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A popular research area today in statistics and machine learning is that of
manifold learning, which is related to the algorithmic techniques of dimensionality
reduction. Manifold learning can be divided into linear and nonlinear methods.
Linear methods, which have long been part of the statistician’s toolbox for
analyzing multivariate data, include principal component analysis (PCA) and
multidimensional scaling (MDS). Recently, there has been a flurry of research
activity on nonlinear manifold learning, which includes Isomap, local linear
embedding, Laplacian eigenmaps, Hessian eigenmaps, and diffusion maps. Some
of these techniques are nonlinear generalizations of the linear methods. The
algorithmic process of most of these techniques consists of three steps: a nearest-
neighbor search, a definition of distances or affinities between points (a key
ingredient for the success of these methods), and an eigenproblem for embedding
high-dimensional points into a lower dimensional space. This article gives us a
brief survey of these new methods and indicates their strengths and weaknesses.
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INTRODUCTION

Manifold learning became a new topic of research
in the year 2000 when two innovative and novel

articles,1,2 appeared in the same issue of Science. These
articles addressed the problem of how to recover
a nonlinear low-dimensional manifold from data
located on that manifold, which is embedded within
a higher dimensional ambient space. For example,
in computer vision and image analysis, an object is
viewed from multiple viewing angles (so that noise is
not an issue), and so the observed data lie exactly on
a low-dimensional manifold. To resolve this manifold
learning problem, the techniques of Isomap and locally
linear embedding (LLE) were proposed, and they
both had an enormous impact on the development
of this topic. The methodologies, algorithms, and
solutions given by those articles were different, but
both approaches boiled down to extracting the top or
bottom few eigenvalues and associated eigenvectors
of certain large and sparse matrices. These algorithms
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were the first attempts at nonlinear manifold learning,
using spectral embedding methods.3 Following the
appearance of these two articles, a number of
other approaches for solving the same problem were
published in a variety of journals and books. Thus,
we saw the introduction of Laplacian eigenmaps,4

Hessian eigenmaps,5 manifold charting,6 local tangent
alignment,7 diffusion maps,8,9 and several other
techniques. More likely, however, real data rarely
lie exactly on any type of manifold; so, these
algorithms have been applied primarily to simulated
data that are randomly sprinkled on manifolds having
specific quirks (e.g., S-curved manifold, Swiss-roll
manifold, open box, torus, sphere, fishbowl), and
these manifolds are studied in order to expose any
weaknesses of these algorithms. Research interest in
nonlinear manifold learning has prompted the recent
appearance of several books and collections of articles
on the topic (see Refs 10–12).

Both Science articles addressed the manifold
learning problem as one of ‘dimensionality reduction,’
which has long been an important topic for
statisticians.12,13 The statistical community developed
the theory and practice of various methods for
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linear dimensionality reduction. The two most widely
used linear techniques for dimensionality reduction
are principal components analysis (PCA) and
multidimensional scaling (MDS), both of which have
solutions that are based upon the top few eigenvalues
and associated eigenvectors of certain matrices.
Recent applications of PCA include problems in
computer vision, facial and object recognition, image
compression, astronomy, and bioinformatics. MDS
had its origins in psychology, but recent applications
to bioinformatics have enabled researchers, for
example, to construct a global representation of
the protein-structure universe. Other linear methods
include projection pursuit, which constructs linear
projections of high-dimensional data that display non-
Gaussian features; independent component analysis,
which constructs linear projections of the data that
are mutually independent and (with at most one
exception) non-Gaussian; and factor analysis, which
tries to explain the correlation structure of a set
of variables by modeling those variables as a linear
combination of a small number of unobserved latent
variables or factors. Many of the probability models
used for machine learning have been interpreted as
latent variable models, and nonlinear factor analysis
14 has been informative in revealing inadequacies in
linear relationships between variables, in exploring
underlying nonlinear structure in multivariate data,
and in expressing ways of thinking about nonlinear
manifold learning.

LINEAR MANIFOLD LEARNING

Prior to the year 2000, dimensionality reduction
techniques focused on linear manifolds. A linear
manifold is a line, a plane, or a hyperplane, depending
upon the number of dimensions involved. There have
been numerous examples of real data located in some
high-dimensional space that have been shown to live
close to a much lower dimensional linear manifold.
In that sense, the low-dimensional linear manifold
provides a succinct summary of the relationships
between the observed variables. Linear dimensionality
reduction is accomplished by constructing a few linear
transformations of those variables, and the specific
linear transformations are chosen to possess certain
optimality properties.

The most popular linear dimensionality reduc-
tion techniques have been PCA, which constructs
uncorrelated linear projections of the data, each pro-
jection of which has maximal variation, and MDS,
which attempts to preserve pairwise distances to
be used primarily for data display. Assuming the
data x1, . . . , xn ∈ �r, PCA computes the eigenvalues

and corresponding eigenvectors of the (r × r) sample
covariance matrix; for a t-dimensional embedding,
PCA retains only those eigenvalue–eigenvector com-
binations for which the t largest eigenvalues explain
a high percentage of the total variation (sum of
the eigenvalues) in the data. MDS starts with an
(n × n) matrix � = (δij) of proximities (i.e., dis-
tances between all pairs of data points), rather than
the data points themselves, and then computes the
(n × n) matrices A = (δ2

ij) and B = −1
2HAH, where

H = In − n−1Jn and Jn = 1n1τ
n is a matrix of ones.

The final step in the MDS algorithm is to extract
the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn and eigenvectors
v1, v2, . . . , vn of B, so that, for an embedding of
dimension t � r, the principal coordinates of the
embedding are given by the columns of the (t × n)
matrix Ŷ = (̂y1, . . . , ŷn) = (

√
λ1v1, . . . ,

√
λtvt)τ . Refer

to Ref 15, Chapters 7 and 13, for details of PCA and
MDS, respectively.

NONLINEAR MANIFOLD LEARNING

Algorithms for nonlinear manifold learning seek to
learn about the complete low-dimensional represen-
tation of an unknown nonlinear manifold that is
embedded in some high-dimensional space. We also
wish to retain the neighborhood structure of the
manifold. In situations where the manifold is highly
nonlinear, these algorithms are better at recovering
the manifold than are the linear methods.

We can express the problem in the following
terms. Let {yi} represent a finite random sample of
n data points that lie on a smooth t-dimensional
manifold M with metric denoted by the geodesic
distance,

dM(p, q) = inf
c∈C(p,q)

L(c), (1)

where C(p, q) is the set of all differentiable curves
in M that join up the points p and q, and L(c) is
the arc length of the curve c ∈ C(p, q).3 These points
are nonlinearly embedded by a smooth map ψ into
high-dimensional space X = �r with Euclidean metric
‖·‖X, where t � r. In other words, the embedding
map is ψ : M → X, and a point y on the manifold M
is represented by y = φ(x), x ∈ X, where φ = ψ−1.
The goal is to ‘learn’ about the manifold M
and find an explicit representation of the map ψ ;
that is, we use unsupervised learning algorithms
to discover low-dimensional representations, {yi} in
M, of high-dimensional input data points, {xi}
in X, while remaining faithful to the structure
of the input data. What ‘faithful’ means is that
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inputs that are close to each other are mapped to
outputs that are close to each other, while distant
inputs are mapped to distant outputs. This feature
of dimensionality reduction would be helpful, for
example, in clustering applications by transforming a
complicated high-dimensional problem into a much
simpler low-dimensional one. Such a reformulation
would also be of use in regression or prediction
problems. In general, because it is impossible to
visualize points in four or more dimensions, we retain
only the two or three-dimensional solutions and plot
the n corresponding vector points, {yi}, in two or
three-dimensional space.

The algorithms we discuss here each involve
three steps: (1) using neighborhood information
around each data point, we construct a weighted
graph with data points as vertices; (2) a step
specific to the algorithm, in which the weighted
neighborhood graph is transformed into suitable input
for the next step; and (3) a spectral embedding step
involving an (n × n) eigenequation computation. In
this article, we describe a few of these nonlinear
manifold learning algorithms, namely, Isomap, local
linear embedding, Laplacian eigenmaps, Hessian
eigenmaps, and diffusion maps. For the mathematical
foundations behind nonlinear manifold learning see
Ref 3.

Types of Embeddings and Algorithms
The manifold learning problem stated above is ill-
posed as it stands, and needs some sort of restric-
tions on the type of embedding to make it work.
Accordingly, embeddings are taken either to be iso-
metric or conformal. Isometric embeddings preserve
infinitesimal lengths and angles, while conformal
embeddings preserve only infinitesimal angles.16 In
that sense, therefore, all isometric embeddings are
special cases of conformal embeddings. The origi-
nal Isomap algorithm can only recover an isometric
embedding, while LLE can recover both types of
embeddings. There is now a conformal version of
Isomap.17

Algorithms for manifold learning can also be of
two different kinds, either local methods or global
methods, although hybrids of both methods have
been proposed. Isomap is a global method because
its embedding is based upon the geodesic distances
between all pairs of points, while LLE is a local method
because its embedding is based upon the relationship
of each data point to its neighboring points. A local
approach is computationally more efficient than a
global approach because the former involves sparse
matrices and is more generally applicable to different
types of manifolds.

Isomap
Isomap is short for ‘isometric feature mapping.’1 The
technique makes two assumptions: (1) the manifold
M is a smooth convex region of �t, t < r and
(2) the embedding ψ : M → X is an isometry. The
second assumption implies that for any pair of points,
y = φ(x), y′ = φ(x′), on the manifold M, the geodesic
distance between those points equals the Euclidean
distance between their corresponding coordinates,
x, x′ ∈ X; that is, dM(y, y′) = ‖x − x′‖X. Isomap views
the manifold M as a convex region distorted in any
of a number of ways, such as by folding or twisting.
Examples of manifolds for which Isomap performs
well include rolled-up sheets of paper, open boxes,
or open cylinders. Isomap performs poorly when the
manifold has holes,5 which violates the convexity
assumption.

Isomap is a nonlinear generalization of the MDS
algorithm in which Euclidean distances are replaced
by geodesic distances between points. The three steps
are as follows:

1. Compute the distances dX
ij = dX(xi, xj) =

‖xi − xj‖X between all pairs of points xi, xj ∈ X,
i, j = 1, 2, . . . , n, and then determine which data points
are among either the K nearest neighbors or are within
ε > 0 of that point.

2. Compute a weighted neighborhood graph
G = G(V, E), where the vertices, V = {x1, . . . , xn}, are
the input data points and the edges, E = {eij}, indicate
the neighborhood relationships between the points.
The edge eij that joins the neighboring points xi and
xj has a weight wij equal to the distance dX

ij between
those points. If no edge exists between any two points,
the corresponding weight is zero. The true geodesic
distances {dM

ij } on the manifold are estimated by the
graph distances {dG

ij}, which are the shortest path
distances between all pairs of points in the graph G.
Non-neighboring points are connected by a sequence
of neighbor-to-neighbor links and the length of this
path is the total of the link weights. The shortest
path between every pair of vertices in a graph can
be computed efficiently using Floyd’s algorithm18 or
Dijkstra’s algorithm.19

3. Apply classical MDS to spectral embedding.
Collect the graph distances into an (n × n) symmetric
matrix DG = (dG

ij). Let SG = ([dG
ij]

2). Compute AG
n =

−1
2HSGH, where H = In − n−1Jn is a centering matrix

and Jn is an (n × n)-matrix of ones. The matrix AG
n

will be nonnegative-definite of rank t < n. Denote by
AY

n the matrix AG
n, but where SY = ([dY

ij ]
2) replaces SG

and dY
ij = ‖yi − yj‖X. Then, ‖AG

n − AY
n‖ is minimized

by the eigenvectors v1, . . . , vt corresponding to the
t largest eigenvalues, λ1, . . . , λt, of AG

n. The graph
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G is embedded into Y by the (t × n)-matrix Ŷ =
(̂y1, . . . , ŷn) = (

√
λ1v1, . . . ,

√
λtvt)τ . The ith column,

ŷi, of Ŷ provides the embedding coordinates in Y of
the ith data point.

Isomap also includes a graphical display
for estimating the intrinsic dimensionality of the
manifold. Let the (n × n)-matrix DY

t be the set of
Euclidean distances between the n columns of Ŷ. Let
R2

t = [corr(DY
t , DG)]2 denote the squared correlation

coefficient of all corresponding pairs of entries in the
matrices DY

t and DG. The intrinsic demensionality t∗ is
that value of t at which an ‘elbow’ appears in the plot
of 1 − R2

t against t. More details and an example can
be found in Ref 3. When n is very large, a landmark
Isomap algorithm17 is used to increase efficiency in
computing.

Locally Linear Embedding
LLE2 uses a completely different philosophy to
manifold learning than does Isomap. Geometrically,
LLE sees a manifold as a collection of possibly
overlapping regions; if the number of points in a
neighborhood is small and the manifold is smooth,
then the regions will appear to be locally linear.
LLE performs well when the data are uniformly
sampled over the manifold and performs poorly when
attempting to recover a closed manifold, such as
a sphere, a torus, or a cylinder, which cannot be
unfolded by LLE. The main difference between the
LLE and Isomap algorithms is in the way that LLE
carries out the second step. The three steps are as
follows:

1. Fix K � r, but where K > t, and let Ni denote
the K nearest-neighbor points of xi, i = 1, 2, . . . , n. The
neighborhood Ni could also represent those points
that fall within a ball of radius ε of xi.

2. LLE assumes that every manifold is locally
linear. So, we can approximate each point xi by
a linear function of its K nearest neighbors. Thus,
we can write x̂i = ∑n

i=1 wijxj, where wij is a scalar
weight for xi with unit sum,

∑
j wij = 1, for translation

invariance; if x� �∈ Ni, then wij = 0. Let W = (wij) be
a sparse (n × n)-matrix of weights. The optimization
problem is to find an optimal set of weights Ŵ = (ŵij)
by solving

Ŵ = arg min
W

n∑
i=1

‖xi −
n∑

j=1

wijxj‖2, (2)

subject to
∑

j wij = 1, i = 1, 2, . . . , n, and the
sparseness constraint wi� = 0 if x� �∈ Ni. Fix xi. We
then write the summand as ‖∑

j wij(xi − xj)‖2 =
wτ

i Giwi, where wi = (wi1, . . . , win)τ , only K of which

are nonzero, and Gi = (Gi,jk) is an (n × n) Gram
matrix (i.e., symmetric, nonnegative-definite) with
Gi,jk = (xi − xj)τ (xi − xk), j, k ∈ Ni. We form the
Lagrangian function,

f (xi) = wτ
i Giwi − μ(1τ

nwi − 1), (3)

which is minimized with respect to wi by ŵi =
μ

2 G−1
i 1n. Premultiplying this last result by 1τ

n yields
the optimal weights

ŵi = G−1
i 1n

1τ
nG−1

i 1n
, (4)

where if x� �∈ Ni, then ŵi� = 0.
3. Fix the matrix Ŵ = (ŵij) and compute the

low-dimensional embedding. We wish to find the
(t × n)-matrix Y = (y1, . . . , yn), t � r, of embedding
coordinates that solves

Ŷ = arg min
Y

n∑
i=1

‖yi −
n∑

j=1

ŵijyj‖2, (5)

subject to the constraints on the {yi} that the mean
vector is zero and the covariance matrix is the identity;
that is,

∑
i yi = Y1n = 0 and n−1 ∑

i yiy
τ
i = n−1YYτ =

It. We can write the matrix of embedding coordi-
nates as

Ŷ = arg min
Y

tr{YMYτ }, (6)

where M is the sparse, symmetric, and nonnegative-
definite (n × n)-matrix M = (In − Ŵ)τ (In − Ŵ). The
objective function tr{YMYτ } has a unique global mini-
mum given by the eigenvectors corresponding to
the smallest t + 1 eigenvalues of M. The smallest
eigenvalue of M is zero with corresponding eigen-
vector vn = n−1/21n. We can ignore the smallest ei-
genvalue and associated eigenvector because the sum
of the coefficients of each of the other eigenvectors,
which are orthogonal to n−1/21n, is zero, and
hence this will constrain the embeddings to have
sum zero. The optimal solution is Ŷ = (̂y1, . . . , ŷn) =
(vn−1, . . . , vn−t)τ , where vn−j is the n-dimensional
eigenvector corresponding to the (j + 1)st smallest
eigenvalue of M.

Laplacian Eigenmaps
The Laplacian eigenmaps algorithm4 is closely related
to LLE, and in some situations, the solutions are
equivalent. The three steps are

1. Define the set Ni to be the neighborhood of the
point xi composed of either the K nearest neighbors
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of that point or by all those points that lie within an
ε-neighborhood of that point.

2. For xi, compute a symmetric, (n × n),
weighted adjacency matrix W = (wij), where the
distance between points xi and xj is defined
by an isotropic diffusion kernel, wij = wσ (xi, xj) =
exp{− 1

2σ2 ‖xi − xj‖2} if xj ∈ Ni and zero otherwise,
i, j = 1, 2, . . . , n, where σ > 0 is the kernel bandwidth.
The further apart are the two points xi and xj, the
smaller will be the weight wij. Using the elements of
W, let G denote the resulting weighted graph.

3. Let D = (dij) be an (n × n) diagonal matrix
with diagonal elements dii = ∑

j∈Ni
wij, i = 1, 2, . . . , n.

The (n × n) symmetric matrix L = D − W, which
is called the graph Laplacian for the graph
G, is nonnegative-definite. The (t × n)-matrix Y =
(y1, . . . , yn), which is used to embed the graph G into
�t, where yi is the embedding coordinates of the ith
point, is found by minimizing

∑
i

∑
j

wij‖yi − yj‖2 = tr{YLYτ }. (7)

Thus, we seek the solution,

Ŷ = arg min
Y:YDYτ =It

tr{YLYτ }, (8)

where Y is restricted so that YDYτ = It to prevent
a collapse onto a subspace of fewer than t −
1 dimensions. The solution of this minimization
problem can be shown to be the solution of the
generalized eigenequation Lv = λDv, which, in turn,
is given by the eigenvalues and eigenvectors of
the (n × n) symmetric matrix P = D−1/2LD−1/2 =
(�ij/

√
diidjj), called the normalized graph Laplacian,

where L = (�ij). If data are sampled uniformly
from a low-dimensional manifold, the smallest
eigenvectors of P form a discrete approximation to
the Laplace–Beltrami operator on the manifold.4 As
with LLE, the smallest eigenvalue λn of P is zero
with corresponding eigenvector vn = 1n. Ignoring the
smallest eigenvalue and vector, the rows of Ŷ are
the eigenvectors Ŷ = (Ŷ1, . . . , Ŷn) = (vn−1, . . . , vn−t)τ

corresponding to the next t smallest eigenvalues,
λn−1 ≤ · · · ≤ λn−t, of P.

Theoretical work on Laplacian eigenmaps has
yielded the following asymptotic result.20 If the
data {xi} are obtained as an independent uniformly
distributed sample over the manifold M, then, as
n → ∞ and the kernel bandwidth σ → 0, the discrete
graph Laplacian has been shown to converge to
the continuous Laplace–Beltrami operator on the
manifold. Additional large-sample results for variance
and bias of the estimator are also available.20

Hessian Eigenmaps
Hessian eigenmaps5 (also known as Hessian LLE
or HLLE) have a lot in common with both LLE
and Laplacian eigenmaps. Hessian eigenmaps were
introduced to improve upon the local linearity
assumption of LLE by employing a Hessian to
compute the local curvature of the manifold at each
data point. HLLE takes the Laplacian eigenmaps
algorithm and replaces the Laplacian by the Hessian,
where a Hessian of a function is the matrix of
its partial second derivatives (see Refs 3 and 15,
Chapter 16).

The low-dimensional representation that mini-
mizes the curvature of the manifold is obtained from
the smallest t + 1 eigenvectors of a discrete approx-
imation to the Hessian. As in the above techniques,
the smallest eigenvalue is zero and its eigenvector
contains the constant functions. We discard both this
smallest eigenvalue and its corresponding eigenvec-
tor. The remaining t smallest eigenvectors provide the
desired embedding coordinates. HLLE assumes that
the ambient space is (1) connected and (2) locally iso-
metric to the manifold, unlike Isomap, which assumes
that the ambient space is convex and the embedded
space is globally isometric to the ambient space. HLLE
can handle large amounts of data and performs well
even when the manifold has holes.5

Diffusion Maps
Diffusion maps,8,9 like Laplacian eigenmaps, were
originally motivated as a nonlinear dimensionality
reduction method and not as a solution to the
manifold learning problem. Although diffusion maps
are derived using a different type of argument than the
other nonlinear manifold learning techniques, there
are also three steps to the algorithm. The first two
steps are similar to those of LLE and Laplacian
eigenmaps. For the third step, the method constructs
a Markov chain over a graph of the data points, and
then carries out an eigenanalysis of the probability
transition matrix of the Markov chain to obtain the
embedding coordinates in low-dimensional space.

1. As with LLE and Laplacian eigenmaps,
define Ni to be the set of K nearest-neighbor points
(or ε-nearest-neighbor points) to the data point xi,
i = 1, 2, . . . , n.

2. The n data points {xi} can be regarded as
vertices of a graph G. As edges (i.e., connections
between pairs of adjacent vertices) in G, use the
appropriate entries of a weighted adjacency matrix
W = (wσ (xi, xj)), where the distance between points
xi and xj is defined by an isotropic diffusion kernel,
wσ (xi, xj) = exp{− 1

2σ2 ‖xi − xj‖2}, xj ∈ Ni, where σ is

© 2012 Wiley Per iodica ls, Inc.
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the bandwidth of the kernel, and zero otherwise, as in
the second step of Laplacian eigenmaps.

3. This is the spectral embedding step. As for
Laplacian eigenmaps, construct the diagonal matrix
D = (dij) and the graph Laplacian L = D − W. We
wish to solve the eigenequation Lv = λDv. The
normalized graph Laplacian given by the (n × n)-
matrix P = D−1/2LD−1/2 is a stochastic matrix with
all row sums equal to one. Hence, P can be interpreted
as defining a random walk on the graph G.21 With this
in mind, we define X(t) to be a Markov random
walk over G using the weights in W and starting at an
arbitrary point in G at time t = 0. The next point in our
walk in one time step is determined by the probability
transition matrix P = (p(xj|xi)), whose ijth entry is

p(xj|xi) = P{X(t + 1) = xj|X(t) = xi}

= wσ (xi, xj)∑n
j=1 wσ (xi, xj)

, (9)

and whose row sums equal one. The matrix P
defines the entire Markov chain on G. P has
eigenvalues λ0 = 1 ≥ λ1 ≥ · · · ≥ λn−1 ≥ 0 and two
sets of eigenvectors, a left set defined by φτ

j P = λjφ
τ
j

and a right set defined by Pψτ
k = λjψ

τ
k, where φj =

(φj(x1), . . . , φj(xn))τ and ψk = (ψk(x1), . . . , ψk(xn))τ

are biorthogonal; that is, φτ
j ψk = 1 if j = k and zero

otherwise, j, k = 1, 2, . . . , n. The largest eigenvalue,
λ0 = 1, has associated right eigenvector ψ0 = 1n =
(1, 1, . . . , 1)τ and left eigenvector φ0. Thus, P is
diagonalizable as the product, P = ���τ , where
� = (φ0, . . . , φn−1), � = (ψ0, . . . , ψn−1), and � =
diag{λ0, . . . , λn−1}. Let Pm = (pm(xj|xi)), where the ijth
entry,

pm(xj|xi) = P{X(t + m) = xj|X(t) = xi}, (10)

represents the transition probability of going from
point xi to point xj in m time steps. Fix 0 < m < ∞.
On the graph G, we define the following diffusion
distance between conditional probabilities:

d2
m(xi, xj) = ‖pm(·|xi) − pm(·|xj)‖2

=
∑

z

(pm(z|xi) − pm(z|xj))2w(z), (11)

where w(z) = 1/φ0(z) is a weight function that
penalizes differences occurring in regions of low-
density more than in regions of high-density; φ0(z) can
be viewed as both the unique stationary probability
distribution for the Markov chain on the graph G (after
taking an infinite number of steps from any starting
point) and as a nonparametric density estimate at

the point z.15,20 The diffusion distance, which yields
information regarding how many paths exist between
the points xi and xj, will be small if the points are
connected by many paths in the graph. From the
expression for P, we see that Pm = ��m�, with ijth
entry,

pm(xj|xi) = φ0(xj) +
n−1∑
k=1

λm
k ψk(xi)φk(xj). (12)

Substituting this expression into the diffusion distance
and using the fact that φ0 is constant (and can,
therefore, be ignored), we have that

d2
m(xi, xj) =

n−1∑
k=1

λ2m
k (ψk(xi) − ψk(xj))2. (13)

The eigenvalues of P decay to zero relatively fast, the
speed of decay depending upon the topology of the
graph G. So, only the first few terms in this sum need
to be retained. We approximate the diffusion distance
between points xi and xj by

d2
m(xi, xj) ≈

t∑
k=1

λ2m
k (ψk(xi) − ψk(xj))2

= ‖�m(xi) − �m(xj)‖2, (14)

where �m(x) = (λm
1 ψ1(x), . . . , λm

t ψt(x))τ . The coordi-
nates of the n t-vectors are, thus, given by the columns
of Ŷ = (̂y1, . . . , ŷn) = (�m(x1), . . . , �m(xn)).

We mention the following asymptotic properties
of diffusion maps.22 If we assume that the data {xi}
constitute an iid sample drawn from some probability
density p(x) defined over the manifold M, then, as
n → ∞, the random walk on the discrete graph
converges to a random walk on the continuous
manifold M, and, as σ → 0 in the diffusion kernel,
the random walk on M (following a suitable scaling
wrt time) converges, in turn, to a diffusion process
whose probability density changes continuously over
time.

Nonlinear PCA
A different approach to nonlinear manifold learning
is to construct nonlinear versions of linear manifold
learning techniques. Specifically, how does one
generalize PCA to a nonlinear version of PCA? There
have been several nonlinear PCA routines proposed,
each motivated by a different optimality property of
PCA; these nonlinear generalizations of PCA include
polynomial PCA,23 principal curves and surfaces,24
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multilayer autoassociative neural networks,25 and ker-
nel PCA.26 The most interesting fact is all kernel-based
manifold learning algorithms have been shown to be
special cases of kernel PCA.27

CONCLUSION

We have described various algorithms for linear and
nonlinear manifold learning. Each algorithm boils
down to the extraction of eigenvalues and eigenvectors
from some large symmetric matrix, which is different
for the different algorithms.

All of the nonlinear manifold learning algo-
rithms are controlled by the tuning parameters K and
ε, which control the size of the neighborhoods around
each data point. Making K or ε too large or too
small can change the nature and dimensionality of the
embedding solution. Determining an optimal choice
of K or ε is still an open question. Another important
issue is how to deal with new data points. All of these
algorithms are batch algorithms and so they would

require one to rerun the entire algorithm on a data set
consisting of the original data augmented by the new
points. Thus, all the manifold learning algorithms suf-
fer from not being generalizable. This also holds for
data arriving sequentially, where running any of these
algorithms repeatedly becomes computationally chal-
lenging. Some efforts in this direction have appeared;
see Ref 28. A further issue is that each of these algo-
rithms assumes that the data are randomly sampled
from some probability distribution on the manifold.
What happens if real data do not lie exactly on the
manifold, but may be close to the manifold (in some
probabilistic sense)? Can we still recover the mani-
fold? In general, the closer the data points are to the
manifold, the more likely the algorithms will recover
the appropriate manifold. However, if some of the
data points (possibly outliers) lie too far away from
the nonlinear manifold, and are instead located closer
to a different region of the manifold, then this will cre-
ate havoc with the process of recovering the manifold
structure. This problem is still an open one.
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