗

2 , (x̄, ȳ1, ȳ2) ∈ �4,

{y∗
1 − y∗

2 } if y∗
1 ≥ y∗

2 , (x̄, ȳ1, ȳ2) ∈ �6,

R− if [y∗
1 = y∗

2 , (x̄, ȳ1, ȳ2) ∈ �1] ∨ [y∗
1 ≤ y∗

2 , (x̄, ȳ1, ȳ2) ∈ �3],
R+ if y∗

1 ≤ y∗
2 , (x̄, ȳ1, ȳ2) ∈ �4,

{0} if [y∗
1 = y∗

2 , (x̄, ȳ1, ȳ2) ∈ �5] ∨ [y∗
1 ≤ y∗

2 , (x̄, ȳ1, ȳ2) ∈ �7],
∅ otherwise.

We are now ready to solve the optimality condition in (2.7). To proceed, note that we
have ∇xF (x, y) = −1 and ∇yF (x, y) = (10,−1)� for all (x, y). Hence, we get

D∗S(x̄|(ȳ1, ȳ2))(10,−1) =

⎧
⎪⎪⎨

⎪⎪⎩

] − ∞, 11] if (x̄ = 0) ∧ (x̄ = ȳ1) ∧ (ȳ2 = 1 − ȳ1),

[11, ∞[ if (x̄ = 1) ∧ (ȳ1 = 1) ∧ (ȳ2 = 1 − ȳ1),

{11} if (0 < x̄ < 1) ∧ (x̄ = ȳ1) ∧ (ȳ2 = 1 − ȳ1),

∅ otherwise.

For the upper-level feasible set, we have NX(x̄) = R− if x̄ = 0 and NX(x̄) = {0} otherwise.
Inserting these values in (2.7), we get the family of stationary points

(x̄, ȳ1, ȳ2, α, β) withx̄ = ȳ1 = 0, ȳ2 = 1, α + β = 1, α ≤ 11, β ≤ 0.

To confirm that x̄ = 0 is an optimal solution of (Po) by means of Theorem 2.2, note that
F(0) = [−1, 10], F(X) = {−x + 11y1 − 1 : x ∈ [0, 1], y1 ∈ [x, 1]} and

F(X)− z̄ =
{ {−x + 11y1 : x ∈ [0, 1], y1 ∈ [x, 1]} if z̄ = −1 = F(0, ȳ), ȳ = (0, 1),

{−x + 11y1 − 1 − z̄ : x ∈ [0, 1], y1 ∈ [x, 1]} if z̄ ∈] − 1, 10].
It then follows that F(X) − z̄ ⊆ [0, ∞[ for z̄ = −1 and −1 − z̄ ∈ (F(X) − z̄)∩] − ∞, 0[
for z̄ ∈] − 1, 10]. Hence, (0, −1) is the only optimal solution of (Ps). Thus, x̄ = 0 is an
optimal solution of (Po) by Theorem 2.2. It is also clear from Fig. 2 that x̄ = 0 is the unique
optimal solution for (Po). Furthermore, the figure shows that (Pp) also has a solution in this
case, x̄ = 1, which is completely different from the one of (Po).

Finally, note that D∗S(0|(ȳ1, ȳ2))(0, 0) = R− for all (y1, y2) ∈ S(0) and −NX(0) =
R+; thus condition (2.6) is satisfied.

Example 4.3 (semivectorial bilevel programming example) Consider the semivectorial
bilevel program (3.3) with F(x, z) := x + z2, X := [0, ∞[ and

S(x) := arg min
z

{[
2z1 + 2z2
−z1 + z2

] ∣
∣
∣
∣

z1, z2 ≥ 0
x − z1 − z2 ≤ −4

}

.

We can check that the optimal solution map of the scalarized lower-level problem gives

Ss(x, y) =
⎧
⎨

⎩

{(4 + x, 0)} if x ≥ 0, y1 ≥
√

5
5 , y2 > 0, ‖y‖ = 1,

{(z1, 4 + x − z1) : 0 ≤ z1 ≤ 4 + x} if x ≥ 0, y1 = 1, y2 = 0,

∅ otherwise,

and subsequently note that we have gph S = A ∪ B with the sets A and B respectively
defined as follows

A := {(x, y, z) : x ≥ 0, y1 ≥
√

5
5 , y2 ≥ 0, ‖y‖ = 1, z1 = 4 + x, z2 = 0},

B := {(x, y, z) : x ≥ 0, y1 = 1, y2 = 0, 0 ≤ z1 ≤ 4 + x, z2 = 4 + x − z1}.
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Fig. 3 The graphs of ϕo and ϕp

are represented in red (upper)
and blue (lower) limitation line
respectively, while that of F is
the area coloured in black in
between them. This illustrates
that for all x ≥ 0, F(x) is the
segment joining ϕo(x) and ϕp(x)

Based on this expression, we deduce the partition of gph S into the sets �i , i = 1, . . . , 12.
This is obtained by first partitioning A as

�1 := {(x, y, z) : x = 0, y1 >
√

5
5 , y2 > 0, ‖y‖ = 1, z1 = 4 + x, z2 = 0},

�2 := {(x, y, z) : x = 0, y1 =
√

5
5 , y2 > 0, ‖y‖ = 1, z1 = 4 + x, z2 = 0},

�3 := {(x, y, z) : x = 0, y1 >
√

5
5 , y2 = 0, ‖y‖ = 1, z1 = 4 + x, z2 = 0},

�4 := {(x, y, z) : x > 0, y1 >
√

5
5 , y2 > 0, ‖y‖ = 1, z1 = 4 + x, z2 = 0},

�5 := {(x, y, z) : x > 0, y1 =
√

5
5 , y2 > 0, ‖y‖ = 1, z1 = 4 + x, z2 = 0},

�6 := {(x, y, z) : x > 0, y1 >
√

5
5 , y2 = 0, ‖y‖ = 1, z1 = 4 + x, z2 = 0},

and then similarly, we can derive the following partition for the set B:

�7 := {(x, y, z) : x = 0, y1 = 1, y2 = 0, 0 = z1 < 4 + x, z2 = 4 + x − z1},
�8 := {(x, y, z) : x = 0, y1 = 1, y2 = 0, 0 < z1 = 4 + x, z2 = 4 + x − z1},
�9 := {(x, y, z) : x = 0, y1 = 1, y2 = 0, 0 < z1 < 4 + x, z2 = 4 + x − z1},
�10 := {(x, y, z) : x > 0, y1 = 1, y2 = 0, 0 = z1 < 4 + x, z2 = 4 + x − z1},
�11 := {(x, y, z) : x > 0, y1 = 1, y2 = 0, 0 < z1 = 4 + x, z2 = 4 + x − z1},
�12 := {(x, y, z) : x > 0, y1 = 1, y2 = 0, 0 < z1 < 4 + x, z2 = 4 + x − z1}.

Next, we compute the Fréchet normal cone to A. To proceed, start by noting that unlike
in the previous example or for the B part, A is not necessarily a convex set; but it can be
written as A = R

5 ∩ ψ−1(
) with 
 := R
3− × {03} and

ψ(x, y, z) := [−x, −y1 + √
5/5, −y2, ‖y‖2 − 1, x − z1 + 4, z2]�.

The function ψ is continuously differentiable and 
 is a normally regular set as it is convex.
Additionally, one can check that the MFCQ is satisfied at any point of A. Hence, A is
normally regular at any of its points; i.e., N̂A(ζ̄ ) = NA(ζ̄ ) for ζ̄ := (x̄, ȳ, z̄) ∈ �i with
i = 1, . . . , 6. It then follows from (2.4) that

N̂A(ζ̄ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{(x, y, z) ∈ R
5 : x + y1 ≤ 0, ȳ2y1 − ȳ1y2 = 0} := �1 if ζ̄ ∈ �1,

{(x, y, z) ∈ R
5 : x + y1 ≤ 0, ȳ2y1 − ȳ1y2 ≤ 0} := �2 if ζ̄ ∈ �2,

{(x, y, z) ∈ R
5 : x + y1 ≤ 0, ȳ2y1 − ȳ1y2 ≥ 0} := �′

3 if ζ̄ ∈ �3,

{(x, y, z) ∈ R
5 : x + y1 = 0, ȳ2y1 − ȳ1y2 = 0} := �4 if ζ̄ ∈ �4,

{(x, y, z) ∈ R
5 : x + y1 = 0, ȳ2y1 − ȳ1y2 ≤ 0} := �5 if ζ̄ ∈ �5,

{(x, y, z) ∈ R
5 : x + y1 = 0, ȳ2y1 − ȳ1y2 ≥ 0} := �′

6 if ζ̄ ∈ �6.
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As for B, the set is defined only by linear constraints. Hence, proceeding as in the
previous example, we have the following values:

N̂B(ζ̄ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{(x, y, z) ∈ R
5 : x + z2 ≤ 0, z1 − z2 ≤ 0} := �7 if ζ̄ ∈ �7,

{(x, y, z) ∈ R
5 : x + z2 ≤ 0, z1 − z2 ≥ 0} := �′

8 if ζ̄ ∈ �8,

{(x, y, z) ∈ R
5 : x + z2 ≤ 0, z1 − z2 = 0} := �9 if ζ̄ ∈ �9,

{(x, y, z) ∈ R
5 : x + z2 = 0, z1 − z2 ≤ 0} := �10 if ζ̄ ∈ �10,

{(x, y, z) ∈ R
5 : x + z2 = 0, z1 − z2 ≥ 0} := �′

11 if ζ̄ ∈ �11,

{(x, y, z) ∈ R
5 : x + z2 = 0, z1 − z2 = 0} := �12 if ζ̄ ∈ �12.

Finally, to obtain the Fréchet normal cone to the graph of Ss , note that the intersection of A

and B is not empty and in particular, �3 ∩ �8 �= ∅ and �6 ∩ �11 �= ∅. Hence, for ζ̄ ∈ �i ,
i = 3, 6, 8, 11, we respectively have N̂A(ζ̄ ) ∩ N̂B(ζ̄ ) as follows

�3 := {ζ ∈ R
5 : x + y1 ≤ 0, ȳ2y1 − ȳ1y2 ≥ 0, x + z2 ≤ 0, z1 − z2 ≤ 0},

�6 := {ζ ∈ R
5 : x + y1 = 0, ȳ2y1 − ȳ1y2 ≥ 0, x + z2 = 0, z1 − z2 ≥ 0},

�8 := {ζ ∈ R
5 : x + y1 ≤ 0, ȳ2y1 − ȳ1y2 ≥ 0, x + z2 ≤ 0, z1 − z2 ≥ 0},

�11 := {ζ ∈ R
5 : x + y1 = 0, ȳ2y1 − ȳ1y2 ≥ 0, x + z2 = 0, z1 − z2 ≥ 0}.

It then follows that N̂gph Ss (ζ̄ ) = �i for ζ̄ ∈ �i , i = 1, . . . , 12. Subsequently, by also
applying the Painlevé-Kuratowski upper limit to the latter mapping, we get the following
sets/upper estimates �i for i = 1, . . . , 12:

�1 := �1 ∪ �4, �2 := �2 ∪ �1 ∪ �4 ∪ �5 ∪ �6,

�3 := �3 ∪ �1 ∪ �6 ∪ �8 ∪ �9 ∪ �10 ∪ �11 ∪ �12,

�4 := �4, �5 := �5 ∪ ∪�4, �6 := �6 ∪ �11, �7 := �7 ∪ �9 ∪ �10 ∪ �12,

�8 := �8 ∪ �1 ∪ �3 ∪ �4 ∪ �6 ∪ �9 ∪ �11 ∪ �12,

�9 := �9 ∪ �12, �10 := �10 ∪ �12, �11 := �11, �12 := �12,

They respectively lead to Ngph Ss (ζ̄ ) ⊆ �i (with equality holding here in most cases) for
ζ̄ ∈ �i , i = 1, . . . , 12. And it then follows from the definition of the coderivative (2.5) that

D∗Ss((x̄, ȳ)|z̄)(z∗) ⊆ {(x∗, y∗) ∈ R
3| (x∗, y∗, −z∗) ∈ �i}

for ζ̄ := (x̄, ȳ, z̄) ∈ �i , i = 1, . . . , 12. It subsequently follows from Theorem 3.3 that
for a stationary point of this example we should find for some ū ∈ U(ȳ) and x∗ ∈ NX(x̄)

verifying

−
⎡

⎣
∇xF (x̄, z̄) + x∗

ū

∇zF (x̄, z̄)

⎤

⎦ ∈ �i for ζ̄ := (x̄, ȳ, z̄) ∈ �i, i = 1, . . . , 12.

There are obviously many scenarios which would probably lead to a number of station-
ary points for this example. We are going to point out one of them, corresponding to the
optimistic optimal solution, cf. Fig. 3. For ζ̄ := (x̄, ȳ1, ȳ2, z̄1, z̄2) ∈ �1, we have x̄ = 0,

ȳ1 >
√

5
5 and ȳ2 > 0. Hence, x∗ < 0 and from (3.5), ū = α(ȳ1, ȳ2) with α ∈ R. One can

easily check from the expression of �1 that the point ζ̄ = (0,
√

3
2 , 1

2 , 4, 0, −2, 6√
3
) satisfies

condition (3.16).

5 Discussion

The aim of the paper was to provide a first step towards solving the original optimistic
bilevel program (Po) using a set-valued optimization technique, which is actually an
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extension of the implicit function approach in (Pi). As such, ideas tailored to the latter
problem could be extended to (Ps). To proceed, the first step would be to further investi-
gate the structure of the objective map F (1.12). It is important to note that this mapping
is Lipschitz-like, in the sense of Aubin [1], if S is Lipschitz-like, cf. Proof of Theorem 2.3.
Also note that in the multiobjective setting, the Lipschitz-like property of Swef (3.1) can
easily be deduced from that of Ss (3.4), see Proposition 3.2 and the discussion that follows
it. Most methods for (Pi) are based on estimates of the subdifferentials of y(.) which are
sequentially inserted in the upper-level objective function F and the resulting subproblem
is solved by an appropriate optimization technique. For instance, bundle methods are used
in [39] for such a purpose. See also [7] for the descent method and other closely related
approaches. In the context of (Ps), it is our opinion that such a process can be developed
while replacing the estimates of the subdifferential of y(.) by estimates of the coderivative
of the lower-level solution set-valued mapping S (1.4); cf. discussion in Subsection 2.2 and
related references on coderivatives of solution maps of parametric optimization problems.

An alternative approach towards a formal algorithm to solve (Ps) is the one implemented
in the examples of the previous section. This consist of solving the stationary conditions
developed in Sections 2 and 3. It is however important to mention here that methods to
solve set-valued mapping inclusions (see e.g., [20] and references therein) cannot be easily
implemented directly on (2.7), considering the nature of S, as one would need to compute
the second order coderivative of S. This implies evaluating the normal cone to the graph of
the normal cone map to the graph of S, i.e., Ngph Ngph S

. Since S is not normally regular in
the sense of [35], computing an estimate for the latter normal cone would be quite difficult.
Clearly, using this direction would imply inserting an estimate of the coderivative of S

in (2.7), as we did for the examples above, and then solving the resulting conditions by
a standard-type optimization technique. An example of method for the subproblems here
would be the Newton method. Finally, it is worth mentioning that following the pattern of
developments in Section 3, the possible methods mentioned above for the scalar objective
bilevel optimization problem could easily be extended to the multiobjective framework.
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