
Optimization,
Vol. 55, Nos. 5–6, October–December 2006, 505–524

Optimality conditions for bilevel programming problems
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Focus in the article is on necessary optimality conditions for bilevel programming problems.
We first identify approaches that seem to be promising. Then, two such approaches are
investigated. Using the nonexistence of a descent direction for the objective function within
the tangent cone to the feasible set as necessary optimality condition we need efficient ways
to describe this tangent cone. We describe possibilities for this in three different
special cases. We conclude this article with the second approach applying Mordukhovich’s
coderivative to an appropriately reformulated bilevel programming problem.
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1. Introduction

Bilevel programming problems are hierarchical ones consisting of two combined
optimization problems. The variables of the first (or upper-level) problem are the
parameters of the second (or lower-level) problem, and the optimal solution of
the latter is needed to calculate the objective function value of the former. In other
words, the upper-level decision maker (or leader) fixes his selection x first, the second
one, the follower or lower-level decision maker determines his solution y later in
full knowledge of the leader’s choice. This means that the variables x play the role
of parameters in the follower’s problem. Then, the leader has to anticipate the
follower’s selection since his revenue depends not only on his own selection but also
on the follower’s reaction.
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To formulate the problem, let the follower make his decision by solving a parametric
optimization problem

�ðxÞ :¼ argmin
y

f f ðx, yÞ : gðx, yÞ � 0g, ð1Þ

where f, gi : R
n
�R

m
! R, i ¼ 1, . . . , p are smooth functions. To avoid difficulties

related to the existence of local optimal solutions in the lower-level problem assume
throughout this article that the functions fðx, �Þ and giðx, �Þ, i ¼ 1, . . . , p, are convex.

Then, the leader’s problem consists in minimizing the function F : Rn
� R

m
! R sub-

ject to the constraints y 2 �ðxÞ and x 2 X, where X � R
n is a closed set. This problem

has been discussed in the monographs Bard [3] and Dempe [4] and in the annotated
bibliography Dempe [5].

If the optimal solution of problem (1) is uniquely determined for all parameter values,
the leader’s problem reduces to a nondifferentiable (under certain assumptions
Lipschitz continuous) problem with an implicitly determined objective function and/
or feasible set. Since the resulting problem has a special structure, it earns extensive
interest in nondifferentiable programming over the last two decades. Challenging
topics are the formulation both of optimality conditions and solution algorithms.
Optimality conditions can be found, e.g., in [4,23]. Sources for solution algorithms
are [3] as well as [6].

Since, strongly speaking, the leader has control over the variable x only, this problem
is properly determined only in the case when the optimal solution of the lower-level
problem (1) is uniquely determined for all parameter values x 2 X: If this is not the
case, the optimistic and pessimistic approaches have been considered in the literature,
see, e.g. [12]. Both approaches rest on the introduction of a new second-level problem.

Since focus is on the optimistic approach only in this article, we will not formulate the
pessimistic one here. The optimistic approach can be applied if the leader assumes that
the follower will in any case take an optimal solution which is a best one from the
leader’s point of view. This leads to the problem

min ’oðxÞ : x 2 X
� �

, ð2Þ

where

’oðxÞ :¼ min
y

Fðx, yÞ : y 2 � ðxÞ
� �

: ð3Þ

The use of problem (2) leads to the following notion of an optimal solution:

Definition 1.1 A point ð �x, �yÞ is called a local optimistic optimal solution of the bilevel
programming problem if

�y 2 �ð �xÞ, �x 2 X,Fð �x, �yÞ ¼ ’oð �xÞ

and there is a number ">0 such that

’oðxÞ � ’oð �xÞ 8x 2 X, kx� �xk < ":
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Problem (2) is obviously equivalent to

min
x, y

fFðx, yÞ : x 2 X, y 2 �ðxÞg ð4Þ

provided that the latter problem has an optimal solution. But note that this equivalence
is true only for global minima [4].

Remark 1.1 Let �x 2 X be a local optimal solution of problem (2) and let �y 2 �ð �xÞ be
given with Fð �x, �yÞ ¼ ’oð �xÞ. Then ð �x, �yÞ is also a local optimal solution of problem (4)
provided that Slater’s condition is satisfied for problem (1) at ð �x, �yÞ and �ð�Þ is locally
compact at �x.

Proof The assumptions of the remark imply that the point-to-set mapping �ð�Þ is
upper-semicontinuous at �x [2]. Thus, the proof follows from [9].

The opposite implication to Remark 1.1 is in general not true [4].
Now, ð �x, �yÞ 2 M :¼ fðx, yÞ : x 2 X, y 2 �ðxÞg is a local optimal solution of problem (4)

provided there is a number ">0 such that Fðx, yÞ � Fð �x, �yÞ for all ðx, yÞ 2 M with
kx� �xk < ":

For existence of an optimal solution of problem (4) we need closedness of the set
M and either boundedness of M or coercivity of F over M. Closedness of M is
implied by upper semicontinuity of the point-to-set mapping �, which in turn
follows from local boundedness of �(x) and validity of a regularity condition for the
lower-level problem (1) [2].

Bilevel programming problems are closely related to other optimization problems
and have many applications, see [3–5] and the references therein. To attack them,
they need to be transformed into one-level problems. In the following, we present
different reformulations and describe our opinion about their usefulness.

The most used reformulation is by replacing the lower-level problem of (4) with its
Karush–Kuhn–Tucker (KKT) conditions. This leads to the problem

min
x, y, �

fFðx, yÞ : x 2 X, ryLðx, y, �Þ ¼ 0, gðx, yÞ � 0, � � 0, �>gðx, yÞ ¼ 0g: ð5Þ

This problem is a special kind of a so-called mathematical program with equilibrium
constraints (MPEC), which has widely been investigated in the literature, see e.g.
[13, 17]. Optimality conditions for this problem can be found, e.g., in [19,21,24,25].
The main difficulty in using this reformulation for the construction of optimality
conditions for the bilevel programming problem stems from the introduction of new
variables, namely, the Lagrange multipliers for the lower-level problem. This implies
that a local optimal solution ð �x, �yÞ of the bilevel programming problem (4) is a local
optimal solution ð �x, �y, �Þ of problem (5) for all Lagrange multipliers � corresponding
to the optimal solution �y of the lower-level problem (1) with x ¼ �x. On the other
hand, a local optimal solution ð �x, �y, ��Þ of problem (5) need not to represent a local
optimal solution of problem (4). To overcome this difficulty we have either to develop
an optimality condition using all the Lagrange multipliers of the lower-level problem
(and have hence to enumerate them) or to find a condition that is independent of the
Lagrange multiplier. In the following, we will describe one such approach. It should
be noted that this approach is not possible for the pessimistic solution.
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A second approach uses the optimal value function of the lower-level problem (1)

’ðxÞ ¼ min
y
f fðx, yÞ : gðx, yÞ � 0g

and replaces (4) by

min
x, y

fFðx, yÞ : x 2 X, fðx, yÞ � ’ðyÞ, gðx, yÞ � 0g: ð6Þ

This approach has been used in the articles Babahadda and Gadhi [1] and Ye and Zhu
[26] to describe optimality conditions. We will not apply this approach here.

A third approach uses problem (4) directly and develops optimality conditions by
means of the contingent or normal cone of the graph of the point-to-set mapping �.
This will be our first method in the following text.

A fourth approach replaces the lower-level problem by necessary and sufficient
optimality conditions avoiding Lagrange multipliers. To simplify the notations define
the feasible set mapping as

KðxÞ :¼ fy : gðx, yÞ � 0g:

Using this notation and assuming validity of a regularity condition, the optimistic
bilevel programming problem (6) can equivalently be replaced by

min
x, y

fFðx, yÞ : x 2 X, 0 2 ryfðx, yÞ þNKðxÞðyÞ, gðx, yÞ � 0g, ð7Þ

where NKðxÞðyÞ denotes some normal cone to K(x) at the point y. We will show subse-
quently that this reformulation can fruitfully be used to derive optimality conditions
using, e.g., the coderivative by Mordukhovich.

2. Optimality conditions using the contingent cone

2.1. The general approach

The contingent (or Bouligand) cone of the set M ¼ fðx, yÞ : x 2 X, y 2 �ðxÞg is
defined via

CMðx, yÞ :¼

�
ðu, vÞ> : 9ftkg

1
k¼1 � Rþ, 9 ðuk, vkÞ>

� �1
k¼1

� R
n
�R

m,

with ðx, yÞ> þ tk uk, vk
� �>

2 gph� 8k, xþ tku
k 2 X,

lim
k!1

tk ¼ 0, lim
k!1

uk, vk
� �>

¼ ðu, vÞ>
�

where gph� ¼ fðx, yÞ> : y 2 �ðxÞg denotes the graph of the point-to-set mapping �.
In short,

CMðx, yÞ ¼ lim sup
t!0þ

t�1ðM� ðx, yÞ>Þ,
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where the term lim sup denotes the outer limit or the Kuratowski–Painleve upper limit
(see, for example, [20] for more details).

THEOREM 2.1 If the point ð �x, �yÞ> 2 M is a local optimal solution of the bilevel program-
ming problem (4), then

rFð �x, �yÞðd, rÞ> � 0

for all

ðd, rÞ> 2 CMð �x, �yÞ:

On the other hand, if ð �x, �yÞ> 2 M and

rFð �x, �yÞðd, rÞ> > 0

for all

ðd, rÞ> 2 CMð �x, �yÞ,

then the point ð �x, �yÞ> is a local optimal solution of (4).

Proof (i) Let ð �x, �yÞ> 2 M be a local optimal solution of problem (4). Assume that the
proposition of the first part of the theorem is not satisfied. Then, there exists a direction
ðd, rÞ> with

ðd, rÞ> 2 CMð �x, �yÞ

and

rFð �x, �yÞðd, rÞ> < 0: ð8Þ

Hence, by definition there are two sequences ftkg
1
k¼1 � Rþ and fðuk, vkÞ>g1k¼1 � R

n
�R

m

with ð �x, �yÞ> þ tkðu
k, vkÞ> 2 gph�, �xþ tku

k 2 X, 8k 2 N, lim
k!1

tk ¼ 0, lim
k!1

ðuk, vkÞ> ¼

ðd, rÞ>: Thus, using the definition of the derivative, we get

Fð �xþ tku
k, �yþ tkv

kÞ ¼ Fð �x, �yÞ þ tkrFð �x, �yÞðu
k, vkÞ> þ oðtkÞ

for each sufficiently large k, where limk!1 oðtkÞ=tk ¼ 0. Since

lim
k!1

rFð �x, �yÞðuk, vkÞ> þ
oðtkÞ

tk

� �
¼ rFð �x, �yÞðd, rÞ> < 0

by the assumption this implies

rFð �x, �yÞðuk, vkÞ> þ
oðtkÞ

tk
< 0
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for all sufficiently large k and, hence,

Fð �xþ tku
k, �yþ tkv

kÞ < Fð �x, �yÞ

for large k. This leads to a contradiction to local optimality.
(ii) Now, let rFð �x, �yÞðd, rÞ> > 0 for all ðd, rÞ> 2 CMð �x, �yÞ and assume that there is a

sequence ðxk, ykÞ 2 M converging to ð �x, �yÞ> with Fðxk, ykÞ < Fð �x, �yÞ for all k. Then,

xk � �x

kðxk, ykÞ � ð �x, �yÞk
,

yk � �y

kðxk, ykÞ � ð �x, �yÞk

� �>

converges to some ðd, rÞ> 2 CMð �x, �yÞ. Using differential calculus, it is now easy to
verify that

rFð �x, �yÞðd, rÞ> � 0;

contradicting our assumption.

2.2. The linear case

If bilevel programming problems with linear lower-level problems are under considera-
tion, a stronger formulation of the optimality condition is possible [7]. For this,
consider a linear parametric optimization problem

max
y

c>y : Ay ¼ b, y � 0
� �

ð9Þ

with a matrix A of appropriate dimension and parameters in the right-hand side as well
as in the objective function. Let �Lðb, cÞ denote the set of optimal solutions of (9).
A special optimistic bilevel programming problem reads as

min
y, b, c

�
f ðyÞ : Bb ¼ eb,Cc ¼ec, y 2 �Lðb, cÞ

�
: ð10Þ

Our aim is it now to apply Theorem 2.1 to this problem while finding an explicit
description of the contingent cone to the feasible set. For this we start with the KKT
reformulation of the lower-level problem (5):

f ðyÞ �! min
y, b, c, u

Ay ¼ b

y � 0

A>u � c

y>ðA>u� cÞ ¼ 0

Bb ¼ eb
Cc ¼ec:

ð11Þ
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It should be noted that the objective function in the upper-level problem does not
depend on the parameters of the lower-level one. This makes a more precise definition
of a local optimal solution of problem (10) necessary.

Definition 2.1 A point �y, is a local optimal solution of problem (10) if there exists an
open neighborhood U of �y such that fð �yÞ � fðyÞ for all y, b, c with Bb ¼ eb, Cc ¼ec and
y 2 U \�Lðb, cÞ:

The main result of this definition is the possibility to drop the explicit dependence
of the solution of problem (10) on c. This dependence rests on solvability of the dual
problem and is guaranteed for index sets I in the set IðyÞ:

Let the following index sets be determined at some point �y:

(1) Ið �yÞ ¼ fi : �yi ¼ 0g,
(2) Iðu, cÞ ¼ fi : ðA>u� cÞi > 0g;
(3) Ið �yÞ ¼ fIðu, cÞ :A>u � c, ðA>u� cÞi ¼ 0 8i =2 Ið �yÞ, Cc ¼ecg, and
(4) I 0ð �yÞ ¼

T
I2Ið �yÞ

I.

Using these definitions, problem (11) can be transformed into the following one by
replacing the complementarity conditions:

fðyÞ �!min
y, b, I

Ay ¼ b

y � 0

yi ¼ 0 8i 2 I

Bb ¼ ~b

I 2 IðyÞ:

ð12Þ

In this problem, the index set I enters the variables in the sense that problem (12) is to be
solved for all fixed sets I 2 IðyÞ and the best solution over all resulting problems is
selected.

The contingent cone to the feasible set of the last problem (or rather its projection
onto R

m) is

Cð �yÞ :¼
[

I2Ið �yÞ

CIð �yÞ,

where

CIð �yÞ ¼
�
dj 9r : Ad ¼ r, Br ¼ 0, di � 0 8i 2 Ið �yÞnI, di ¼ 0 8i 2 I

�
for all I 2 Ið �yÞ.

Remark 2.1 If f is differentiable at �y, this point is a local optimal solution of (10) if
and only if rfð �yÞ � d � 0 for all d 2 convCð �yÞ.
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Consider the relaxed problem of (12)

fðyÞ �!min
y, b

Ay ¼ b

yi � 0 i 2 Ið �yÞnI 0ð �yÞ

yi ¼ 0 i 2 I 0ð �yÞ

Bb ¼ eb

ð13Þ

together with the contingent cone to its feasible set (or better, its projection onto R
m)

CRð �yÞ ¼ dj 9r : Ad ¼ r, Br ¼ 0, di � 0, i 2 Ið �yÞnI 0ð �yÞ, di ¼ 0, i 2 I0ð �yÞ
� �

at the point �y:

Remark 2.2 We have j 2 Ið �yÞnI 0ð �yÞ if and only if the system

A>u� c
� �

i
¼ 0 8i =2 Ið �yÞ

A>u� c
� �

j
¼ 0

A>u� c
� �

i
� 0 8i 2 Ið �yÞnfjg

Cc ¼ ~c

has a solution. This implies that it is possible to compute the index set I 0ð �yÞ
in polynomial time. Hence, also the contingent cone CRð �yÞ can be computed in
polynomial time.

In the following theorem, we need an assumption: the point �y is said to satisfy the
full-rank condition (FRC) if

span Ai : i 62 Ið �yÞ
� �� �

¼ R
m, ð14Þ

where Ai denotes the ith column of the matrix A.

THEOREM 2.2 [7] Let (FRC) be satisfied at the point �y. Then,

convCð �yÞ ¼ coneCð �yÞ ¼ CRð �yÞ: ð15Þ

We add the proof for completeness of the article.

Proof Let, for simplicity, Ið �yÞ ¼ f1, . . . , kg and I 0ð �yÞ ¼ flþ 1, . . . , kg: The inclusion

convCð �yÞ ¼ coneCð �yÞ � CRð �yÞ ð16Þ
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is obviously satisfied. Let �d be an arbitrary element of CRð �yÞ, which means there is a
�r with A �d ¼ �r, B�r ¼ 0, �di � 0 i ¼ 1, . . . , l, �di ¼ 0, i ¼ lþ 1, . . . , k. We consider the
following linear systems

Ad ¼ �r

d1 ¼ �d1 ðS1Þ

di ¼ 0, i ¼ 2, . . . , k

and

Ad ¼ 0

dj ¼ �dj

di ¼ 0, i ¼ 1, . . . , k, i 6¼ j

ðSjÞ

for j ¼ 2, . . . , l: These systems are all feasible because of (FRC).
Furthermore let d1, . . . , d l be (arbitrary) solutions of the systems ðSjÞ. We define now

the direction d ¼
Pl

j¼1 d
j and get di ¼ �di for i ¼ 1, . . . , k as well as Ad ¼ A �d ¼ �r.

Because we chose arbitrary vectors d1, . . . , dl it is possible that d 6¼ �d. But we can achieve
equality with a translation of the solution d1 by a specific vector of
NðAÞ ¼ fz : Az ¼ 0g. Therefore, we define d̂1 :¼ d1 þ �d� d, and because d1 is feasible
for ðS1Þ and di ¼ �di for i ¼ 1, . . . , k as well as Ad ¼ A �d ¼ �r we get d̂1i ¼ 0 for all
i ¼ 2, . . . , k and Ad̂1 ¼ Aðd1 þ �d� dÞ ¼ �rþ �r� �r ¼ �r. Hence d̂1 is also a solution
of ðS1Þ. Thus we have d̂

1 þ
Pl

j¼2 d
j ¼ �d� dþ

Pl
j¼1 d

j ¼ �d. As a result of the definition
of the set I0ð �yÞ there are index sets Ij 2 Ið �yÞ with j =2 Ij for all j 2 f1, . . . , lg ¼ Ið �yÞnI0ð �yÞ.
So d̂1 is an element of the contingent cone CI1ð �yÞ and d j are elements of the contingent
cones CIjð �yÞ for j ¼ 2, . . . , l. Finally �d is the sum of a finite number of elements of Cð �yÞ
and therefore CRð �yÞ � coneCð �yÞ.

Remark 2.3 Using the Farkas lemma of the alternative it is now a simple task to
formulate the conditions of Theorem 2.2 in dual space as KKT necessary optimality
conditions. Moreover, due to Remark 2.2 verification of local optimality can be done
in polynomial time.

2.3. The nonlinear case

We consider now the inverse optimization problem

min
x, y, c

fðyÞ : Cc ¼ec,Xx ¼ ex, y 2 �Nðx, cÞ
� �

ð17Þ

with a nonlinear lower-level problem

�Nðx, cÞ ¼ argmin
y

�
c>y : gðx, yÞ � 0

�
, ð18Þ

where g : Rn
� R

m
! R

p and f : Rm
! R are sufficiently smooth functions. Assume

that giðx, �Þ are convex, i ¼ 1, . . . , p, and that Slater’s condition is satisfied for
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problem (18) for all x. Assume without loss of generality that the matrix X has full row
rank. The assumption that the lower-level problem has a linear objective function is of
no loss of generality since this can be obtained by adding one variable bounding the
objective function of a nonlinear programming problem from above and minimizing it.

Again we intend to use Theorem 2.1 to formulate optimality conditions. Once more
we start with the KKT reformulation of the problem:

fðyÞ ! min
x, y, u, c

Xx ¼ ex, Cc ¼ ec
cþ u>rygðx, yÞ ¼ 0

gðx, yÞ � 0, u � 0, u>gðx, yÞ ¼ 0:

ð19Þ

Denote by

M ¼ ðx, yÞ : 9c with Cc ¼ec,Xx ¼ ex, y 2 �Nðx, cÞ
� �

the feasible set of problem (17), where again, as in section 2.2, the lower-level objective
function coefficients are considered as rather abdicable. This means that we use the
following optimality notion:

Definition 2.2 A point ð �x, �yÞ 2 M is a local optimal solution of problem (17) if there
exists an ">0 such that for all ðx, yÞ 2 M with kðx, yÞ � ð �x, �yÞk � " we have fðyÞ � fð �yÞ:

Let

Iðx, yÞ ¼ i : giðx, yÞ ¼ 0
� �

,

Iðx, yÞ ¼ I � Iðx, yÞ : 9c with Cc ¼ec, � c 2 cone rygiðx, yÞ : i 2 I
� �� �

and

I0ðx, yÞ ¼
\

I2Iðx, yÞ

I:

Similar to section 2.2, it is relatively easy to determine the set I0ðx, yÞ: To derive a
verificable optimality condition for the problem (17) we will formulate two different
results being based on different assumptions.

Problem (19) is related to the following problem with less variables locally around
some feasible point ð �x, �yÞ:

fðyÞ ! min
x, y, I

Xx ¼ ex,
giðx, yÞ ¼ 0 i 2 I

giðx, yÞ � 0 i 2 Ið �x, �yÞnI

I 2 Ið �x, �yÞ:

ð20Þ

The following example shows yet that both problems (19) and (20) are not equivalent.
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Example 2.1 Let C ¼ fð�2, 0, �1Þ þ tð1, 0, 0Þ : t 2 Rg and let for simplification
the lower-level problem be independent of the parameter x. It is easy to introduce
this parameter and to relate this example to the bilevel programming problem (17).
The example shows that the feasible set of problem (20) has in general a larger feasible
set than problem (19). Let the feasible set of the lower-level problem (18) be given by

g1ðyÞ ¼ y21 þ y22 � y3

g2ðyÞ ¼ y1 � y22 þ y3

g3ðyÞ ¼ y1:

and let �y ¼ 0. Then, Slater’s condition is satisfied. Using c ¼ ð�2, 0, �1Þ> we get

2

0

1

0
@

1
A 2 cone

0
0
�1

0
@

1
A,

1
0
0

0
@

1
A,

1
0
1

0
@

1
A

8<
:

9=
;:

Take I ¼ f1, 2, 3g and ey ¼ ð0, �, �2Þ. The point ey is feasible for the problem (20) with I.
For feasibility of the point ey for problem (19) we need solvability of the equation

2

0

1

0
@

1
Aþ t

1
0
0

0
@

1
A ¼ �1

0
2�
�1

0
@

1
Aþ �2

1
�2�
1

0
@

1
Aþ �3

1
0
0

0
@

1
A:

But since this is not possible, ey is not feasible for (19).

THEOREM 2.3 The two problems (19) and (20) are locally equivalent if and only if there
exists a sufficiently small neighborhood U of ð �x, �yÞ such that for each point ðx, yÞ 2 U
there is an index set I 2 Ið �x, �yÞ with I � Iðx, yÞ such that

c : Cc ¼ec, � c 2 cone rygiðx, yÞ : i 2 I
� �� �

6¼ 6 0:

COROLLARY 2.1 The assumption in this theorem is obviously satisfied if

c : Cc ¼ec, � c 2 int cone rygiðx, yÞ : i 2 I
� �� �

6¼ 6 0

is satisfied for all I 2 Ið �x, �yÞ.

The linearizing cone to the feasible set of (20) is

CLð �x, �yÞ ¼
[

I2Ið �x, �yÞ

ðr, dÞ> : Xr ¼ 0,rgið �x, �yÞðr, dÞ
>

¼ 0, i 2 I

� 0, i 2 Ið �x, �yÞnI

�� �
:

Under the assumption in Theorem 2.3, this (in general nonconvex) cone equals the
contingent cone of M provided that the Mangasarian–Fromowitz constraint
qualification is valid for each of the feasible sets of the problems in (20) for a fixed
set I 2 Ið �x, �yÞ:
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Now, consider the relaxed problem

fðyÞ ! min
x, y

Xx ¼ ex,
giðx, yÞ ¼ 0, i 2 I 0ð �x, �yÞ

giðx, yÞ � 0, i 2 Ið �x, �yÞnI 0ð �x, �yÞ:

ð21Þ

The linearizing cone to the feasible set of problem (21) is

CNð �x, �yÞ ¼ ðr, dÞ> : Xr ¼ 0,rgið �x, �yÞðr, dÞ
> ¼ 0, i 2 I 0ð �x, �yÞ

� 0 i 2 Ið �x, �yÞnI0ð �x, �yÞ

�� �

and we have CLð �x, �yÞ � CNð �x, �yÞ: The cone CNð �x, �yÞ coincides with the contingent cone
of problem (21) if the Mangasarian–Fromowitz constraint qualification is valid.

THEOREM 2.4 If the Mangasarian–Fromowitz constraint qualification is satisfied for
problem (21) and

c : Cc ¼ec, � c 2 cone rygiðx, yÞ : i 2 I
� �� �

6¼ 6 0

for all sets I � I 0ð �x, �yÞ with frygið �x, �yÞ : i 2 Ig are linearly independent, then the cones
CNð �x, �yÞ and convCLð �x, �yÞ coincide.

Proof Clearly, by definition we have CLð �x, �yÞ � CNð �x, �yÞ and the latter is a convex
polyhedral cone. Hence, it is equal to the set of all nonnegative linear combinations
of a finite set of vectors ðrk, dkÞ, k ¼ 1, . . . , s: As these vectors we can take solutions
of the following systems of equations and inequalities:

Xr ¼ 0

rgið �x, �yÞðr, dÞ
>

¼ 0, for i 2 I

� 0, for i 2 Ið �x, �yÞnI

�

with I 0ð �x, �yÞ � I � Ið �x, �yÞ and I is an index set with maximal cardinality of linearly
independent gradients rygið �x, �yÞ. Hence, the rows in the matrix

X 0
rxgIð �x, �yÞ rygIð �x, �yÞ

� �

are linearly independent. Hence, frygið �x, �yÞ : i 2 Ig are linearly independent.
The assumptions now show that I 2 Ið �x, �yÞ, i.e., the vector (rk, dk) is an element of
one of the convex subcones in CLð �x, �yÞ.

Remark 2.4 The assumptions of the theorem are satisfied, e.g., if the system of
equations Cc ¼ec disappears.
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COROLLARY 2.2 As a simple implication of this theorem we again obtain necessary
optimality conditions of KKT type. It is, moreover, possible to derive also sufficient
conditions for local optimality.

The following theorem shows that we can get equality of CNð �x, �yÞ and convCLð �x, �yÞ
also under another assumption.

THEOREM 2.5 Let I 2 Ið �x, �yÞ be an arbitrary index set for which all of the following
systems with j 2 InI0ð �x, �yÞ have a feasible solution:

Xd ¼ 0

rgið �x, �yÞðd, rÞ
T
¼ 0 8i 2 Ið �x, �yÞnf jg

rgjð �x, �yÞðd, rÞ
T
¼ �1

ð22Þ

Then, coneCLð �x, �yÞ ¼ CNð �x, �yÞ.

Proof Obviously, coneCLð �x, �yÞ � CNð �x, �yÞ. Hence, let ð �d, �rÞ 2 CNð �x, �yÞ be an arbitrary
element. Then, due to rgjð �x, �yÞð �d, �rÞ � 0 and the assumption all the systems

Xd ¼ 0

rgið �x, �yÞðd, rÞ
T
¼ 0 8i 2 Ið �x, �yÞnf jg

rgjð �x, �yÞðd, rÞ
T
� rgjð �x, �yÞð �d, �rÞ

T
¼ 0

ð23Þ

have a solution for j 2 InI 0ð �x, �yÞ
� �

� Ið �x, �yÞ. Let ðd j, r jÞ denote an arbitrary such
solution. Denote

ð ~d, ~rÞ ¼
X

j2InI0ð �x, �yÞ

ðd j, r jÞ:

Then,

Xð �d� ~dÞ ¼ 0

rgið �x, �yÞð �d� ~d, �r� ~rÞ � 0 8i 2 Ið �x, �yÞnI

rgið �x, �yÞð �d� ~d, �r� ~rÞ ¼ 0 8i 2 I,

ð24Þ

implying that ðdI, rIÞ ¼ ð �d� ~d, �r� ~rÞ 2 CLð �x, �yÞ. Specifically, ðdI, r IÞ belongs to the
subcone of CLð �x, �yÞ for the fixed set I of the assumption of the theorem. Hence, the
point

ð �d, �rÞ ¼ ðdI, r IÞ þ
X

j2I nI 0ð �x, �yÞ

ðd j, r jÞ

equals the sum of elements of the coneCLð �x, �yÞ and hence is also an element of it.

COROLLARY 2.3 If I 0ð �x, �yÞ 2 Ið �x, �yÞ then the assumption of the theorem is satisfied.
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2.4. The case of a fixed constraint set in the lower level

We will now consider another approach which still using the contingent cone. This
approach will now be based on the graphical derivative of the solution set mapping
of the lower-level problem. We will however consider the bilevel programming
problem in a much simpler form. To begin with we will consider X ¼ R

n and the
lower-level problem as follows

�ðxÞ ¼ argmin
y

fðx, yÞ : y 2 KðxÞ
� �

, ð25Þ

i.e., we will use the abbreviation KðxÞ ¼ f y : gðx, yÞ � 0g in what follows and will not
refer to the explicit description of the constraint set as solution set of inequalities.
We intend to approach the optimality conditions for the bilevel programming problem
by relating it to the following single-level optimization problem:

min
x, y

fFðx, yÞ : ðx, yÞ 2 gph�g: ð26Þ

For the relations between both problems we refer to Remark 1.1, which similarly
applies to these problems.

Since the lower-level problem is convex one can express the solution set mapping as a
solution set of a variational inequality problem as follows:

�ðxÞ ¼ y 2 R
m : 0 2 ryfðx, yÞ þNKðxÞðyÞ, y 2 KðxÞ

� �
,

provided that Slater’s condition is satisfied for the set K(x). Since it is traditional in
convex analysis to define NKðxÞðyÞ ¼ 6 0 if y 62 KðxÞ one can equivalently write �ðxÞ as

�ðxÞ ¼ y 2 R
m : 0 2 ryfðx, yÞ þNKðxÞðyÞ

� �
:

Recently there has been a considerable progress in the understanding of the solution set
mapping of variational systems, see for example, [8,11]. Advances have been made in
computing the set-valued derivative and the coderivative of the solution set mapping
of a variational system and also sufficient conditions have been developed under
which the solution set mapping is local Lipschitz around a given point. In the following,
we will use the results of Dontchev and Rockafellar [8] to deduce an optimality
condition for the bilevel programming problem under consideration. We begin by
introducing the notion of the graphical derivative of a set-valued mapping. This is a
generalization of the classical notion that the derivative is the slope of the tangent.

Let �: Rn �!
�!R

m be a set-valued mapping and ð �x, �yÞ 2 gph�. The graphical
derivative of � at �x for any �y 2 �ð �xÞ is the set-valued mapping D�ð �xj �yÞ : Rn �!

�!R
m

such that

z 2 D�ð �xj �yÞðwÞ()ðw, zÞ 2 Cgph�ð �x, �yÞ:

This means that

gphD�ð �xj �yÞ ¼ Cgph�ð �x, �yÞ:
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Further the graphical derivative can also be realized as an outer limit (of sets) in the
following manner

D�ð �xj �yÞðwÞ ¼ lim sup
�#0,w0!w

�ð �xþ �w0Þ � �y

�
: ð27Þ

The notion that will play an important role in our study is the protoderivative of a
set-valued mapping. A set-valued mapping � is said to be protodifferentiable at ð �x, �yÞ
if the lim sup in (27) is actually realized as a limit, i.e.,

D�ð �xj �yÞðwÞ ¼ lim
�#0,w0!w

�ð �xþ �w0Þ � �y

�
:

We now have the following result. However, we will introduce the following notation.
For a vector y by y? we mean the set y? ¼ fu : hy, ui ¼ 0g.

THEOREM 2.6 Let ð �x, �yÞ be a local optimistic solution of the bilevel programming
problem (26) where �ðxÞ is given by (25). Let KðxÞ ¼ K for all x in this setting and
assume that K is a polyhedral set. Further assume that the solution set mapping � is
upper-semicontinuous. Moreover also assume that the following qualification condition
also holds:

rank r2
xy fðx, yÞ

	 

¼ m ð full rankÞ: ð28Þ

Then one has

rFð �x, �yÞ, ðu, vÞ
� �

� 0

for all ðu, vÞ 2 R
n
�R

m satisfying

0 2 r2
xyfð �x, �yÞuþ r2

xxfð �x, �yÞvþNK	
ðvÞ:

where K	 ¼ CKð �yÞ \ ðryfð �x, �yÞÞ
?.

Proof Since ð �x, �yÞ is a local optimistic solution and the solution set mapping �
is upper-semicontinuous and bounded then one can show that ð �x, �yÞ also solves the
following single-level optimization problem

min
x, y

Fðx, yÞ : ðx, yÞ 2 gph�
� �

locally [9]. Thus, one has

hFð �x, �yÞ, ðu, vÞi � 0 8ðu, vÞ 2 Cgph�ð �x, �yÞ:

Also observe that � can be described as

�ðxÞ ¼ y 2 R
m : 0 2 ryfðx, yÞ þNKðyÞ

� �
:
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Since K is polyhedral and the qualification condition (28) hold from Theorem 7.1 in [8],
we have that the solution set mapping � is protodifferentiable and the protoderivative
is given as follows:

D�ð �xj �yÞðuÞ ¼ v 2 R
m : 0 2 r2

xy fð �x, �yÞuþ r2
yy fð �x, �yÞvþNK	

ðvÞ
n o

,

where K	 ¼ CKð �yÞ \ ðryfð �x, �yÞÞ
?. The result is established by noting that

gphD�ð �xj �yÞ ¼ Cgph�ð �x, �yÞ.

Remark 2.5 The qualification condition considered in the above theorem is called the
ample parametrization condition in [8]. Of course one can ask whether the polyhedrality
of the set K is at all required. In the context of the above theorem it seems to be an
essential requirement. In fact as seen from Theorem 6.1 in [8] we need that the
normal cone mapping NK is protodifferentiable at ð �y, �zÞ 2 gphNK, �z ¼ �ryfð �x, �yÞ.
However if K is fully amenable (see [20] for details) then NK is automatically protodif-
ferentiable. Further every polyhedral set is fully amenable. Moreover, the polyhedrality
of K is crucial for the appearance of the term NK	

ðvÞ in the above theorem. In absence
of polyhedrality this term would be replaced by the protoderivative of NK at
ð �y, �zÞ 2 gphNK, �z ¼ �ryfð �x, �yÞ. Polyhedrality reduces the graphical derivative of the
normal cone mapping NK at ð �y, �zÞ 2 gphNK, �z ¼ �ryfð �x, �yÞ to NK	

ðvÞ.

It is interesting to observe that if the polyhedral set K is given as follows

K ¼ y 2 R
m : hai, yi � bi, i ¼ 1, . . . , p, y � 0

� �
, ð29Þ

where ai 2 R
m for i ¼ 1, . . . , p and bi 2 R for i ¼ 1, . . . , p, then the cone NK	

ðvÞ is given
as follows:

NK	
ðvÞ ¼ cone ai : i 2 Ið �yÞg þ spanfryfð �x, �yÞ

� �
:

In the preceding expression Ið �yÞ denotes the set of active indices at �y.
Further consider K to be a non-empty and full-dimensional polyhedral set given

by (29). Then it is clear that K has a non-empty interior. If we now assume that the
solution set mapping � is locally bounded then from Remark 1.1 it is clear that � is
upper-semicontinuous. Note that the fact that K has a nonempty interior is equivalent
to the fact that Slater’s condition holds. On the other hand, if we assume that K is
a bounded polyhedral set, then we can just assume � to be locally bounded in the
statement of the above theorem. This is due to the fact that, if K is a bounded
polyhedral set, then � has a closed graph, and thus, combined with the fact that it is
locally bounded, we conclude that � is upper-semicontinuous.

3. Optimality conditions using the coderivative

However, it is clear that the result in the preceding theorem is not very compact in the
sense that it is not possible to detect immediately the Lagrange multipliers associated
with the optimality conditions. However, for an explicit representation in terms
of Lagrange multipliers we need to take a different approach. To do so we need the
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following notions of set-valued coderivatives of a set-valued mapping. Levy and
Mordukhovich [11] define the adjoint mapping to the graphical derivative of a
set-valued mapping. Let F : Rn �!

�!R
m be a set-valued mapping and let �y 2 Fð �xÞ and

let DFð �xj �yÞ denote the graphical derivative of F at ð �x, �yÞ. Then the adjoint mapping
at ð �x, �yÞ is a set-valued mapping D̂	Fð �xj �yÞ : Rm �!

�!R
n given as

D̂	Fð �xj �yÞðy	Þ ¼ x	 2 R
m : hx	, ui � hy	, vi, 8ðu, vÞ 2 gphDFð �xj �yÞ

� �
:

The coderivative of F at ð �x, �yÞ is a set-valued mapping D	Fð �xj �yÞ : Rm �!
�!R

n given as

D	Fð �xj �yÞðy	Þ ¼ lim sup
ðx, yÞ!ð �x, �yÞ, y0!y	

D̂	FðxjyÞðy0Þ: ð30Þ

The notion of coderivative plays a very important role in variational analysis and
optimization. This notion was first introduced by Mordukhovich [14] in 1976
and later studied in detail for example in [15,16,20]. The coderivative can also be
described in terms of the basic normal cone (for details see, e.g. [15]).
The coderivative will play a pivotal role in establishing the following result.

THEOREM 3.1 Let ð �x, �yÞ be a local optimistic solution of the bilevel programming
problem (26), where �ðxÞ is given as in (25) with KðxÞ ¼ K for all x. Assume that the
solution set mapping � is upper-semicontinuous. Let the qualification condition (28) be
satisfied. Then there exists v	 2 R

m such that the following conditions hold

(i) 0 ¼ rxFð �x, �yÞ þ r2
xy fð �x, �yÞv

	,
(ii) 0 2 ryFð �x, �yÞ þ r2

yy fð �x, �yÞv
	 þD	NKð �yj � ryfð �x, �yÞÞðv

	Þ.

Proof Since ð �x, �yÞ is a local optimistic solution and the solution set mapping �
is upper-semicontinuous then ð �x, �yÞ also solves the following single-level optimization
problem

min
x, y

Fðx, yÞ : ðx, yÞ 2 gph�
� �

:

locally [9]. Thus, one has

Fð �x, �yÞ, ðu, vÞ
� �

� 0 8ðu, vÞ 2 Cgph�ð �x, �yÞ:

Thus, we have

� rxFð �x, �yÞ,ryFð �x, �yÞ
� �

2 Cgph�ð �x, �yÞ
� �


,

where ðCgph�ð �x, �yÞÞ

 denotes the polar cone to Cgph�ð �x, �yÞ: It is easy to observe that

ðx	, y	Þ 2 ðCgph�ð �x, �yÞÞ

 if and only if ð�y	, x	Þ 2 gph D̂	� �xj �yð Þ:

This shows that

ðryFð �x, �yÞ, � rxFð �x, �yÞÞ 2 gph D̂	�ð �xj �yÞ:
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However, from (30) we see that D̂	�ð �xj �yÞðy	Þ � D	�ð �xj �yÞðy	Þ. Thus, we have

�rxFð �x, �yÞ 2 D	�ð �xj �yÞðryFð �x, �yÞÞ:

Since the qualification condition in equation (28) by using Theorem 2.1 in [11], we see
that there exists v	 2 R

m such that

�rxFð �x, �yÞ ¼ r2
xy fð �x, �yÞv

	

and

�ryFð �x, �yÞ 2 r2
yy fð �x, �yÞ

Tv	 þD	NKð �yj � ryfð �x, �yÞÞðv
	Þ:

Hence the result.

Remark 3.1 It is interesting to ask whether one can make a direct computation of
ðCgph�ð �x, �yÞÞ


 at least in the case when K is polyhedral. Suppose we need to find
ðx	, y	Þ 2 ðCgph�ð �x, �yÞÞ


. This will lead to the following set-valued optimization problem:

min�ðu, vÞ subject to 0 2 Gðu, vÞ,

where

�ðu, vÞ ¼ �hðx	, y	Þ, ðu, vÞi:

and

Gðu, vÞ ¼ r2
xy fð �x, �yÞuþ r2

yy fð �x, �yÞvþNK	 ðvÞ:

It will be interesting to see if one can actually compute ðx	, y	Þ by using the methods of
set-valued optimization. For more details on set-valued optimization, see, for example
[10] and the references therein.

An important question that arises is whether the optimality conditions for bilevel
programming that are developed here are amenable to the development of numerical
algorithms for solving bilevel programming problems. However, the optimality condi-
tions that are developed here have an abstract term in their formulation in terms of the
coderivative of the normal cone mapping to the set K. Except this term, the other terms
that appear in the optimality conditions are computable. Thus, when K is expressed in
terms of say convex inequality constraints it is important to know if it is possible to
express the coderivative of the normal cone mapping in terms of the first and second
derivatives of the constraint functions. This remains to be an open question. Let
F : Rn �!

�!R
m be a set-valued mapping. Then the coderivative of F at ð �x, �yÞ 2 gphF is

equivalently given as follows:

D	Fð �xj �yÞðy	Þ ¼ x	 2 R
n : ð�x	, y	Þ 2 NL

gphFð �x, �yÞ
n o

:
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In the preceding expression the term NL
gphFð �x, �yÞ is the basic normal cone or the limiting

normal cone of Mordukhovich. For more details, see [15,16,20]. Thus, in order to
compute D	NKð �yj � ryfð �x, �yÞÞðv

	Þ one needs to compute NL
gphNK

ð �y, �zÞ, �z ¼ �ryfð �x, �yÞ.
The computation of this object appears to be very difficult. It is important to note
that even though K is a convex set the set gphNK is not a convex set. It appears that
it is quiet difficult to compute the limiting normal cone for a closed and convex
set K. When K ¼ R

m
þ an explicit calculation of NL

gphNK
ð �y, �zÞ is given in Ye [22]. When

ðx, yÞ 2 R
2 and K ¼ ½0, 1� an explicit calculation of NL

gphNK
ð �y, �zÞ is given in [9]. Thus, a

more practical formulation of optimality conditions for bilevel programming remains
to be a major issue of future research.

Moreover, for simplicity of presentation we have considered the case where the
feasible set in the lower-level problem is independent of the parameter x. However,
this need not be the case. For the case where K depends on x [9] for the optimistic
case. Further, we have also made the upper-level variable free in our exposition.
However, even if x is constrained to belong to a proper closed subset X of R

n, one
can still formulate a necessary optimality condition using the results in [18]. This has
been demonstrated in [9]. Thus, it appears as for now that a lot of more research
effort has to go into the study of optimality conditions for bilevel programming in
order to develop conditions that are computationally tractable. However, this
does not mean optimality conditions for bilevel programming developed by several
researchers till now are of no use. Instead, these optimality conditions would act as a
guide for future development since they allow us to pinpoint the exact issue that
needs to looked into in greater detail in order to formulate more practical optimality
conditions.
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