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Abstract
In this work we deal with parametric inverse problems, which consist in recover-
ing a finite number of parameters describing the structure of an unknown object,
from indirect measurements. State-of-the-art methods for approximating a reg-
ularizing inverse operator by using a dataset of input–output pairs of the forward
model rely on deep learning techniques. In these approaches, a neural network
(NN) is trained to predict the value of the sought parameters directly from the
data. In this paper, we show that these methods provide suboptimal results when
a regularizing inverse operator is discontinuous with respect to the Euclidean
topology. Hence, we propose a two-step strategy for approximating it by means
of a NN, which works under general topological conditions. First, we embed
the parameters into a subspace of a low-dimensional Euclidean space; second,
we use a NN to approximate a homeomorphism between the subspace and the
image of the parameter space through the forward operator. The parameters are
then retrieved by applying the inverse of the embedding to the network predic-
tions. The results are shown for the problem of x-ray imaging of solar flares
with data from the Spectrometer/Telescope for Imaging X-rays. In this case, the
parameter space is homeomorphic to a Moebius strip. Our simulation studies
show that the use of a NN for predicting the parameters directly from the data
yields systematic errors due to the non-Euclidean topology of the parameter
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space. The proposed strategy overcomes the discontinuity issues and furnishes
stable and accurate reconstructions.

Keywords: parametric inverse problems, deep learning, neural networks,
regularization, topology, astronomical imaging

(Some figures may appear in colour only in the online journal)

1. Introduction

In inverse problems, neural networks (NNs) have been used in many different contexts: (i) to
approximate a suitable penalty term in Tikhonov-like regularization approaches; (ii) to estimate
the value of the regularization parameter; (iii) to replace time-consuming operations in unrolled
schemes; (iv) to post-process coarse reconstructions; and (v) to directly approximate an inverse
regularizing operator. We refer the reader to [4, 14, 18] and references therein for a recent
overview.

In this paper we are interested in the latter strategy, which can bring important advantages
with respect to the classical Tikhonov regularization. First, it is faster, as the solution is simply
the evaluation of the trained NN on the assigned data, while the biggest computational effort is
spent during the training phase. Second, deep approximation techniques are not limited to the
treatment of linear inverse problems, but can be easily extended to the case of non-linear ones
[2]. In this work, we focus on parametric inverse problems, where the solution is described by
a finite number of parameters.

Although there is some literature that deals with either approximating the inverse operator
[3, 25, 26], or estimating the parameters of interest [8, 13], by means of NNs, little attention
has been paid to the regularization properties of the inversion method. Specifically, when a
regularizing inverse operator is not continuous with respect to the Euclidean topology, issues
could arise when approximating it directly with a NN, which is, by definition, a continuous
function between Euclidean spaces. For instance, let us consider a parametric inverse problem
in which the goal is to estimate an angle θ ∈ [0, 2π) when the data lie in S1. In this case, data
close to (1, 0) would be mapped either close to 0 or to 2π, thus producing a discontinuity,
which can not be (accurately) approximated by a NN. This simple example suggests that the
naive approach based on using a NN to map the data directly into the parameters may lead to
suboptimal results in practice.

We provide a general treatment for the solution of parametric inverse problems when a
dataset of parameter-data pairs is available. The contribution of the paper is twofold. First,
under mild conditions on the forward operator, we derive the correct topology of the parameter
space needed for defining a continuous regularizing operator. Second, we describe a strategy
for approximating the regularizing operator with NNs. This strategy relies on the knowledge of
an embedding of the parameter space into a (low-dimensional) Euclidean one. Then, a NN is
used for approximating a homeomorphism between the image of the parameter space through
the forward operator and the embedded space. Finally, the parameters are retrieved by applying
the inverse of the embedding to the NN predictions. The advantage of this approach is that the
network is used for approximating a continuous function between Euclidean spaces, in this
way avoiding the discontinuity issues that arise when a NN is used to map non-homeomorphic
spaces.

We demonstrate the effectiveness of the proposed method on a parametric imaging problem
from synthetic data of the Spectrometer/Telescope for Imaging X-rays (STIX) [12], the x-ray
telescope of the Solar Orbiter mission. In particular, we show that, when a specific shape is used
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for parameterizing the solution of the inverse problem, the parameter space has a topology that
makes it homeomorphic to a family of Moebius strips of parameter ε, of equation {ε(x, y, z) :
ε ∈ [0, εmax), (x, y, z) ∈ Moebius}. In this context, our proposed strategy clearly outperforms
the naive approach, which does not take into account the topology of the parameter space.

The reminder of the paper is organized as follows. In section 2 we describe the mathemat-
ical formulation of the parametric regularization and we provide details about the topology
that has to be considered on the parameter space for defining a regularizing operator. Section 3
is devoted to the treatment of discontinuity issues arising when the parameter space is not
endowed with the Euclidean topology and the regularizing operator is approximated directly
with a NN. Further, we describe the proposed strategy for overcoming these issues. In section 4
we present the image reconstruction problem for STIX and the parametric shape used for
approximating the solution. Finally, the results of the numerical experiments are shown in
section 5. Section 6 is devoted to conclusions.

2. Parametric regularization

In the context of this paper, the data space is RM endowed with the Euclidean topology ε. The
object spaceH is a function space equipped with the coarsest topology η that makes continuous
the (possibly non-linear) operator A : H→ RM modeling the data formation and acquisition
process. Our problem is then the ill-posed inverse problem of finding an object f ∈ H that
satisfies

A( f ) ≈ g, (1)

where g is the experimental data corrupted by noise. We propose to seek for a regularized
solution into a parametric subspace of H. With this in mind, we assume that the exact solution
f ∗ belongs to a subset defined as the image of a function Φ : Θ→H, where Θ is a subset of
RP with non-empty interior called parameter space. We denote by εΘ the subspace topology
induced on Θ by the Euclidean topology of RP and we assume that Φ is continuous on (Θ, εΘ).
We can then recast the ill–posed inverse problem (1) as the one of finding θ such that

(A ◦ Φ)(θ) ≈ g. (2)

Hereafter, we will denote with M the noise-free data subset, i.e. M := (A ◦ Φ)(Θ), and we
will equip M with the topology εM inherited as a subspace of RM .

We can define a continuous inverse of A ◦ Φ on M provided that the following two condi-
tions hold:

(a) A ◦ Φ is injective;
(b) we consider on Θ the coarsest topology that makes continuous A ◦ Φ, i.e.

τ :=
{

(A ◦ Φ)−1(U) : U ∈ εM
}
. (3)

These conditions are crucial to define a regularizing operator. Indeed, the topology τ
makes continuous also the inverse of A ◦ Φ on M, as proved in the following lemma.

Lemma 2.1. If conditions (a) and (b) hold, then the function A ◦ Φ is a homeomorphism
between the topological spaces (Θ, τ ) and M.

Proof. By (a) and (b), A ◦ Φ is bijective and continuous between (Θ, τ ) and M. Then, the
thesis is a consequence of the fact that A ◦ Φ is also an open map. �
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Figure 1. (a) Pictorial representation of the manifold M described in example 2.1.
(b) Inverse image under (A ◦ Φ)−1 of an open set of εΘ containing 0.

According to the definition given in the introduction of [24], the map from data space into
the parameter space is regularizable by an operator R if and only if R represents a continuous
extension of the map. In this case, R is referred to as a regularizing operator. Hence, any
continuous extension

R : RM → (Θ, τ ) (4)

of the left inverse ofA ◦ Φ is a regularizing operator for the inverse problem (2). For any of such
extensions, the composition Φ ◦ R is a regularizing operator for (1) and finding a regularized
solution of (1) is then equivalent to determine R. Since A ◦ Φ is continuous on (Θ, εΘ), the
topology τ needs to be coarser than εΘ. In particular, when τ is strictly coarser than εΘ, the
inverse ofA ◦ Φ fromM to (Θ, εΘ) is not continuous. As a consequence, it can not be extended
to a continuous regularizing operator for (2). We show this fact in the following example.

Example 2.1. We consider H = R3, A = I
R3 , Θ = [0, 2π), Φ(θ) = v0 + v1 cos(θ) +

v2 sin(θ), where {v0, v1, v2} is the orthonormal basis represented as in figure 1(a) and M =
S1 ⊆ R3. In this case, as τ makes Θ homeomorphic to M, then it is strictly coarser than εΘ.

With a slight abuse of notation, we denote by (A ◦ Φ)−1 the left inverse ofA ◦ Φ that maps a
point (x, y) ∈ M into the corresponding angle θ. As shown in figure 1(a), the inverse image of
an open set [0, a) (0 < a < 2π) under (A ◦ Φ)−1 is not open for the topology of S1. Therefore,
(A ◦ Φ)−1 is not continuous when Θ is endowed with εΘ.

In general, we have the following result.

Lemma 2.2. If conditions (a) and (b) hold, and if τ is strictly coarser than εΘ, then a
regularizing operator R is not continuous when Θ is equipped with εΘ.

Proof. Let us assume by contradiction that R is continuous from RM to (Θ, εΘ). As R|M is
a continuous inverse of A ◦ Φ, then A ◦ Φ would be a homeomorphism between (Θ, εΘ) and
(M, εM). Hence, thanks to lemma 2.1, (Θ, εΘ) would be homeomorphic to (Θ, τ ), which is an
absurd because εΘ is strictly coarser than τ . �

This result states that, when (Θ, εΘ) is not homeomorphic to M, we need to define a reg-
ularizing inverse operator that is discontinuous w.r.t. the Euclidean topology. We show in the
next section how to construct regularization maps with the desired characteristics.
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3. Regularization from examples

In this section, we show how to construct an approximation of the regularizing operator R
by means of a dataset of examples, i.e. a set of pairs {(gi, θi)}S

i=1 with θi ∈ Θ and gi ≈ (A ◦
Φ)(θi) ∈ RM , representing a noisy sampling of the graph of A ◦ Φ. Towards this aim, we make
use of NNs [7, 10], which are simply parametric functions obtained by recursively composing
a certain number of layers. Each layer is defined as lW,b(z) :=σ(Wz + b), where z ∈ Rn is the
input, W ∈ Rm×n is the weight matrix, b ∈ Rm is the bias and σ : R→ R is a continuous non-
linear function (called activation function) applied component-wise. A NN is then a function
NW of the form

NW (z) :=WL(lWL−1,bL−1 ◦ · · · ◦ lW1,b1 )(z), (5)

where L > 1 is the number of layers and W is the set of the network weights (the entries of the
weight matrices and of the biases). A function defined as in (5) is then trained to perform a task,
i.e. the weights are modified by means of an optimization procedure so that it approximates a
given function.

A straightforward application consists in training a NN to predict the parameter θ from the
corresponding g by solving

W∗ = arg min
W

1
S

S∑
i=1

‖NW (gi) − θi‖2. (6)

By doing so, NW∗ is an approximation of R that is continuous w.r.t. the Euclidean topology
considered both in the domain and in the codomain. Indeed, any NN of the form (5) is implicitly
defined from Rn in Rm as Euclidean spaces. However, if the topology τ on Θ is strictly coarser
than εΘ, as we previously discussed, the NN should be discontinuous for providing a good
approximation of R, leading to an evident contradiction.

To show the issues that arise when applying this naive approximation of R with a NN, we
consider again example 2.1. By using S = 30 000 samples drawn at random from the set Θ,
i.e. θi for i = 1, . . . , S and their corresponding values gi = (cos θi, sin θi), we train a NN N
approximating R by solving problem (6). In figure 2(a) we report the scatter plot of the angle
θ predicted by N from the point g = (cos(θ), sin(θ)) ∈ M over a test set of 200 000 examples.
The plot clearly shows that, according to lemma 2.2, N approximates a discontinuity in (1, 0)
in a continuous way, causing a systematic error in a neighborhood of (1, 0).

To overcome this drawback, we propose the following strategy (whose results on the data of
example 2.1 are given on figure 2(b)). Denoting with E a subset of RN and with εE the topology
inherited as a subspace of RN , we assume to have an analytical expression of an embedding

γ : (Θ, τ ) → (E , εE), (7)

and of its inverse γ−1 over E . In the usual case, (Θ, τ ) is a smooth manifold and the Whitney
embedding theorem [1] guarantees the existence of the embedding and ensures that N � 2P.
Moreover, typically in applications, the parameters to be estimated are either linear (and hence
discontinuity issues do not arise) or angular (as the case in example 2.1). For this reason, we
expect (Θ, τ ) to be homomorphic to canonical topological spaces (like a sphere, a thorus, a
Klein bottle, or Cartesian product of them) for which analytical embeddings in RN are well
known.
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Figure 2. Scatter plot of the angle θ predicted by: (a) the naive approach, and (b) the
proposed method. In both panels, the x and y coordinates of each sample are the coordi-
nates of the point on S1; the z coordinate represent the predicted value for θ. The color
map refers to the value of the angle and it is only needed for visualization purposes.

As γ is a homeomorphism, finding a continuous inverse of A ◦ Φ on M can be recast as
the problem of approximating a homeomorphism ψ between M and E :

ψ : (M, εM) → (E , εE ). (8)

For this approximation task we can make use of a NN, as the topologies in the domain and
codomain are induced by the Euclidean one. Then, the training problem looks like

W∗ = arg min
W

1
S

S∑
i=1

‖NW (gi) − γ(θi)‖2. (9)

Finally, an approximated regularizing operator for problem (2) can be defined as

R := γ−1 ◦ NW∗ . (10)

Indeed, we note that the operator R is defined in (4) as a continuous extension on RM

of an homeomorphism between M and (Θ, τ ). If we assume that the trained NN Nw∗ is
able to accurately approximate the homeomorphism ψ : M→E , then γ−1 ◦ Nw∗ is a good
approximation of R since γ−1 ◦ Nw∗ is defined and continuous on the whole space RM and
γ−1 ◦ Nw∗|M

≈ (A ◦ Φ)−1 (where (A ◦ Φ)−1 denotes the inverse of A ◦ Φ on M). Hence, the
only condition we need to verify is thatNw∗ can approximate the mapψ defined and continuous
from Euclidean spaces and this is guaranteed by the universal approximation theorem.

Figure 3 offers a schematic of the operators involved in the definition of R. The role of γ−1

is to map each point of E into a parameter value θ in a continuous way w.r.t. the topology τ
and in a discontinuous way w.r.t. εΘ. Instead, NW∗ is a continuous transformation between RM

and R
N , both equipped with the Euclidean topology. When N � M (and often in applications

N 	 M), NW∗ performs a dimensionality reduction task. In any case, NW∗ is defined and con-
tinuous on the entire space RM . Therefore, when the inverse γ−1 can be continuously extended
to a neighborhood containing E , the (approximated) regularizing operator R is a continuous
extension of the left inverse of A ◦ Φ. It is worth noticing that our proposed strategy repre-
sents a generalization of the naive approach. Indeed, when the topology τ coincides with the

6
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Figure 3. Commutative diagram showing the relationship between the operators
involved in the definition of R.

Euclidean one, we can trivially choose γ as the identity function and problem (9) is the same
as (6).

In the case of example 2.1, we define γ(θ) := (cos(θ), sin(θ)) and we train a NN by solving
(9). The predicted values of θ are shown in figure 2(b). From the scatterplot, we can appreciate
how the discontinuity issue is solved by our proposed method.

4. Application to the STIX imaging problem

In this section we describe the parametric imaging problem for the STIX [12], an instrument
on board the Solar Orbiter satellite launched by the European Space Agency in February 2020.
STIX is conceived for the study of solar flares, intense phenomena that arise on the Sun sur-
face. During these events, a sudden release of energy stored in the magnetic field of the Sun
accelerates electrons and causes the emission of x-ray photons by bremsstrahlung [6]. The goal
of the inverse imaging problem from STIX data is to retrieve the image of the x-ray emission
from the measurements of the photons incident on the telescope [15–17, 20]. STIX exploits a
bigrid imaging system that allows the sampling of the Fourier transform of the photon flux in
30 frequencies ξ j = (uj, v j), j = 1, . . . , 30 [9, 12] (see figure 4 for a representation). Therefore,
the STIX imaging problem can be described by the equation

Fϕ ≈ V , (11)

where ϕ(x, y) is the function representing the number of photons emitted per unit area from the
location (x, y) on the Sun surface, V ∈ C30 is the array containing the experimental values of
the Fourier transform called visibilities and F is the Fourier transform computed in ξ1, . . . , ξ30

defined by3

(Fϕ) j =

∫
R2
ϕ(x, y) exp

(
2πi(xu j + yv j)

)
dx dy ∀ j ∈ {1, . . . , 30}. (12)

In the following, C30 will be considered as R60.

3 Note that the adopted definition of Fourier transform is typical of astronomical applications and differs from the
usual one because of a plus sign.
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Figure 4. Frequencies sampled by STIX in the frequency. Elliptical Gaussian shape (left
panel) and loop shape (right panel).

As the morphology of solar flares is quite simple, the images to reconstruct are usually
composed by a few basic geometric shapes such as elliptical Gaussians or loops [5, 21, 22]
(figure 4). Such shapes are bidimensional functions ϕθ(x, y) parameterized by an array θ con-
taining, for instance, the coordinates of the center of the shape, the eccentricity, the rotation
angle, etc. Therefore, in the case of the parametric imaging problem for STIX, the parameter-
ization is the function Φ that maps θ into ϕθ and problem (11) becomes the one of finding θ
such that

Fϕθ ≈ V. (13)

Since the Gaussian elliptical shape is a special case of the loop shape with curvature equal to
zero, in the following we will consider ϕθ as a loop and we will provide a description of the
topology τ of the parameter space in such a case.

A loop shape is defined by the following parameters (see figure 5):

• the coordinates (xc, yc) of the center of the shape;
• the intensity F, also named total flux, that is the integral of ϕθ over R2;
• the full width at half maximum (FWHM) σ, which represents the width of the level curve

of the loop at 50% of the peak;
• the curvature c that describes the bending of the loop;
• the eccentricity ε, that, when the curvature is 0, is related to the eccentricity of the elliptical

level curve at half maximum of the shape;
• the rotation angle α.

In our case, then, θ := (xc, yc, F, σ, ε,α, c). More in detail, as shown in figure 5, a loop shape
is given by a superimposition of circular Gaussian shapes with FWHM equal to σ and centers
located on a parabola of equation y = cx2 rotated of angle α. The expression of the loop is then

ϕθ(x, y) :=
F

2πσ2

(∑
j

w j exp

(
− (x − x j)2

2σ
− (y − y j)2

2σ

))
, (14)

where
∑

j w j = 1, w j > 0 decreases for increasing distance of (x j, y j) with respect to (xc, yc)
and the distance between (x j, y j) and (x j−1, y j−1) along the parabola is proportional to
ε � 0. We point out that when ε = 0, the loop shape becomes a circular Gaussian shape that
is invariant with respect to rotations of angle α and bending with curvature c. In the following,
we will set c = 0 and α = 0 when ε = 0.
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Figure 5. Level curve of a loop shape obtained as a weighted sum of circular Gaussians.
The circular shapes have the same FWHM, however they are plotted with different sizes
as their flux decreases with increasing distance from (xc, yc).

Figure 6. Homeomorphism between (Θ, τ ) and a Moebius strip in R3 (fixed ε > 0 and
all the other parameters with the exception of α and c).

The parameter space of this inverse problem is

Θ := IX × IY × IF × Iσ × Iε,α,c , (15)

where IX , IY , IF and Iσ are the intervals of definition of xc, yc, F and σ, respectively, and
Iε,α,c := ((0, εmax] × [0, 180) × [cmin, cmax]) ∪ {(0, 0, 0)}.

If we fix ε > 0 and all the other parameters but α and c, then the parameter space becomes
Θ := [0, 180) × [cmin, cmax]. Consequently, a loop shape with orientation angle 0 and curvature
c coincides with a loop shape with orientation angle 180 and curvature −c, from which it
follows that M is a Moebius strip in R60. Therefore, since (Θ, τ ) is homeomorphic to M, we
have that τ makes Θ homeomorphic to a Moebius strip and that τ is strictly coarser than εΘ
(see figure 6).

We now propose a rather general strategy for visualizing the Moebius strip M in the data
space, which ideally would be suitable for gaining insights on any topology under examina-
tion. Indeed, one can randomly sample M by randomly sampling Θ and computing the data
corresponding to each parameter. Then, it is possible to visualize M by performing a principal

9
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Figure 7. Scatter plot of a set of visibilities projected on a three-dimensional space
obtained by means of a PCA. In the first and in the second row the color indicates the
value of the parameters α and c of each example, respectively. The plots are shown in
the two columns with a different vantage point.

component analysis (PCA) and projecting the vectors of M on the first three axes. Finally, one
can color-plot the values of the parameters corresponding to each data and see what are the iden-
tifications in the parameter space. In our specific case, we generate a dataset of S = 30 000 pairs
(αi, ci) (i = 1, . . . , S) and, for each pair, we compute the corresponding visibilities to obtain a
set of examples Vi (i = 1, . . . , S) randomly drawn fromM. Then, we perform a PCA on the set
{Vi}S

i=1 and project each Vi on the three principal component axes. The corresponding scatter
plot is reported in figure 7. There, the color maps indicate the value of α (top panel) and c
(bottom panel) associated to each visibility Vi, and are functional to visualize the identification
of the visibilities corresponding to (0, c) and (180,−c). Also, the use of a fourth dimension,
represented by the color map associated to c, permits the separation of the visibilities that lie
close to the central knot.

We describe now the embedding of (Θ, τ ) in RN and its inverse. If we consider the simple
case of Θ = [0, 180) × [cmin, cmax], we obtain that the embedding is the parameterization γ of
the Moebius strip given by

γ(α, c) := ((1 + c sin(α)) cos(2α), (1 + c sin(α)) sin(2α), c cos(α))) (16)

with inverse

γ−1(x, y, z) =

(
arctan2(y, x)

2
,

z

cos
( arctan2(y,x)

2

)
)

, (17)

where arctan2 is the function that retrieves the value of the angle in polar coordinates corre-
sponding to a point (x, y). On the other hand, in the general case, we have that the embedding
is γg defined by

10
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γg(xc, yc, F, σ, ε,α, c) := (xc, yc, F, σ, ε, εγ(α, c)) (18)

with inverse

γ−1
g (s, t) =

⎧⎪⎨
⎪⎩

(s, 0, 0) if s5 = 0(
s, γ−1

(
1
s5

t

))
otherwise

, (19)

where s ∈ R5 and t ∈ R3. We point out that in (18) the parameterization of the Moebius strip in
the last three components is multiplied by ε for taking into account that, when the eccentricity
is equal to 0, the loop collapses into a Gaussian circular shape and, in that case, the orientation
angle and the curvature are chosen equal to 0.

5. Numerical experiments

We assess the performances of the proposed method when applied to the STIX imaging
problem. First, we consider a scenario in which we fix all the parameters of the loop shape
with the exception of α and c. We compare the performances of the proposed method with
those of the naive approach based on training a NN to predict α and c from the visibilities.
We show that the performances of the naive approach are suboptimal and that the reason of
this misbehavior is only due to discontinuity issues. Second, we test our method on the more
realistic problem of retrieving all the parameters of the loop from the corresponding visibility
values.

The implemented NNs are multilayer perceptrons [7] with similar architecture: they take as
input an array of 60 real values (the real and imaginary parts of the 30 visibilities) and they
have hidden layers composed by 3000 neurons each. We choose the rectified linear unit [7] as
activation function of the neurons. For implementing and training the networks we utilize the
PyTorch library [19] and the Adam optimizer [11]. Our code is publicly available at https://
github.com/paolomassa/Parametric-inverse-problem-topology.

5.1. Simple dataset scenario

We fix xc = yc = 0, F = 1000, σ = 8, ε = εmax = 5 and we randomly generate a set of
pairs {(αi, ci)}S

i=1, where S = 50 000, αi ∈ [0, 180) and ci ∈ [−0.05, 0.05]. For each sample
θi = (αi, ci), we compute the corresponding array of visibilities Vi. Then we split the dataset
{(Vi, θi)}S

i=1 into a training, a validation and a test set of 30 000, 10 000 and 10 000 samples,
respectively. We note that, in this simple dataset scenario setting, we are not adding noise to the
visibility values. We consider two NNs Nn andNe with four hidden layers each. The subscripts
stand for naive and embedding, respectively. The networks Nn and Ne are trained on the same
set of examples for 1000 and 100 epochs, respectively.

Figure 8 shows the results obtained on the test set by the naive approach and by the
proposed method. Specifically, for each array of visibilities Vi of the test set, we compute
((αn)i, (cn)i) :=Nn(Vi) and ((αe)i, (ce)i) := γ−1(Ne(Vi)). In the left panel of figure 8, we show
the scatter plots ofαn andαe as functions of the ground truth valueα. In the right panel, instead,
we report the scatter plots of cn and ce as functions of the ground truth value c. It is evident from
these results that the naive approach has suboptimal performances. Indeed, when the ground
truth value of the orientation angle is close to 0 (or to 180), the predictions provided by Nn

are affected by large errors. For the same examples, also the value of the predicted curvature
is very different from the correct one. This is due to the fact that, as the topology τ on Θ is

11

https://github.com/paolomassa/Parametric-inverse-problem-topology
https://github.com/paolomassa/Parametric-inverse-problem-topology


Inverse Problems 38 (2022) 105001 P Massa et al

Figure 8. Results obtained on the test set in the simple dataset scenario case by the naive
approach and by the proposed method (blue circles and red crosses, respectively). Left
and right panels: scatter plots of the predicted orientation angle and of the predicted
curvature as functions of the ground truth value, respectively.

strictly coarser than εΘ, the prediction should be discontinuous w.r.t. the latter topology. How-
ever, since Nn intrinsically assumes Θ endowed with εΘ and it continuous w.r.t. that topology,
the network approximates the discontinuity in a continuous way. On the other hand, γ−1 ◦ Ne

provides accurate estimations of both the orientation angle and the curvature. There are just a
few examples for which the predictions seem off-target, but it can be easily noted that, due to
the identification (0, c) = (180,−c) the proposed approach still predicts a value of the orien-
tation angle close to 0 instead of close to 180. Coherently, the predicted curvature value has
only a different sign w.r.t. the ground truth one. Therefore, the corresponding ground truth and
predicted loop shapes are approximately identical.

The discontinuity issue arising when the orientation angle is close to 0 or 180, can be fur-
ther appreciated with the following test. We fix xc = yc = 0, F = 1000, σ = 8, ε = 5, α = 0,
choose c ∈ {−0.05,−0.025, 0, 0.025, 0.05}, and compute the corresponding visibilities. We
then predict the orientation angle and the curvature with both the naive and the proposed
approach and visualize the associated loop shapes. Figure 9 shows that Nn clearly fails to pro-
vide reliable reconstructions of the ground truth loop shapes, by mis-estimating the orientation
angle and curvature. The proposed method, instead, does not suffer from the discontinuity issue
and retrieves visually accurate loop shapes.

A couple of comments are necessary at the end of this subsection. First, the discontinuity
issue shown in figures 8 and 9 does not depend on the network architecture. Indeed, every NN
of the form (5) is not continuous when Θ is equipped with the topology τ . Although there
might be network architectures which are more performing than the multilayer perceptron, the
discontinuity issue would always arise and our method would always represent a valid solution.
Furthermore, we note that the definition of γ does not affect the performance of the NN. Indeed,
although E is not uniquely defined, it is homeomorphic to M by definition. Hence, a NN is
able to approximate the homeomorphismψ : M→E independently from the actual definition
of E and γ, since it is a continuous function between Euclidean spaces.

Second, as we have not added noise to the visibility values of the training, validation and test
set, the reported results are not affected by overfitting [7, 10] and the encountered misbehavior
can be explained only in terms of the topological considerations we have made. Finally, while
Nn has been trained for a number of epochs ten times larger than Ne, its performances remain
consistently worse than those of γ−1 ◦ Ne. This is a further confirmation that the errors in the
predictions of the naive approach are not due to implementation or training issues, but just to
the topological nature of the problem.
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Figure 9. First row: ground truth loop shapes with orientation angle equal to 0 and vary-
ing curvature. Second and third row: loop shapes obtained from the parameters predicted
by the naive approach and by the proposed method. From left to right: different values
of the curvature c.

5.2. Complete dataset scenario

We generate a set of S = 100 000 pairs {(Vi, θi)}, where θi is a randomly drawn array of param-
eters of a loop and Vi is the corresponding array of visibilities. Then, we split this dataset into
a training, validation and test set of 60 000, 20 000 and 20 000 samples each. In this scenario,
the visibility values are perturbed with white Gaussian noise with zero mean and standard
deviation equal to 2

√
F (for simulating realistic STIX data acquisitions [12]).

We evaluate the performances of the proposed method, by training a NN N whose weights
are solution of (9), where the embedding is γg defined in (17). The implemented NN has six
hidden layers, and dropout [23] is applied before each layer to avoid over-fitting. Training is
stopped when the loss on the validation set is minimized. Figure 10 shows the results obtained
by γ−1

g ◦ N on the test set.
In the left-most panel, we note that the parameters xc, yc and F are retrieved with good

accuracy, the normalized absolute error4 being always lower than 10%. On the other hand, the
FWHM σ and the eccentricity ε are reconstructed with larger uncertainty, as they present a
wider error distribution. However, the 75th percentile is lower than 15% for both parameters.

The middle and the right panel of figure 10 show how the proposed regularization method
deals with the discontinuity issues presented before. The reconstruction of the orientation angle
as a function of the ground truth value is very close to the identity when the data correspond to
elongated Gaussian shapes (orange and red dots in the middle panel scatter plot). Instead, for
circular shapes, we note how the method reconstructs arbitrary values of the orientation angle
(the blue dots in the middle panel scatter plot), as the shape is indeed invariant under rotations.

4 We remind that the normalized absolute error is defined as the absolute difference between the predicted and the
ground truth value of the parameter divided by the length of the interval of definition of the parameter itself.
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Figure 10. Results obtained on the test set in the complete dataset scenario case by
the proposed approach. Left panel: box plots of the normalized absolute errors of the
predicted parameters xc, yc, F, σ and ε. Middle panel: scatter plot of the predicted ori-
entation angle as a function of the ground truth value α. Right panel: scatter plot of the
predicted curvature as a function of the ground truth value c. The color maps indicate
the eccentricity value of each example.

Further, the red dots in upper left and lower right corners have to be considered close to the
those on the identity function as both the ground truth and the predicted angles lie on S1.

The behavior of the curvature scatter plot is very similar to the one of the orientation angle.
In particular, the circular Gaussian examples (blue dots) are reconstructed with curvature close
to zero. The most eccentric examples (red dots) are distributed along the bottom left-top right
diagonal and, to a lesser extent, along the top left-bottom right diagonal. The examples of the
latter correspond to those in the upper left and lower right corners of the middle panel, thanks
to the Moebius strip identification (see figure 6).

6. Concluding remarks

We presented a regularization method for approximating the solution of parametric inverse
problems by leveraging on a dataset of examples of input–output pairs of the forward opera-
tor. The regularization operator is conceived as the composition of a dimensionality-reduction
homeomorphism (performed by means of a NN) and the inverse of a suitable embedding of the
parameter space into a Euclidean space. Our results provide new insights on the use of NNs for
the solution of inverse problems. Indeed, we proved that approximating a regularizing opera-
tor directly with a NN is suitable only when the operator is defined between subsets of Rn and
Rm both endowed with the topology induced by the Euclidean one. In the more general case
of locally Euclidean topological spaces, the proposed method represents a rigorous strategy
to construct a continuous regularizing operator. Even when the parameter space is endowed
with a topology that is strictly coarser than the Euclidean one, our method is able to solve the
discontinuity issue that makes the naive approach fail by keeping all the advantages in terms
of computational efficiency of using a NN.

A limitation of the proposed method is that it strongly relies on knowledge of the analytical
expression of γ. However, we believe that, in applications, γ should be easily defined, as the
underlying topologies are typically well-known. Indeed, it is reasonable to assume that the dis-
continuities that could arise in applications are due to angular parameters (as in our example),
and so possibly leading to topological spaces that are canonical, e.g. a sphere, a thorus, a Klein
bottle, or Cartesian product of them. In practice, we should be always able to derive the topol-
ogy of the parameter space and the associated γ, and therefore to apply this methodology in a
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straightforward manner. At the same time, the choice of γ is not unique, since infinite embed-
dings between known topologies are possible. Whichever the choice γ, a NN is always able to
approximate the homeomorophism between the data space and the embedded one.

As far as the application to the STIX imaging problem is concerned, to the best of our
knowledge this is the first time that NNs are used for its solution. Since the first data acqui-
sition in June 2020, there has been a huge effort by the STIX team for correcting systematic
errors in the data and the visibility calibration is now close to the end. Therefore, assessing
the performances of the proposed method on real measurements, which is beyond the scope of
this paper, will be material of future studies as well as the comparison with other algorithms
already implemented for the solution of this inverse problem.

The ideas we proposed in this paper may apply to a much larger range of practical appli-
cations, and future work could be devoted to (i) address the problem of deriving the topology
τ and the corresponding embedding γ in an automatic way (at least under specific assump-
tions) (ii) testing NNs with different architectures; (iii) testing loss functions weighting the
parameters according to their relevance in describing the solution; (iv) providing uncertainty
quantification on the retrieved parameters.

Finally, we believe that the change in topology may come as a mathematical trick to for
approximating discontinuous functions with NNs. This will be material for future studies,
generalizing our methodology.
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