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Abstract

In this paper we consider the bilevel programming problem (BLPP) which is
a sequence of two optimization problems where the constraint region of the upper
level problem is determined implicitly by the solution set to the lower level prob-
lem. We extend well-known constraint qualifications for nonlinear programming
problems such as the Abadie constraint qualification, the Kuhn-Tucker constraint
qualification, the Zangwill constraint qualification, the Arrow-Hurwicz-Uzawa con-
straint qualification and the weak reverse convex constraint qualification to BLPPs
and derive a Karash-Kuhn-Tucker (KKT) type necessary optimality condition un-
der these constraint qualifications without assuming the lower level problem sat-
isfying the Mangasarian Fromovitz constraint qualification. Relationships among
various constraint qualifications are also given.
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1 Introduction.

In this paper we consider the following bilevel programming problem (BLPP):

BLPP min
x,y

F (x, y)

s.t. y ∈ S(x),

Gk(x, y) ≤ 0 k ∈ K

where S(x) denotes the set of solutions of the lower level problem:

Px : min
y

f(x, y)

s.t. gi(x, y) ≤ 0 i ∈ I,

and F,Gk, f, gi are functions on Rn ×Rm with finite index sets

I = {1, 2, . . . , p}, K = {1, 2, . . . , q}.

We allow p or q to be zero to signify the case in which there are no explicit
inequality constraints. In these cases it is clear below that certain references to
such constraints are simply to be deleted.

To simplify the exposition and to concentrate on the main ideas, we assume
that all defining functions F,Gk, f, gi are continuously differentiable and we do not
include equality constraints. The results can be easily generalized to the case of
the presence of equality constraints in a straightforward manner.

Although the bilevel programming problem was only introduced to the opti-
mization community in the seventies of the 20th century by Bracken and McGill
[7], the first formulation of a simpler case was introduced and used on market econ-
omy by Stackelberg [28] in 1934 and hence is also known as a Stackelberg game
in economic game theory. Bilevel programming problems can be used to model a
two-level hierarchical system where the higher level (the leader) and the lower level
(the follower) must find vectors x ∈ Rn and y ∈ Rm, respectively to minimize their
individual objective functions F (x, y) and f(x, y) subject to certain constraints.
The leader is assumed to select his decision vector first and the follower after that.
Under these assumptions on the order of the play, the game will proceed as follows:
For any possible decision vector x ∈ Rn chosen by the leader, the follower will re-
act optimally by choosing his decision vector y ∈ Rm to minimize the objective
function f(x, y) subject to constraints gi(x, y) ≤ 0 i ∈ I. Assume also that if
the solution set S(x) of the lower level problem is not a singleton, the follower
allows the leader to choose which of them is actually used. Hence now the leader

2



chooses his optimal decision vector x ∈ Rn and y ∈ S(x) to minimize his objective
function F (x, y) subject to the constraints Gk(x, y) ≤ 0 k ∈ K. The BLPP has
been a hot research area over the last twenty years and many researchers have
made contributions to the area. The reader is referred to monographs [4, 10, 27]
for applications of bilevel programming and recent developments on the subject,
and to [11, 29] for a bibliography review.

The classical approach to derive necessary optimality conditions for BLPP (see
e.g. [5]) was to replace the lower level problem by its Karush-Kuhn-Tucker (KKT)
conditions and the problem of constraint qualification is usually neglected. This
approach, however, is only applicable to the case where the lower level problem
is convex, i.e. f(x, ·), gi(x, ·)(i ∈ I) are convex functions, and a certain constraint
qualification is satisfied for the lower level. Moreover the resulting single level prob-
lem belongs to the class of mathematical programs with equilibrium constraints or
MPECs ([16, 23]) and it is known that the usual constraint qualifications such as
Mangasarian Fromovitz constraint qualification (MFCQ) will never hold (see [35,
Proposition 1.1]). Recently various optimality conditions for MPECs such as the
B-stationary condition, the S-stationary condition, the M-stationary condition and
the C-stationary condition which are weaker than the classical KKT condition and
the corresponding constraint qualifications are developed (see [20, 24, 30, 32] for
detailed discussions).

Dempe [9] and Outrata [22] derived necessary conditions for the case where
the solution set S(x) = {y(x)} is a singleton by minimizing the objective function
F (x, y(x)) over all x satisfying constraints Gk(x, y(x)) ≤ 0 k ∈ K. This approach,
however, requires that the solution set S(x) is a singleton and the map y(x) has
certain differentiability properties.

In Ye and Zhu [33, 34], the following approach is taken to reformulate the
BLPP. Define the value function of the lower level problem as an extended value
function V : Rn → R̄ by

V (x) := inf
y
{f(x, y) : gi(x, y) ≤ 0 i ∈ I}

where R̄ := R ∪ {−∞} ∪ {+∞} is the extended real line and inf{∅} = +∞ by
convention. Then it is obvious that the BLLP can be reformulated as the following
single level optimization problem involving the value function:

(SP )V min F (x, y)

s.t. f(x, y)− V (x) ≤ 0,

gi(x, y) ≤ 0 i ∈ I,
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Gk(x, y) ≤ 0 k ∈ K.

The above single level problem is completely equivalent to the BLPP without any
convexity assumption on the lower level problem. However there are two issues
needed to be addressed when using this approach. First, it is well known that V (x)
may not be differentiable in general even in the case where all defining functions
f, gi are continuously differentiable and hence the problem (SP )V is in general a
nonsmooth problem. To use the generalized Lagrange multiplier rule of Clarke
[8], V (x) is required to be Lipschitz continuous. For this to be true the lower
level problem is assumed to satisfy the MFCQ at the optimal solution. Secondly,
due to the bilevel structure, the nonsmooth MFCQ for the single level problem
(SP )V will never be satisfied and hence weaker constraint qualifications such as
the partial calmness condition was suggested by [33, 34] as an applicable constraint
qualification.

The purpose of this paper is to derive KKT conditions for general bilevel pro-
gramming problems without convexity assumptions on the lower level problem,
without the assumption that the solution set of the lower level problem S(x) is
a singleton, without assumption that the lower level problem satisfies the MFCQ
and without the partial calmness condition. Our approach is to use a new function
ψ(x, y) to replace the function f(x, y) − V (x). The resulting single level problem
may be locally equivalent to the BLPP and the function ψ(x, y) is Lipschitz near
the optimal solution without any requirements on the MFCQ of the lower level
problem.

2 A new equivalent single level problem

In order to derive KKT conditions without the assumption of the MFCQ for the
lower level problem, we consider a new single level problem which may be locally
equivalent to the BLPP at the optimal solution under conditions given in this
section.

Denote by
Y (x) := {y ∈ Rm : gi(x, y) ≤ 0 i ∈ I}

the feasible region of the lower level problem Px. Let (x̄, ȳ) be a local optimal
solution of BLPP. Recall that the set-valued map Y is called uniformly bounded
around x̄ if there exists a neighborhood U of x̄ such that the set

⋃
x∈U

Y (x) is
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bounded. Throughout this paper unless otherwise specified, we assume that the
set-valued map Y is uniformly bounded around x̄.

Assume that U(x̄, ȳ) is a bounded open neighborhood of a local optimal solution
(x̄, ȳ), U := {x ∈ Rn : ∃y s.t. (x, y) ∈ U(x̄, ȳ)} and the set

⋃
x∈U

Y (x) is bounded.

Let V be some nonempty and compact set that contains an open neighborhood
of cl

⋃
x∈U

Y (x) where clA denotes the closure of set A. Our uniform boundedness

assumption on x̄ ensures the existence of V .
Let

ψ(x, y) := max
y′∈V

σ(x, y, y′)

where σ(x, y, y′) := min
{
f(x, y)− f(x, y′),−max

i∈I
gi(x, y′)

}
.

Lemma 2.1 (i) {x ∈ U, y ∈ Y (x) : f(x, y) − V (x) < 0} = {x ∈ U, y ∈ Y (x) :
ψ(x, y) < 0} = ∅.

(ii) {x ∈ U, y ∈ Y (x) : f(x, y)− V (x) = 0} ⊆ {x ∈ U, y ∈ Y (x) : ψ(x, y) = 0}.

(iii) Let ȳ ∈ S(x̄). Then the solution set of the problem max
y′∈V

σ(x̄, ȳ, y′) is given by

S(x̄).

Proof. To see part (i) let x ∈ U, y ∈ Y (x). Due to the compactness of V, we have
ψ(x, y) < 0 if and only if σ(x, y, y′) < 0 for all y′ ∈ V . The latter holds if and only
if for all y′ ∈ V max

i∈I
gi(x, y′) ≤ 0 implies f(x, y) < f(x, y′). Since for x ∈ U the

set Y (x) is a subset of V we have equivalently that for all y′ ∈ V ∩ Y (x) = Y (x)
it holds that f(x, y) < f(x, y′). This is true if and only if f(x, y) − V (x) < 0.
By definition of the value function V (x), it is obvious that f(x, y) ≥ V (x) for all
y ∈ Y (x) always and hence the set {x ∈ U, y ∈ Y (x) : f(x, y)−V (x) < 0} is empty.

For the proof of (ii) let x ∈ U, y ∈ Y (x) so that f(x, y)−V (x) = 0. This means
that y is a global minimizer of the lower level problem (Px). If ψ(x, y) > 0, Then
by definition of ψ, there is y′ ∈ V such that σ(x, y, y′) > 0. That is,

f(x, y)− f(x, y′) > 0 −max
i∈I

gi(x, y′) > 0

which implies that y′ ∈ Y (x) but f(x, y′) < f(x, y). But this contradicts the fact
that y is a global minimizer of (Px) and hence ψ(x, y) can not be positive. By part
(i), ψ(x, y) can not be negative either hence ψ(x, y) = 0.

Finally let us prove part (iii). Since ȳ ∈ S(x̄), it is easy to see that σ(x̄, ȳ, ȳ′) = 0
for any ȳ′ ∈ S(x̄). Hence to prove that S(x̄) is the set of solutions, it suffices to
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prove that σ(x̄, ȳ, y′) ≤ 0 for any y′ ∈ V. To the contrary suppose that σ(x̄, ȳ, y′) >
0 for some y′ ∈ V , then

−max
i∈I

gi(x̄, y′) > 0, f(x̄, ȳ) > f(x̄, y′)

which contradicts that fact that ȳ ∈ S(x̄) and hence the solution set of the problem
is given by S(x̄).

By virtue of Lemma 2.1, under certain conditions, the local optimal solution
(x̄, ȳ) of the BLPP may become a local optimal solution of the following problem

(SP )ψ min F (x, y)

s.t. ψ(x, y) ≤ 0,

gi(x, y) ≤ 0 i ∈ I,

Gk(x, y) ≤ 0 k ∈ K.

Again as for problem (SP )V there are two issues to be addressed. The first one
concerns with the Lipschitz continuity of the function ψ(x, y) and the second one
involves with KKT necessary optimality conditions. We discuss the first one in the
remaining part of this section and leave the second issue for the next two sections.

Since −ψ(x, y) can be considered as a value function for a minimization prob-
lem P (x, y) (to be defined in the proof of Proposition 2.2), we need to recall the
sensitivity analysis of the value function for the following parametric mathematical
program:

P (x) min
y

h(x, y)

s.t. Ψ(x, y) ≤ 0,

y ∈ C

where the defining functions h(x, y) : Rn ×Rm → R, Ψ(x, y) : Rn ×Rm → Rs are
continuously differentiable functions, and C is a closed subset of Rm. We denote

w(x) := inf
y
{h(x, y) : Ψ(x, y) ≤ 0, y ∈ C}

the associated value function. Let x̄ ∈ Rn. We denote by Σ(x̄) the solution set of
problem P (x̄). For any ȳ ∈ Σ(x̄) ∩ intC where intC denotes the interior of set C,
define the set of abnormal multipliers and the set of normal (i.e. KKT) multipliers
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for the problem P (x̄) at ȳ respectively as follows.

M0(ȳ) :=

η ∈ R
s :

0 =
s∑
i=1

ηi∇yΨi(x̄, ȳ),

η ≥ 0,
s∑
i=1

ηiΨi(x̄, ȳ) = 0

 ;

M1(ȳ) :=

η ∈ R
s :

0 = ∇yh(x̄, ȳ) +
s∑
i=1

ηi∇yΨi(x̄, ȳ),

η ≥ 0,
s∑
i=1

ηiΨi(x̄, ȳ) = 0

 .
The following result which generalizes the result of [13] to the problem involving
abstract constraints can be derived by using [17, 18, Theorem 4.4]. Alternatively
the result can be also obtained by using either Clarke [8, Corollary 1 of Theorem
6.5.2] or Rockafellar and Wets [26, Theorem 10.13] with some calculus. Note that
the condition

⋃
ȳ∈Σ(x̄)

M0(ȳ) = {0} holds if and only if the MFCQ holds for P (x̄) at

each ȳ ∈ Σ(x̄).

Proposition 2.1 Assume that there exists δ > 0 such that the set

{y ∈ C : p ∈ B(0, δ),Ψ(x̄, y) ≤ p, h(x̄, y) ≤ α}

is bounded for each scalar α. Assume also that
⋃

ȳ∈Σ(x̄)

M0(ȳ) = {0} and Σ(x̄) ⊆

intC. Then the value function w(x) is Lipschitz near x̄ and

∂◦w(x̄) ⊆ co
⋃

ȳ∈Σ(x̄)

{∇xh(x̄, ȳ) +
s∑
i=1

ηi∇xΨi(x̄, ȳ) : η ∈M1(ȳ)},

where coA denotes the convex hull of set A and ∂◦w denotes the Clarke generalized
gradient of w (see [8] for definition).

Define the Fritz John type Lagrangian of the lower level problem by

L(x, y, α, γ) = αf(x, y) +
∑
i∈I

γigi(x, y),

and the set of Fritz John multipliers of the lower level problem Px̄ at ȳ by

FJ(x̄, ȳ) =

(α, γ) ∈ R×Rp :
(α, γ) ≥ 0, ‖(α, γ)‖1 = 1,
∇yL(x̄, ȳ, α, γ) = 0,

∑
i∈I

γigi(x̄, ȳ) = 0

 ,
where ‖x‖1 :=

∑n
i=1 |xi| denotes the one-norm for a vector x in Rn. It is easy to

see that the set of Fritz John multipliers FJ(x̄, ȳ) is a nonempty convex polytope.
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Proposition 2.2 Let (x̄, ȳ) be a local solution of BLPP. Then the function ψ(x, y)
is Lipschitz continuous near (x̄, ȳ) and the Clarke generalized gradient at (x̄, ȳ) has
the following upper approximation:

∂◦ψ(x̄, ȳ) ⊆ coW (x̄, ȳ),

where

W (x̄, ȳ) :=
⋃

ȳ′∈S(x̄)

{
α∇f(x̄, ȳ)−

(
∇xL(x̄, ȳ′, α, γ), 0

)
: (α, γ) ∈ FJ(x̄, ȳ′)

}
.

Proof. It is easy to see that −ψ(x, y) is the optimal value function for the following
parametric mathematical programming probem:

P (x, y) min
y′,z

−z

s.t. −f(x, y) + f(x, y′) + z ≤ 0,

gi(x, y′) + z ≤ 0 i ∈ I,

y′ ∈ V, z ∈ R.

By Lemma 2.1, if ȳ ∈ S(x̄), then the solution set of the problem P (x̄, ȳ) is S(x̄)×
{0}. Let ȳ be any element in S(x̄) and (α, γ) ∈M0(ȳ, 0) be any abnormal multiplier
of the problem P (x̄, ȳ). Then since the restriction y′ ∈ V is not active at ȳ,(

0
0

)
= α

(
∇yf(x̄, ȳ)

1

)
+
∑
i∈I

γi

(
∇ygi(x̄, ȳ)

1

)

and
(α, γ) ≥ 0,

∑
i∈I

γigi(x̄, ȳ) = 0

which are only possible if (α, γ) is a zero vector. Hence
⋃

ȳ∈S(x̄)

M0(ȳ, 0) = {0}.

Let (α, γ) ∈M1(ȳ, 0) be any KKT multiplier of the problem P (x̄, ȳ). Then(
0
0

)
=

(
0
−1

)
+ α

(
∇yf(x̄, ȳ)

1

)
+
∑
i∈I

γi

(
∇ygi(x̄, ȳ)

1

)

and
(α, γ) ≥ 0,

∑
i∈I

γigi(x̄, ȳ) = 0

which implies that (α, γ) lies in the set FJ(x̄, ȳ).
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Hence by Proposition 2.1, the function ψ is Lipschitz near (x̄, ȳ) and

∂◦ψ(x̄, ȳ) = −∂◦(−ψ(x̄, ȳ))

⊆ −co
⋃

ȳ′∈S(x̄)

{−α∇f(x̄, ȳ) +
(
∇xL(x̄, ȳ′, α, γ), 0

)
: (α, γ) ∈ FJ(x̄, ȳ′)}

= coW (x̄, ȳ).

Now since all defining functions of problem (SP )ψ are Lipschitz near the opti-
mal solution one can apply the generalized Lagrange multiplier rule of Clarke [8,
Proposition 6.4.4] and Proposition 2.2 to derive the following KKT condition un-
der the calmness condition. The equivalent form follows from the Carathéodory’s
theorem which says that a convex set in Rn+m can be represented by not more
than n+m+ 1 elements at a time.

Proposition 2.3 Let (x̄, ȳ) be a local optimal solution of BLPP with S(x̄) 6= ∅.
Suppose the single level problem (SP )ψ is calm at (x̄, ȳ) in the sense of Clarke [8,
Definition 6.4.1]. Then there exist multipliers µ ≥ 0, η ∈ Rp+, β ∈ R

q
+ such that

0 ∈ ∇F (x̄, ȳ) + µcoW (x̄, ȳ) +
∑

i∈I(x̄,ȳ)
ηi∇gi(x̄, ȳ) +

∑
k∈K(x̄,ȳ)

βk∇Gk(x̄, ȳ),

where I(x̄, ȳ) := {i ∈ I : gi(x̄, ȳ) = 0} and K(x̄, ȳ) := {k ∈ K : Gk(x̄, ȳ) = 0}.
Equivalently, there exist λi ≥ 0, yi ∈ S(x̄), (αi, γi) ∈ FJ(x̄, yi), i = 1, 2, · · · , n +
m+ 1 and η ∈ Rp+, β ∈ R

q
+ such that

0 = ∇F (x̄, ȳ) +
∑

i∈I(x̄,ȳ)
ηi∇gi(x̄, ȳ) +

∑
k∈K(x̄,ȳ)

βk∇Gk(x̄, ȳ)

+
n+m+1∑
i=1

λi[αi∇f(x̄, ȳ)− (∇xL(x̄, yi, αi, γi), 0)].

By virtue of [8, Corollary 5 of Theorem 6.5.2], if M0(x̄, ȳ) the abnormal multi-
plier set for problem (SP )ψ at (x̄, ȳ), contains only the zero vector then problem
(SP )ψ is calm at (x̄, ȳ). It is known (see [14]) that for the nonsmooth problem
(SP )ψ, M0(x̄, ȳ) = {0} if and only if the generalized MFCQ holds, i.e., there exists
v ∈ Rn+m such that

ψ◦((x̄, ȳ); v) < 0,

g◦i ((x̄, ȳ); v) < 0 i ∈ I(x̄, ȳ),

G◦
k((x̄, ȳ); v) < 0 k ∈ K(x̄, ȳ),
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where ψ◦((x̄, ȳ); v) denotes the Clarke generalized directional derivative of a func-
tion ψ at (x̄, ȳ) in direction v (see [8] for definition). In [33, Proposition 3.2],
under certain conditions it was shown that the generalized MFCQ never holds for
the single level problem (SP )V . We now show that without any conditions, the
generalized MFCQ never holds for both (SP )ψ and (SP )V .

Proposition 2.4 Let (x̄, ȳ) be a local solution for BLPP. Then the generalized
MFCQ will never hold for (SP )ψ and (SP )V .

Proof. To the contrary, assume that the generalized MFCQ holds at (x̄, ȳ). Then
it is easy to show that there exists a point (x̂, ŷ) such that ψ(x̂, ŷ) < 0, gi(x̂, ŷ) <
0, x̂ ∈ U . This contradicts the fact that the set {x ∈ U, y ∈ Y (x) : ψ(x, y) < 0} = ∅
(by Lemma 2.1(i)). The proof for (SP )V is exactly similar.

Using the new equivalent problem (SP )ψ instead of (SP )V , similar as in [33, 34],
one can also derive the KKT type optimality condition under the partial calmness
condition. The resulting KKT condition will be the one in Proposition 2.3 and no
lower level MFCQ is required to hold.

3 KKT conditions under the extended Abadie

CQ

In this section we derive KKT conditions for the cases where the calmness or
the partial calmness condition may not hold. For a nonlinear programming prob-
lem with smooth defining functions, other than the calmness condition, another
well-known constraint qualification that is weaker than most of other constraint
qualifications are the Abadie constraint qualification introduced by Abadie [1].
Our single level problem, however, is nonsmooth and hence we need to extend the
Abadie CQ to allow the nonsmoothness.

We first recall notions of various tangent cones.

Definition 3.1 Let M be a closed subset in Rn and x̄ ∈M . The contingent cone
of M at x̄ is the closed cone defined by

T (x̄,M) := {v ∈ X : ∃tn ↓ 0, vn → v s.t. x̄+ tnvn ∈M ∀n}.

The cone of attainable directions of M at x̄ is the closed cone defined by

A(x̄,M) =

v :
There exist some δ > 0 and a mapping
α : R→ X such that α(τ) ∈M for all
τ ∈ (0, δ), α(0) = x̄ and limτ↓0

α(τ)−α(0)
τ = v

 .
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The cone of feasible directions of M at x̄ is the cone defined by

D(x̄,M) := {v ∈ X : ∃δ > 0 s.t. x̄+ tv ∈M ∀t ∈ (0, δ)}.

The cone of attainable directions is also known as the adjacent cone (see e.g. [3])
or the incident cone. In fact

A(x̄,M) = lim inf
τ↓0

M − x̄

τ

and hence is a closed cone.

Definition 3.2 (Nonsmooth linearization cone) We define the nonsmooth lin-
earization cone of the feasible set F of the BLPP at the local optimal solution (x̄, ȳ)
as the set:

L((x̄, ȳ),F) :=

v :
w>v ≤ 0 w ∈ ∂◦ψ(x̄, ȳ),
∇gi(x̄, ȳ)>v ≤ 0 i ∈ I(x̄, ȳ),
∇Gk(x̄, ȳ)>v ≤ 0 k ∈ K(x̄, ȳ)


where a> denotes the transpose of vector a.

Note that Lemma 2.1 justifies the use of function ψ in place of the function f(x, y)−
V (x) in the definition of the nonsmooth linearization cone of the feasible region of
the BLPP at (x̄, ȳ).

We now extend the well-known Abadie CQ [1] to the BLPP at (x̄, ȳ).

Definition 3.3 (N. Abadie CQ) Let (x̄, ȳ) ∈ F . We say that the nonsmooth
Abadie constraint qualification holds at (x̄, ȳ) ∈ F if

L((x̄, ȳ),F) ⊆ T ((x̄, ȳ),F).

It is easy to show that in the case when the function ψ is Clarke regular at (x̄, ȳ),
i.e., when the usual directional derivative exists at every direction and is equal
to the Clarke generalized directional derivative (for example when ψ is convex or
smooth), the reverse inclusion

L((x̄, ȳ),F) ⊇ T ((x̄, ȳ),F)

always holds. Otherwise the strict inclusion

L((x̄, ȳ),F) ⊂ T ((x̄, ȳ),F)

may be possible. For example let F = {x ∈ R : −|x| ≤ 0}. Then it is easy to see
that T (0,F) = R but L(0,F) = {0} and hence L(0,F) ⊂ T (0,F).
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Proposition 3.1 Let (x̄, ȳ) be a local solution of the BLPP. If the nonsmooth
Abadie CQ holds at (x̄, ȳ), then

0 ∈ ∇F (x̄, ȳ) + clcone[∂◦ψ(x̄, ȳ) ∪
⋃

i∈I(x̄,ȳ)
{∇gi(x̄, ȳ)} ∪

⋃
k∈K(x̄,ȳ)

{∇Gk(x̄, ȳ)}].

where coneA denotes the convex cone generated by set A.

Proof. It is well known that since (x̄, ȳ) is a local minimizer for BLPP,

∇F (x̄, ȳ)>v ≥ 0 for all v ∈ T ((x̄, ȳ),F).

Now suppose that the nonsmooth Abadie CQ holds at (x̄, ȳ). Then

∇F (x̄, ȳ)>v ≥ 0 for all v ∈ L((x̄, ȳ),F).

Consequently
∇F (x̄, ȳ)>v ≥ 0 whenever max

a∈C
a>v ≤ 0.

where C denotes the convex cone generated by

∂◦ψ(x̄, ȳ) ∪
⋃

i∈I(x̄,ȳ)
{∇gi(x̄, ȳ)} ∪

⋃
k∈K(x̄,ȳ)

{∇Gk(x̄, ȳ)}.

Thus the function
v → ∇F (x̄, ȳ)>v + δC0(v)

attains its minimum at 0, where C0 := {v ∈ Rn+m : v>c ≤ 0 for all v ∈ C} is the
polar cone of C and δC0 is the indicator function of set C0. By the sum rule, one
has

0 ∈ ∇F (x̄, ȳ) + ∂δC0(0).

Since ∂δC0(0) = C00 = clC, the above inclusion is the same as

0 ∈ ∇F (x̄, ȳ) + clC.

Remark 3.1 Note that the KKT condition under the nonsmooth Abadie CQ dif-
fers from the one under the calmness condition in that a closure operation is re-
quired. In fact in Ye [31], the Abadie CQ was also extended to allow the nondif-
ferentiability. But in [31], the KKT condition was derived under the assumption
that the set

cone[∂◦ψ(x̄, ȳ) ∪
⋃

i∈I(x̄,ȳ)
{∇gi(x̄, ȳ)} ∪

⋃
k∈K(x̄,ȳ)

{∇Gk(x̄, ȳ)}]

is closed.
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We now extend the well-known Kuhn-Tucker CQ and Zangwill CQ [15, 36] to
the BLPP at (x̄, ȳ).

Definition 3.4 (N. Kuhn-Tucker CQ and N. Zangwill CQ) Let (x̄, ȳ) ∈ F .
We say that the nonsmooth Kuhn-Tucker and nonsmooth Zangwill constraint qual-
ification holds at (x̄, ȳ) ∈ F if

L((x̄, ȳ),F) ⊆ A((x̄, ȳ),F), L((x̄, ȳ),F) ⊆ clD((x̄, ȳ),F)

respectively.

Since clD(x̄,M) ⊆ A(x̄,M) ⊆ T (x̄,M). It is easy to see that N.Zengwill CQ
implies N. Kuhn-Tucker CQ which in turn implies N. Abadie CQ.

Although the Abadie constraint qualification is a weak constraint qualification,
it is not very easy to verify since it is not defined in terms of constraint functions. In
the rest of this section we will provide some sufficient conditions for the nonsmooth
Abadie CQ to hold.

The following definition extends the concept of pseudoconcavity in nonlinear
programming (see e.g. [6, 19]) to allow the nonsmoothness. The definition depends
on the kind of subdifferential used. The reader is referred to definition for the kind
of generalization to a class of subdifferentials in [21].

Definition 3.5 Let ϕ be a function on Rn. ϕ is said to be ∂◦-pseudoconcave at x̄
if it is Lipschitz near x̄ and for all x ∈ Rn,

max
w∈∂◦ϕ(x̄)

w>(x− x̄) ≤ 0 ⇒ ϕ(x) ≤ ϕ(x̄).

It is easy to see that a Lipschitz continuous concave function on Rn (which may
or may not be differentiable) must be ∂◦-pseudoconcave at x̄.

We now extend the Arrow-Hurwicz-Uzawa constraint qualification introduced
by Arrow et al. in [2] to the BLPP.

Definition 3.6 (N. Arrow-Hurwicz-Uzawa CQ) Let (x̄, ȳ) be a feasible so-
lution of (SP )ψ. We say that the nonsmooth Arrow-Hurwicz-Uzawa CQ holds
at (x̄, ȳ) if h(x, y) := f(x, y) − V (x) is ∂◦-pseudoconcave at (x̄, ȳ), ∂◦h(x̄, ȳ) ⊆
∂◦ψ(x̄, ȳ) and there exists v such that

w>v ≤ 0 ∀w ∈ ∂◦ψ(x̄, ȳ), (1)

∇gi(x̄, ȳ)>v < 0 ∀i ∈ I(x̄, ȳ) \ Λ, (2)

∇gi(x̄, ȳ)>v ≤ 0 ∀i ∈ Λ, (3)

∇Gk(x̄, ȳ)>v < 0 ∀k ∈ K(x̄, ȳ) \ Γ, (4)

∇Gk(x̄, ȳ)>v ≤ 0 ∀k ∈ Γ, (5)
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where

Λ := {i ∈ I(x̄, ȳ) : gi is pseudoconcave at (x̄, ȳ)},

Γ := {k ∈ K(x̄, ȳ) : Gk is pseudoconcave at (x̄, ȳ)}.

Proposition 3.2 The N. Arrow-Hurwicz-Uzawa CQ implies the N. Zangwill CQ.

Proof. Suppose that the N. Arrow-Hurwicz-Uzawa CQ holds at (x̄, ȳ). Then there
exists v which satisfies (1)-(5). Then

w>v ≤ 0 for all w ∈ ∂◦ψ(x̄, ȳ)

and hence for any t ≥ 0,

w>((x̄, ȳ) + tv − (x̄, ȳ)) ≤ 0 for all w ∈ ∂◦h(x̄, ȳ)

which implies by the ∂◦-pseudoconcavity of h(x, y) at (x̄, ȳ) that h((x̄, ȳ) + tv) ≤
h(x̄, ȳ) for all t ≥ 0. Therefore h((x̄, ȳ) + tv) ≤ 0 for all t ≥ 0. Similarly one
can prove gi((x̄, ȳ) + tv) ≤ 0(i ∈ I(x̄, ȳ)) and Gk((x̄, ȳ) + tv) ≤ 0(i ∈ K(x̄, ȳ)) for
all t ≥ 0. By virtue of Lemma 2.1, there exists a small enough δ > 0 such that
(x̄, ȳ) + tv ∈ F . So v ∈ D((x̄, ȳ),F) and the nonsmooth Zangwill CQ holds at
(x̄, ȳ).

The following is a nonsmooth extension of the weak reverse convex constraint
qualification (see e.g. [19]). It is easy to see that it is a sufficient condition for the
nonsmooth Arrow-Hurwicz-Uzawa CQ to hold since v = 0 is always a solution to
the system (1), (3) and (5).

Definition 3.7 (N. Weak Reverse Convex CQ) Let (x̄, ȳ) be a feasible solu-
tion of (SP )ψ. We say that the nonsmooth weak reverse convex CQ is satisfied
at (x̄, ȳ) if h(x, y) = f(x, y) − V (x) is ∂◦-pseudoconcave at (x̄, ȳ), ∂◦h(x̄, ȳ) ⊆
∂◦ψ(x̄, ȳ) and the functions gi(x, y)(i ∈ I(x̄, ȳ)) Gk(x, y)(k ∈ K(x̄, ȳ)) are pseudo-
concave at (x̄, ȳ).

Since the linearization cone of the feasible set F involves the function ψ which
is an implicit function of the defining functions, we extended the definition to one
that defines by the defining functions of the problem.

Definition 3.8 We define the extended linearization cone of the feasible set F as
the set:

L′((x̄, ȳ),F) :=

v :
w>v ≤ 0 w ∈W (x̄, ȳ),
∇gi(x̄, ȳ)>v ≤ 0 i ∈ I(x̄, ȳ),
∇Gk(x̄, ȳ)>v ≤ 0 k ∈ K(x̄, ȳ)

 .
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Definition 3.9 (E. Abadie CQ, E. Kuhn-Tucker CQ and E. Zangwill CQ)
Let (x̄, ȳ) ∈ F . We say that the extended Abadie constraint qualification, the ex-
tended Kuhn-Tucker constraint qualification and the extended Zangwill constraint
qualification holds at (x̄, ȳ) respectively if

L′((x̄, ȳ),F) ⊆ T ((x̄, ȳ),F),

L′((x̄, ȳ),F) ⊆ A((x̄, ȳ),F),

L′((x̄, ȳ),F) ⊆ clD((x̄, ȳ),F)

respectively.

Definition 3.10 (E. Arrow-Hurwicz-Uzawa CQ) Let (x̄, ȳ) ∈ F . We say
that the extended Arrow-Hurwicz-Uzawa CQ holds at (x̄, ȳ) if h(x, y) = f(x, y) −
V (x) is ∂◦-pseudoconcave at (x̄, ȳ), ∂◦h(x̄, ȳ) ⊆ ∂◦ψ(x̄, ȳ) and there exists v such
that (1)-(5) with ∂◦ψ(x̄, ȳ) replaced by W (x̄, ȳ) are satisfied.

We are now ready to state the KKT condition for BLPPs under the extended
Abadie CQ in the following theorem. Note that the necessary condition under the
calmness condition in Proposition 2.3 can be equivalently rewritten as

0 ∈ ∇F (x̄, ȳ) + cone[W (x̄, ȳ) ∪
⋃

i∈I(x̄,ȳ)
{∇gi(x̄, ȳ)} ∪

⋃
k∈K(x̄,ȳ)

{∇Gk(x̄, ȳ)}].

Hence the necessary optimality condition under the extended Abadie constraint
qualification differs with the one under the calmness condition in that an extra
closure operation is needed.

Theorem 3.1 Let (x̄, ȳ) be a local optimal solution of BLPP with S(x̄) 6= ∅. Then
under one of following CQs stated in this section, (x̄, ȳ) satisfies the KKT condi-
tion, i.e.,

0 ∈ ∇F (x̄, ȳ) + clcone[W (x̄, ȳ) ∪
⋃

i∈I(x̄,ȳ)
{∇gi(x̄, ȳ)} ∪

⋃
k∈K(x̄,ȳ)

{∇Gk(x̄, ȳ)}].

Moreover, the relationship of the CQs are summarized as follows:
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N. Weak Reverse Convex CQ
⇓

E. AHU CQ ⇐ N. AHU CQ
⇓ ⇓

E. Zangwill ⇐ N. Zangwill
⇓ ⇓

E. Kuhn-Tucker ⇐= N. Kuhn-Tucker
⇓ ⇓

E. Abadie ⇐ N. Abadie.

Proof. We first prove that the KKT condition holds under the extended Abadie
CQ. By virtue of Lemma 2.1, the local optimal solution (x̄, ȳ) of BLPP is a feasible
solution of the problem (SP )ψ. The desired result follows from replacing the
linearization cone L((x̄, ȳ),F) by the extended linearization cone L′((x̄, ȳ),F) in
the proof of Proposition 3.1.

Now Proposition 3.2 shows that the nonsmooth weak reverse convex CQ implies
the nonsmooth Zangwill CQ. The relationship between the extended Zangwill, the
extended Kuhn-Tucker, the extended Abadie and the nonsmooth Zangwill, the
nonsmooth Kuhn-Tucker, the nonsmooth Abadie follows by the fact L((x̄, ȳ),F) ⊇
L′((x̄, ȳ),F) by virtue of Proposition 2.2.

4 BLPP where f (x, y)− V (x) is concave

In this section we consider the BLPP where the function f(x, y)−V (x) is concave.
This happens for example when the lower level problem is linear-convex, i.e., the
function f(x, y) is jointly linear and gi(x, y)(i ∈ I(x̄, ȳ)) are jointly convex (see e.g.
[12, Corollary 2.1.9]). In this case the KKT condition takes a simpler form. First
we show that the Clarke generalized gradient of the function ψ has the following
simpler upper approximation.

Proposition 4.1 Let (x̄, ȳ) be a local solution of BLPP where S(x̄) 6= ∅ and the
function ψ is concave. Then for any ȳ ∈ S(x̄) the Clarke generalized gradient of ψ
at (x̄, ȳ) has the following upper approximation:

∂◦ψ(x̄, ȳ) ⊆


− ∑

i∈I(x̄,ȳ)
γi∇xgi(x̄, ȳ), α∇yf(x̄, ȳ)

 : (α, γ) ∈ FJ(x̄, ȳ)

 .
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Proof. Note that

−ψ(x, y) = min
y′,z

−z :
−f(x, y) + f(x, y′) + z ≤ 0,
gi(x, y′) + z ≤ 0 i ∈ I,
y′ ∈ V


and for (x̄, ȳ) the solution of the above optimization problem is S(x̄)× {0}. Since
−ψ(x, y) is convex and bounded above on a neighborhood of (x̄, ȳ), −ψ is Lipschitz
near (x̄, ȳ) (see e.g. [8, Proposition 2.2.6]) and the Clarke generalized gradient of
−ψ(x, y) coincides with the subgradient in the sense of convex analysis. Let ξ ∈
∂◦(−ψ)(x̄, ȳ). By definition of the subdifferential in the sense of convex analysis,

−ψ(x, y)− (−ψ(x̄, ȳ)) ≥ 〈ξ, (x, y)− (x̄, ȳ)〉 ∀(x, y) ∈ Rn ×Rm,

which implies by the definition of the value function that for all (x, y, y′, z) satis-
fying the constraints

−f(x, y) + f(x, y′) + z ≤ 0

gi(x, y′) + z ≤ 0 i ∈ I

y′ ∈ V

one has
−z ≥ 〈ξ, (x, y)− (x̄, ȳ)〉.

That is, (x, y, y′, z) = (x̄, ȳ, ȳ, 0) is a solution to the following optimization problem:

min
x,y,y′,z

−z − 〈ξ, (x, y)〉

s.t. −f(x, y) + f(x, y′) + z ≤ 0,
gi(x, y′) + z ≤ 0 i ∈ I,
y′ ∈ V.

Let ȳ ∈ S(x̄). It is easy to verify that the MFCQ holds for the above optimization
problem at the solution (x̄, ȳ, ȳ, 0). By the KKT condition, since the constraint
y′ ∈ V is not active at ȳ, there exists (α, γ) ∈ R × Rs, (α, γ) ≥ 0, ‖(α, γ)‖1 = 1
such that

ξ = α[−∇f(x̄, ȳ) +∇xf(x̄, ȳ)× {0}] +
∑
i∈I

γi∇xgi(x̄, ȳ)× {0},

0 = α∇yf(x̄, ȳ) +
∑
i∈I

γi∇ygi(x̄, ȳ),

0 =
∑
i∈I

γigi(x̄, ȳ)
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which implies that

ξ ∈


 ∑
i∈I(x̄,ȳ)

γi∇xgi(x̄, ȳ),−α∇yf(x̄, ȳ)

 : (α, γ) ∈ FJ(x̄, ȳ)

 .
Consequently,

∂◦ψ(x̄, ȳ) = −∂◦(−ψ)(x̄, ȳ)

⊆


− ∑

i∈I(x̄,ȳ)
γi∇xgi(x̄, ȳ), α∇yf(x̄, ȳ)

 : (α, γ) ∈ FJ(x̄, ȳ)

 .

Since the upper approximation of the Clarke generalized gradient of ψ has a
simpler form when the function is concave, we revise the extended linearization
cone as follows:

Definition 4.1 Let (x̄, ȳ) ∈ F . We define the extended linearization cone of the
feasible set F for the concave case as the set:

L̃((x̄, ȳ),F) :=

v :

(
−
∑
i∈I(x̄,ȳ) γi∇xgi(x̄, ȳ), α∇yf(x̄, ȳ)

)>
v ≤ 0 (α, γ) ∈ FJ(x̄, ȳ),

∇gi(x̄, ȳ)>v ≤ 0 i ∈ I(x̄, ȳ),
∇Gk(x̄, ȳ)>v ≤ 0 k ∈ K(x̄, ȳ)

 .
Definition 4.2 We say that the extended Abadie constraint qualification, the ex-
tended Kuhn-Tucker constraint qualification and the extended Zangwill constraint
qualification for the concave case holds at (x̄, ȳ) respectively if

L̃((x̄, ȳ),F) ⊆ T ((x̄, ȳ),F),

L̃((x̄, ȳ),F) ⊆ A((x̄, ȳ),F),

L̃((x̄, ȳ),F) ⊆ clD((x̄, ȳ),F)

respectively.

Definition 4.3 (E. Arrow-Hurwicz-Uzawa CQ for the concave case) Let (x̄, ȳ) ∈
F . We say that the extended Arrow-Hurwicz-Uzawa CQ for the concave case holds
at (x̄, ȳ) if h(x, y) = f(x.y) − V (x) is concave, ∂◦h(x̄, ȳ) ⊆ ∂◦ψ(x̄, ȳ) and there
exists v such that− ∑

i∈I(x̄,ȳ)
γi∇xgi(x̄, ȳ), α∇yf(x̄, ȳ)

>

v ≤ 0 ∀(α, γ) ∈ FJ(x̄, ȳ),
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∇gi(x̄, ȳ)>v < 0 ∀i ∈ I(x̄, ȳ) \ Λ,

∇gi(x̄, ȳ)>v ≤ 0 ∀i ∈ Λ,

∇Gk(x̄, ȳ)>v < 0 ∀k ∈ K(x̄, ȳ) \ Γ,

∇Gk(x̄, ȳ)>v ≤ 0 ∀k ∈ Γ,

where

Λ := {i ∈ I(x̄, ȳ) : gi is pseudoconcave at (x̄, ȳ)},

Γ := {k ∈ K(x̄, ȳ) : Gk is pseudoconcave at (x̄, ȳ)}.

Theorem 4.1 Let (x̄, ȳ) be a local solution of BLPP where S(x̄) 6= ∅. Suppose that
h(x, y) = f(x, y) − V (x) is concave and one of the constraint qualifications such
as the N. Abadie CQ , N. Kuhn-Tucker CQ, N. Zangwill CQ, N. Arrow-Hurwicz-
Uzawa CQ, N. Weak Reverse Convex CQ, E. Abadie CQ , E. Kuhn-Tucker CQ, E.
Zangwill CQ, E. Arrow-Hurwicz-Uzawa CQ for the concave case is satisfied, then
there exist (α, γ) ∈ FJ(x̄, ȳ) and λ ≥ 0, η ∈ Rp+, β ∈ R

q
+ such that

0 = ∇F (x̄, ȳ) + λ

− ∑
i∈I(x̄,ȳ)

γi∇xgi(x̄, ȳ), α∇yf(x̄, ȳ)


+

∑
i∈I(x̄,ȳ)

ηi∇gi(x̄, ȳ) +
∑

k∈K(x̄,ȳ)

βk∇Gk(x̄, ȳ). (6)

Equivalently, there exist λ ≥ 0, α ≥ 0, γ ∈ Rp+, η ∈ Rp+, β ∈ Rq+ such that
‖(α, γ)‖1 = 1 and

0 = ∇F (x̄, ȳ) +
∑
i∈I

(ηi − λγi)∇gi(x̄, ȳ) +
∑

k∈K(x̄,ȳ)

βk∇Gk(x̄, ȳ),

0 = α∇yf(x̄, ȳ) +
∑

i∈I(x̄,ȳ)
γi∇ygi(x̄, ȳ)

γi = 0, ηi = 0 ∀i 6∈ I(x̄, ȳ).

Equivalently, there exist α ≥ 0, γ ∈ Rp+, ηg ∈ Rp, β ∈ R
q
+ such that ‖(α, γ)‖1 =

1 and

0 = ∇F (x̄, ȳ) +
∑

i∈I(x̄,ȳ)
ηgi∇gi(x̄, ȳ) +

∑
k∈K(x̄,ȳ)

βk∇Gk(x̄, ȳ), (7)

0 = α∇yf(x̄, ȳ) +
∑

i∈I(x̄,ȳ)
γi∇ygi(x̄, ȳ), (8)

ηgi ≥ 0 i ∈ I0(x̄, ȳ), (9)

where I0(x̄, ȳ) := {i ∈ I : gi(x̄, ȳ) = 0 and γi = 0}.
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Proof. It is obvious that all constraint qualifications stated in the theorem implies
the extended Abadie CQ for the concave case. Now assume that the extended
Abadie CQ for the concave case holds. Replacing the linearization cone L((x̄, ȳ),F)
by the extended linearization cone for the concave case L̃((x̄, ȳ),F) in the proof of
Proposition 3.1 we have

0 ∈ ∇F (x̄, ȳ) + clcone

A ∪ ⋃
i∈I(x̄,ȳ)

{∇gi(x̄, ȳ)} ∪
⋃

k∈K(x̄,ȳ)

{∇Gk(x̄, ȳ)}

 , (10)

where

A :=


− ∑

i∈I(x̄,ȳ)
γi∇xgi(x̄, ȳ), α∇yf(x̄, ȳ)

 : (α, γ) ∈ FJ(x̄, ȳ)

 .
Since the set FJ(x̄, ȳ) is a convex polytope and− ∑

i∈I(x̄,ȳ)
γi∇xgi(x̄, ȳ), α∇yf(x̄, ȳ)


is a linear mapping of (α, γ), the set A is also a convex polytope by virtue of [25,
Theorem 19.3]. By definition of a convex polytope, the above set A is a convex
hull of a finite set of points. Consequently, the convex hull of the set

B := A ∪
⋃

i∈I(x̄,ȳ)
{∇gi(x̄, ȳ)} ∪

⋃
k∈K(x̄,ȳ)

{∇Gk(x̄, ȳ)} ∪ {0}

is a polyhedral convex set containing the origin. By [25, Corollary 19.7.1] the
convex cone generated by set coB is polyhedral. But the convex cone generated
by set

C := A ∪
⋃

i∈I(x̄,ȳ)
{∇gi(x̄, ȳ)} ∪

⋃
k∈K(x̄,ȳ)

{∇Gk(x̄, ȳ)}

is the same as the convex cone generated by coB so it is also polyhedral and hence
closed. Therefore the closure operation in (10) is superfluous. Since the set A is
convex, (10) implies the existence of (α, γ) ∈ F (x̄, ȳ) and λ ≥ 0, η ≥ 0, β ≥ 0 such
that (6) holds. The equivalence of the first two conditions are obvious. It is also
obvious that the second condition implies the third one. We now suppose that
there exist α ≥ 0, γ ∈ Rp+, η

g ∈ Rp+, β ∈ Rq+ such that ‖(α, γ)‖1 = 1 such that
(7)-(9) hold. Let λ be the smallest positive number such that

ηgi + λγi ≥ 0 ∀i ∈ I(x̄, ȳ)

and η := ηg +λγ then the second condition holds with multipliers (λ, α, γ, η, β).
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In the case where the set of Fritz John multipliers FJ(x̄, ȳ) coincides with the
set of KKT multipliers for the lower level problem Px̄ at ȳ, one can take α = 1
and hence the necessary condition derived in Theorem 4.1 reduces to the one given
in [31, Theorem 4.2]. Hence Theorem 4.1 extends the result of [31, Theorem
4.2] in that the lower level problem Px̄ is not required to satisfy any constraint
qualification at ȳ.

In the following result we derive the KKT condition for a class of BLPP where
no constraint qualifications is required for the KKT condition to hold.

Corollary 4.1 Let (x̄, ȳ) be a local solution of BLPP where S(x̄) 6= ∅ and suppose
that f(x, y) is jointly linear, gi(x, y)(i ∈ I(x̄, ȳ)) are jointly linear and Gk(x, y)(k ∈
K(x̄, ȳ)) are pseudoconcave at (x̄, ȳ). Then the KKT condition in Theorem 4.1
holds at (x̄, ȳ).

Proof. By virtue of [12] under the assumptions of the corollary, the function
f(x, y) − V (x) is concave. Moreover f(x, y) − V (x) is also concave and it is easy
to show that ∂◦h(x̄, ȳ) ⊆ ∂◦ψ(x̄, ȳ) in this case. Since all binding constraints
are pseudoconcave at the optimal solution, the nonsmooth weak reverse convex
constraint qualification holds. The result then follows from Theorem 4.1.

It is interesting to compare our approach with the classical approach, in which
the lower level problem is replaced by the KKT condition of the lower level problem.
First of all, even when the lower level problem is linear-convex, it may happen that
the lower level problem does not satisfy the KKT condition and hence the classical
approach is not applicable to this case. We now consider the case where the lower
level problem is linear-convex and the KKT condition is necessary and sufficient
for the lower level problem for each y ∈ S(x). Then by the classical approach, the
following single level problem is considered:

(KP ) min
x,y,γ

F (x, y)

s.t. 0 = ∇yf(x, y) +
∑
i∈I

γi∇ygi(x, y), (11)

γ ≥ 0, gi(x, y) ≤ 0, i ∈ I,∑
i∈I

γigi(x, y) ≥ 0,

Gk(x, y) ≤ 0 k ∈ K.

It is obvious that if (x̄, ȳ) is a local solution of the BLPP and the KKT condition
is necessary and sufficient for the lower level problem for each y ∈ S(x), then there
exists γ such that (x̄, ȳ, γ) is a local solution to the single level problem (KP). The
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converse implication, however, is not true in general unless the KKT multiplier for
the lower level problem is unique.

Problem (KP) belongs to the class of MPECs and it is known (see [35, Propo-
sition 1.1]) that the usual CQs such as the MFCQ do not hold for problem (KP).
However if the defining functions f, gi(i ∈ I) are second order continuously differ-
entiable and the MPEC LICQ holds at (x̄, ȳ, γ), a local optimal solution of (KP),
then (x̄, ȳ, γ) is a S-stationary point: That is, there exist µ ∈ Rm, ηg ∈ Rp, β ∈
Rq+, η̃ ∈ Rp such that

0 = ∇F (x̄, ȳ) +
∑

i∈I(x̄,ȳ)
ηgi∇gi(x̄, ȳ) +

∑
k∈K(x̄,ȳ)

βk∇Gk(x̄, ȳ)

+∇
[
∇yf +

∑
i∈I

γi∇ygi

]
(x̄, ȳ)>µ,

0 = ∇yf(x̄, ȳ) +
∑

i∈I(x̄,ȳ)
γi∇ygi(x̄, ȳ),

η̃ = ∇yg(x̄, ȳ)>µ, γiη̃i = 0 i ∈ I,

ηgi ≥ 0, η̃i ≥ 0 ∀i ∈ I0(x̄, ȳ).

Comparing the above S-stationary condition for (KP) with the KKT condition
(7)-(9) in Theorem 4.1, it is easy to see that in the case where α 6= 0, (x̄, ȳ)
satisfying the KKT condition in Theorem 4.1 implies that there exists γ such that
(x̄, ȳ, γ) is a S-stationary point of (KP) with the multiplier for the constraint (11)
µ = 0. Theorem 4.1 therefore provides some sufficient conditions for (x̄, ȳ, γ) to be
a S-stationary point for (KP) without the MPEC LICQ.

Finally we would like to comment on the uniform boundedness assumption
of the set-valued map Y . Due to the use of function ψ, it is clear that in gen-
eral Y is required to be uniformly bounded around x̄. However for the case of
the “generalized linear” BLPP where f(x, y), gi(x, y)(i ∈ I) are jointly linear and
Gk(x, y)(k ∈ K(x̄, ȳ)) are pseudoconcave at (x̄, ȳ), the function f(x, y) − V (x) is
concave and no constraint qualification is required for the KKT condition of any
optimization problem with constraints gi(x, y) ≤ 0(i ∈ I) to hold. In this case
there is no need to use the function ψ. Indeed, by using the problem (SP )V , [31,
Corollary 4.1] has shown that a local optimal solution (x̄, ȳ) satisfies the KKT
condition in Theorem 4.1 without the uniform boundedness assumption on the
set-valued map Y .

Note that similar to the proof of the equivalence of the second and the third
KKT conditions in Theorem 4.1, it is easy to prove that (x̄, ȳ, γ) is a S-stationary
point if only if it satisfies the classical KKT condition for problem KP (treating
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it as a nonlinear programming problem with equality and inequality constraints
instead of a mathematical program with complementarity constraints). Hence our
approach has the advantage over the classical approach in that the resulting KKT
condition is sharper, no second order differentiability of the functions f, gi are
required and no constraint qualification is needed for the class of BLPP given in
Corollary 4.1.
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