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Abstract

We propose Prototypical Networks for the problem of few-shot classification, where
a classifier must generalize to new classes not seen in the training set, given only
a small number of examples of each new class. Prototypical Networks learn a
metric space in which classification can be performed by computing distances
to prototype representations of each class. Compared to recent approaches for
few-shot learning, they reflect a simpler inductive bias that is beneficial in this
limited-data regime, and achieve excellent results. We provide an analysis showing
that some simple design decisions can yield substantial improvements over recent
approaches involving complicated architectural choices and meta-learning. We
further extend Prototypical Networks to zero-shot learning and achieve state-of-
the-art results on the CU-Birds dataset.

1 Introduction

Few-shot classification [22, 18, 15] is a task in which a classifier must be adapted to accommodate
new classes not seen in training, given only a few examples of each of these classes. A naive approach,
such as re-training the model on the new data, would severely overfit. While the problem is quite
difficult, it has been demonstrated that humans have the ability to perform even one-shot classification,
where only a single example of each new class is given, with a high degree of accuracy [18].

Two recent approaches have made significant progress in few-shot learning. Vinyals et al. [32]
proposed Matching Networks, which uses an attention mechanism over a learned embedding of the
labeled set of examples (the support set) to predict classes for the unlabeled points (the query set).
Matching Networks can be interpreted as a weighted nearest-neighbor classifier applied within an
embedding space. Notably, this model utilizes sampled mini-batches called episodes during training,
where each episode is designed to mimic the few-shot task by subsampling classes as well as data
points. The use of episodes makes the training problem more faithful to the test environment and
thereby improves generalization. Ravi and Larochelle [24] take the episodic training idea further
and propose a meta-learning approach to few-shot learning. Their approach involves training an
LSTM [11] to produce the updates to a classifier, given an episode, such that it will generalize well to
a test-set. Here, rather than training a single model over multiple episodes, the LSTM meta-learner
learns to train a custom model for each episode.

We attack the problem of few-shot learning by addressing the key issue of overfitting. Since data is
severely limited, we work under the assumption that a classifier should have a very simple inductive
bias. Our approach, Prototypical Networks, is based on the idea that there exists an embedding in
which points cluster around a single prototype representation for each class. In order to do this,
we learn a non-linear mapping of the input into an embedding space using a neural network and
take a class’s prototype to be the mean of its support set in the embedding space. Classification
is then performed for an embedded query point by simply finding the nearest class prototype. We
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Figure 1: Prototypical Networks in the few-shot and zero-shot scenarios. Left: Few-shot prototypes
ck are computed as the mean of embedded support examples for each class. Right: Zero-shot
prototypes ck are produced by embedding class meta-data vk. In either case, embedded query points
are classified via a softmax over distances to class prototypes: pφ(y = k|x) ∝ exp(−d(fφ(x), ck)).

follow the same approach to tackle zero-shot learning; here each class comes with meta-data giving
a high-level description of the class rather than a small number of labeled examples. We therefore
learn an embedding of the meta-data into a shared space to serve as the prototype for each class.
Classification is performed, as in the few-shot scenario, by finding the nearest class prototype for an
embedded query point.

In this paper, we formulate Prototypical Networks for both the few-shot and zero-shot settings.
We draw connections to Matching Networks in the one-shot setting, and analyze the underlying
distance function used in the model. In particular, we relate Prototypical Networks to clustering [4]
in order to justify the use of class means as prototypes when distances are computed with a Bregman
divergence, such as squared Euclidean distance. We find empirically that the choice of distance
is vital, as Euclidean distance greatly outperforms the more commonly used cosine similarity. On
several benchmark tasks, we achieve state-of-the-art performance. Prototypical Networks are simpler
and more efficient than recent meta-learning algorithms, making them an appealing approach to
few-shot and zero-shot learning.

2 Prototypical Networks

2.1 Notation

In few-shot classification we are given a small support set of N labeled examples S =
{(x1, y1), . . . , (xN , yN )} where each xi ∈ RD is the D-dimensional feature vector of an example
and yi ∈ {1, . . . ,K} is the corresponding label. Sk denotes the set of examples labeled with class k.

2.2 Model

Prototypical Networks compute an M -dimensional representation ck ∈ RM , or prototype, of each
class through an embedding function fφ : RD → RM with learnable parameters φ. Each prototype
is the mean vector of the embedded support points belonging to its class:

ck =
1

|Sk|
∑

(xi,yi)∈Sk

fφ(xi) (1)

Given a distance function d : RM × RM → [0,+∞), Prototypical Networks produce a distribution
over classes for a query point x based on a softmax over distances to the prototypes in the embedding
space:

pφ(y = k |x) = exp(−d(fφ(x), ck))∑
k′ exp(−d(fφ(x), ck′))

(2)

Learning proceeds by minimizing the negative log-probability J(φ) = − log pφ(y = k |x) of the
true class k via SGD. Training episodes are formed by randomly selecting a subset of classes from
the training set, then choosing a subset of examples within each class to act as the support set and a
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Algorithm 1 Training episode loss computation for Prototypical Networks. N is the number of
examples in the training set, K is the number of classes in the training set, NC ≤ K is the number
of classes per episode, NS is the number of support examples per class, NQ is the number of query
examples per class. RANDOMSAMPLE(S,N) denotes a set of N elements chosen uniformly at
random from set S, without replacement.

Input: Training set D = {(x1, y1), . . . , (xN , yN )}, where each yi ∈ {1, . . . ,K}. Dk denotes the
subset of D containing all elements (xi, yi) such that yi = k.

Output: The loss J for a randomly generated training episode.
V ← RANDOMSAMPLE({1, . . . ,K}, NC) . Select class indices for episode
for k in {1, . . . , NC} do
Sk ← RANDOMSAMPLE(DVk

, NS) . Select support examples
Qk ← RANDOMSAMPLE(DVk

\ Sk, NQ) . Select query examples

ck ←
1

NC

∑
(xi,yi)∈Sk

fφ(xi) . Compute prototype from support examples

end for
J ← 0 . Initialize loss
for k in {1, . . . , NC} do

for (x, y) in Qk do

J ← J +
1

NCNQ

[
d(fφ(x), ck)) + log

∑
k′

exp(−d(fφ(x), ck′))

]
. Update loss

end for
end for

subset of the remainder to serve as query points. Pseudocode to compute the loss J(φ) for a training
episode is provided in Algorithm 1.

2.3 Prototypical Networks as Mixture Density Estimation

For a particular class of distance functions, known as regular Bregman divergences [4], the Prototypi-
cal Networks algorithm is equivalent to performing mixture density estimation on the support set
with an exponential family density. A regular Bregman divergence dϕ is defined as:

dϕ(z, z
′) = ϕ(z)− ϕ(z′)− (z− z′)T∇ϕ(z′), (3)

where ϕ is a differentiable, strictly convex function of the Legendre type. Examples of Bregman
divergences include squared Euclidean distance ‖z− z′‖2 and Mahalanobis distance.

Prototype computation can be viewed in terms of hard clustering on the support set, with one cluster
per class and each support point assigned to its corresponding class cluster. It has been shown [4]
for Bregman divergences that the cluster representative achieving minimal distance to its assigned
points is the cluster mean. Thus the prototype computation in Equation (1) yields optimal cluster
representatives given the support set labels when a Bregman divergence is used.

Moreover, any regular exponential family distribution pψ(z|θ) with parameters θ and cumulant
function ψ can be written in terms of a uniquely determined regular Bregman divergence [4]:

pψ(z|θ) = exp{zTθ − ψ(θ)− gψ(z)} = exp{−dϕ(z,µ(θ))− gϕ(z)} (4)

Consider now a regular exponential family mixture model with parameters Γ = {θk, πk}Kk=1:

p(z|Γ) =
K∑
k=1

πkpψ(z|θk) =
K∑
k=1

πk exp(−dϕ(z,µ(θk))− gϕ(z)) (5)

Given Γ, inference of the cluster assignment y for an unlabeled point z becomes:

p(y = k|z) = πk exp(−dϕ(z,µ(θk)))∑
k′ πk′ exp(−dϕ(z,µ(θk)))

(6)

For an equally-weighted mixture model with one cluster per class, cluster assignment inference
(6) is equivalent to query class prediction (2) with fφ(x) = z and ck = µ(θk). In this case,
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Prototypical Networks are effectively performing mixture density estimation with an exponential
family distribution determined by dϕ. The choice of distance therefore specifies modeling assumptions
about the class-conditional data distribution in the embedding space.

2.4 Reinterpretation as a Linear Model

A simple analysis is useful in gaining insight into the nature of the learned classifier. When we use
Euclidean distance d(z, z′) = ‖z − z′‖2, then the model in Equation (2) is equivalent to a linear
model with a particular parameterization [21]. To see this, expand the term in the exponent:

−‖fφ(x)− ck‖2 = −fφ(x)>fφ(x) + 2c>k fφ(x)− c>k ck (7)

The first term in Equation (7) is constant with respect to the class k, so it does not affect the softmax
probabilities. We can write the remaining terms as a linear model as follows:

2c>k fφ(x)− c>k ck = w>k fφ(x) + bk, where wk = 2ck and bk = −c>k ck (8)

We focus primarily on squared Euclidean distance (corresponding to spherical Gaussian densities) in
this work. Our results indicate that Euclidean distance is an effective choice despite the equivalence
to a linear model. We hypothesize this is because all of the required non-linearity can be learned
within the embedding function. Indeed, this is the approach that modern neural network classification
systems currently use, e.g., [16, 31].

2.5 Comparison to Matching Networks

Prototypical Networks differ from Matching Networks in the few-shot case with equivalence in the
one-shot scenario. Matching Networks [32] produce a weighted nearest neighbor classifier given the
support set, while Prototypical Networks produce a linear classifier when squared Euclidean distance
is used. In the case of one-shot learning, ck = xk since there is only one support point per class, and
Matching Networks and Prototypical Networks become equivalent.

A natural question is whether it makes sense to use multiple prototypes per class instead of just one.
If the number of prototypes per class is fixed and greater than 1, then this would require a partitioning
scheme to further cluster the support points within a class. This has been proposed in Mensink
et al. [21] and Rippel et al. [27]; however both methods require a separate partitioning phase that is
decoupled from the weight updates, while our approach is simple to learn with ordinary gradient
descent methods.

Vinyals et al. [32] propose a number of extensions, including decoupling the embedding functions of
the support and query points, and using a second-level, fully-conditional embedding (FCE) that takes
into account specific points in each episode. These could likewise be incorporated into Prototypical
Networks, however they increase the number of learnable parameters, and FCE imposes an arbitrary
ordering on the support set using a bi-directional LSTM. Instead, we show that it is possible to
achieve the same level of performance using simple design choices, which we outline next.

2.6 Design Choices

Distance metric Vinyals et al. [32] and Ravi and Larochelle [24] apply Matching Networks using
cosine distance. However for both Prototypical Networks and Matching Networks any distance is
permissible, and we found that using squared Euclidean distance can greatly improve results for both.
For Protypical Networks, we conjecture this is primarily due to cosine distance not being a Bregman
divergence, and thus the equivalence to mixture density estimation discussed in Section 2.3 does not
hold.

Episode composition A straightforward way to construct episodes, used in Vinyals et al. [32] and
Ravi and Larochelle [24], is to choose Nc classes and NS support points per class in order to match
the expected situation at test-time. That is, if we expect at test-time to perform 5-way classification
and 1-shot learning, then training episodes could be comprised of Nc = 5, NS = 1. We have found,
however, that it can be extremely beneficial to train with a higher Nc, or “way”, than will be used
at test-time. In our experiments, we tune the training Nc on a held-out validation set. Another
consideration is whether to match NS , or “shot”, at train and test-time. For Prototypical Networks,
we found that it is usually best to train and test with the same “shot” number.
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2.7 Zero-Shot Learning

Zero-shot learning differs from few-shot learning in that instead of being given a support set of
training points, we are given a class meta-data vector vk for each class. These could be determined
in advance, or they could be learned from e.g., raw text [8]. Modifying Prototypical Networks to deal
with the zero-shot case is straightforward: we simply define ck = gϑ(vk) to be a separate embedding
of the meta-data vector. An illustration of the zero-shot procedure for Prototypical Networks as
it relates to the few-shot procedure is shown in Figure 1. Since the meta-data vector and query
point come from different input domains, we found it was helpful empirically to fix the prototype
embedding g to have unit length, however we do not constrain the query embedding f .

3 Experiments

For few-shot learning, we performed experiments on Omniglot [18] and the miniImageNet version
of ILSVRC-2012 [28] with the splits proposed by Ravi and Larochelle [24]. We perform zero-shot
experiments on the 2011 version of the Caltech UCSD bird dataset (CUB-200 2011) [34].

3.1 Omniglot Few-shot Classification

Omniglot [18] is a dataset of 1623 handwritten characters collected from 50 alphabets. There are 20
examples associated with each character, where each example is drawn by a different human subject.
We follow the procedure of Vinyals et al. [32] by resizing the grayscale images to 28 × 28 and
augmenting the character classes with rotations in multiples of 90 degrees. We use 1200 characters
plus rotations for training (4,800 classes in total) and the remaining classes, including rotations, for
test. Our embedding architecture mirrors that used by Vinyals et al. [32] and is composed of four
convolutional blocks. Each block comprises a 64-filter 3 × 3 convolution, batch normalization layer
[12], a ReLU nonlinearity and a 2 × 2 max-pooling layer. When applied to the 28 × 28 Omniglot
images this architecture results in a 64-dimensional output space. We use the same encoder for
embedding both support and query points. All of our models were trained via SGD with Adam [13].
We used an initial learning rate of 10−3 and cut the learning rate in half every 2000 episodes. No
regularization was used other than batch normalization.

Figure 2: A t-SNE visualization of the embeddings
learned by Prototypical networks on the Omniglot
dataset. A subset of the Tengwar script is shown
(an alphabet in the test set). Class prototypes are
indicated in black. Several misclassified characters
are highlighted in red along with arrows pointing
to the correct prototype.

We trained Prototypical Networks using Eu-
clidean distance in the 1-shot and 5-shot scenar-
ios with training episodes containing 60 classes
and 5 query points per class. We found that it
is advantageous to match the training-shot with
the test-shot, and to use more classes (higher
“way”) per training episode rather than fewer.
We compare against various baselines, including
the Neural Statistician [7], Meta-Learner LSTM
[24], MAML [9], and both the fine-tuned and
non-fine-tuned versions of Matching Networks
[32]. We computed classification accuracy for
our models averaged over 1,000 randomly gen-
erated episodes from the test set. The results
are shown in Table 1 and to our knowledge are
competitive with state-of-the-art on this dataset.

Figure 2 shows a sample t-SNE visualization
[20] of the embeddings learned by Prototypical
Networks. We visualize a subset of test char-
acters from the same alphabet in order to gain
better insight, despite the fact that classes in
actual test episodes are likely to come from dif-
ferent alphabets. Even though the visualized
characters are minor variations of each other,
the network is able to cluster the hand-drawn
characters closely around the class prototypes.
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Table 1: Few-shot classification accuracies on Omniglot. ∗Uses non-standard train/test splits.

5-way Acc. 20-way Acc.
Model Dist. Fine Tune 1-shot 5-shot 1-shot 5-shot

MATCHING NETWORKS [32] Cosine N 98.1% 98.9% 93.8% 98.5%
MATCHING NETWORKS [32] Cosine Y 97.9% 98.7% 93.5% 98.7%
NEURAL STATISTICIAN [7] - N 98.1% 99.5% 93.2% 98.1%
MAML [9]∗ - N 98.7% 99.9% 95.8% 98.9%
PROTOTYPICAL NETWORKS (OURS) Euclid. N 98.8% 99.7% 96.0% 98.9%

Table 2: Few-shot classification accuracies on miniImageNet. All accuracy results are averaged over
600 test episodes and are reported with 95% confidence intervals. ∗Results reported by [24].

5-way Acc.
Model Dist. Fine Tune 1-shot 5-shot

BASELINE NEAREST NEIGHBORS∗ Cosine N 28.86 ± 0.54% 49.79 ± 0.79%
MATCHING NETWORKS [32]∗ Cosine N 43.40 ± 0.78% 51.09 ± 0.71%
MATCHING NETWORKS FCE [32]∗ Cosine N 43.56 ± 0.84% 55.31 ± 0.73%
META-LEARNER LSTM [24]∗ - N 43.44 ± 0.77% 60.60 ± 0.71%
MAML [9] - N 48.70 ± 1.84% 63.15 ± 0.91%
PROTOTYPICAL NETWORKS (OURS) Euclid. N 49.42 ± 0.78% 68.20 ± 0.66%

3.2 miniImageNet Few-shot Classification

The miniImageNet dataset, originally proposed by Vinyals et al. [32], is derived from the larger
ILSVRC-12 dataset [28]. The splits used by Vinyals et al. [32] consist of 60,000 color images of size
84 × 84 divided into 100 classes with 600 examples each. For our experiments, we use the splits
introduced by Ravi and Larochelle [24] in order to directly compare with state-of-the-art algorithms
for few-shot learning. Their splits use a different set of 100 classes, divided into 64 training, 16
validation, and 20 test classes. We follow their procedure by training on the 64 training classes and
using the 16 validation classes for monitoring generalization performance only.

We use the same four-block embedding architecture as in our Omniglot experiments, though here
it results in a 1,600-dimensional output space due to the increased size of the images. We also
use the same learning rate schedule as in our Omniglot experiments and train until validation loss
stops improving. We train using 30-way episodes for 1-shot classification and 20-way episodes for
5-shot classification. We match train shot to test shot and each class contains 15 query points per
episode. We compare to the baselines as reported by Ravi and Larochelle [24], which include a simple
nearest neighbor approach on top of features learned by a classification network on the 64 training
classes. The other baselines are two non-fine-tuned variants of Matching Networks (both ordinary and
FCE) and the Meta-Learner LSTM. in the non-fine-tuned setting because the fine-tuning procedure
as proposed by Vinyals et al. [32] is not fully described. As can be seen in Table 2, Prototypical
Networks achieves state-of-the-art by a wide margin on 5-shot accuracy.

We conducted further analysis, to determine the effect of distance metric and the number of training
classes per episode on the performance of Prototypical Networks and Matching Networks. To make
the methods comparable, we use our own implementation of Matching Networks that utilizes the
same embedding architecture as our Prototypical Networks. In Figure 3 we compare cosine vs.
Euclidean distance and 5-way vs. 20-way training episodes in the 1-shot and 5-shot scenarios, with
15 query points per class per episode. We note that 20-way achieves higher accuracy than 5-way
and conjecture that the increased difficulty of 20-way classification helps the network to generalize
better, because it forces the model to make more fine-grained decisions in the embedding space. Also,
using Euclidean distance improves performance substantially over cosine distance. This effect is even
more pronounced for Prototypical Networks, in which computing the class prototype as the mean of
embedded support points is more naturally suited to Euclidean distances since cosine distance is not
a Bregman divergence.
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Figure 3: Comparison showing the effect of distance metric and number of classes per training
episode on 5-way classification accuracy for both Matching Networks and Prototypical Networks
on miniImageNet. The x-axis indicates configuration of the training episodes (way, distance, and
shot), and the y-axis indicates 5-way test accuracy for the corresponding shot. Error bars indicate
95% confidence intervals as computed over 600 test episodes. Note that Matching Networks and
Prototypical Networks are identical in the 1-shot case.

Table 3: Zero-shot classification accuracies on CUB-200.

Model Image
Features

50-way Acc.
0-shot

ALE [1] Fisher 26.9%
SJE [2] AlexNet 40.3%
SAMPLE CLUSTERING [19] AlexNet 44.3%
SJE [2] GoogLeNet 50.1%
DS-SJE [25] GoogLeNet 50.4%
DA-SJE [25] GoogLeNet 50.9%
SYNTHESIZED CLASSIFIERS [6] GoogLeNet 54.7%
PROTOTYPICAL NETWORKS (OURS) GoogLeNet 54.8%
ZHANG AND SALIGRAMA [36] VGG-19 55.3% ± 0.8

3.3 CUB Zero-shot Classification

In order to assess the suitability of our approach for zero-shot learning, we also run experiments on
the Caltech-UCSD Birds (CUB) 200-2011 dataset [34]. The CUB dataset contains 11,788 images of
200 bird species. We closely follow the procedure of Reed et al. [25] in preparing the data. We use
their splits to divide the classes into 100 training, 50 validation, and 50 test. For images we use 1,024-
dimensional features extracted by applying GoogLeNet [31] to middle, upper left, upper right, lower
left, and lower right crops of the original and horizontally-flipped image2. At test time we use only
the middle crop of the original image. For class meta-data we use the 312-dimensional continuous
attribute vectors provided with the CUB dataset. These attributes encode various characteristics of
the bird species such as their color, shape, and feather patterns.

We learned a simple linear mapping on top of both the 1024-dimensional image features and the
312-dimensional attribute vectors to produce a 1,024-dimensional output space. For this dataset we
found it helpful to normalize the class prototypes (embedded attribute vectors) to be of unit length,
since the attribute vectors come from a different domain than the images. Training episodes were
constructed with 50 classes and 10 query images per class. The embeddings were optimized via SGD
with Adam at a fixed learning rate of 10−4 and weight decay of 10−5. Early stopping on validation
loss was used to determine the optimal number of epochs for retraining on the training plus validation
set.

Table 3 shows that we achieve state-of-the-art results when compared to methods utilizing attributes
as class meta-data. We compare our method to variety of zero-shot learning methods, including other
embedding approaches such as ALE [1], SJE [2], and DS-SJE/DA-SJE [25]. We also compare to a
recent clustering approach [19] which trains an SVM on a learned feature space obtained by fine-

2Features downloaded from https://github.com/reedscot/cvpr2016.
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tuning AlexNet [16]. The Synthesized Classifiers approach of [6] is a manifold learning technique
that aligns the class meta-data space with the visual model space, and the method of Zhang and
Saligrama [36] is a structured prediction approach trained on top of VGG-19 features [30]. Since
Zhang and Saligrama [36] is a randomized method, we include their reported error bars in Table 3.
Our Protypical Networks outperform Synthesized Classifiers and are within error bars of Zhang and
Saligrama [36], while being a much simpler approach than either.

We also ran an additional set of zero-shot experiments with stronger class meta-data. We extracted
1,024-dimensional meta-data vectors for each CUB-200 class using the pretrained Char CNN-RNN
model of [25], then trained zero-shot Prototypical Networks using the same procedure described
above except we used a 512-dimensional output embedding, as chosen via validation accuracy. We
obtained test accuracy of 58.3%, compared to the 54.0% accuracy obtained by DS-SJE [25] with
a Char CNN-RNN model. Moreover, our result exceeds the 56.8% accuracy attained by DS-SJE
with even stronger Word CNN-RNN class-metadata representations. Taken together, these zero-shot
classification results demonstrate that our approach is general enough to be applied even when the
data points (images) are from a different domain relative to the classes (attributes).

4 Related Work

The literature on metric learning is vast [17, 5]; we summarize here the work most relevant to
our proposed method. Neighborhood Components Analysis (NCA) [10] learns a Mahalanobis
distance to maximize K-nearest-neighbor’s (KNN) leave-one-out accuracy in the transformed space.
Salakhutdinov and Hinton [29] extend NCA by using a neural network to perform the transformation.
Large margin nearest neighbor (LMNN) classification [33] also attempts to optimize KNN accuracy
but does so using a hinge loss that encourages the local neighborhood of a point to contain other
points with the same label. The DNet-KNN [23] is another margin-based method that improves
upon LMNN by utilizing a neural network to perform the embedding instead of a simple linear
transformation. Of these, our method is most similar to the non-linear extension of NCA [29] because
we use a neural network to perform the embedding and we optimize a softmax based on Euclidean
distances in the transformed space, as opposed to a margin loss. A key distinction between our
approach and non-linear NCA is that we form a softmax directly over classes, rather than individual
points, computed from distances to each class’s prototype representation. This allows each class to
have a concise representation independent of the number of data points and obviates the need to store
the entire support set to make predictions.

Our approach is also similar to the nearest class mean approach [21], where each class is represented
by the mean of its examples. This approach was developed to rapidly incorporate new classes into
a classifier without retraining, however it relies on a linear embedding and was designed to handle
the case where the novel classes come with a large number of examples. In contrast, our approach
utilizes neural networks to non-linearly embed points and we couple this with episodic training in
order to handle the few-shot scenario. Mensink et al. [21] attempt to extend their approach to also
perform non-linear classification, but they do so by allowing classes to have multiple prototypes.
They find these prototypes in a pre-processing step by using k-means on the input space and then
perform a multi-modal variant of their linear embedding. Prototypical Networks, on the other hand,
learn a non-linear embedding in an end-to-end manner with no such pre-processing, producing a
non-linear classifier that still only requires one prototype per class. In addition, our approach naturally
generalizes to other distance functions, particularly Bregman divergences.

The center loss proposed by Wen et al. [35] for face recognition is similar to ours but has two main
differences. First, they learn the centers for each class as parameters of the model whereas we
compute protoypes as a function of the labeled examples within each episode. Second, they combine
the center loss with a softmax loss in order to prevent representations collapsing to zero, whereas we
construct a softmax loss from our prototypes which naturally prevents such collapse. Moreover, our
approach is designed for the few-shot scenario rather than face recognition.

A relevant few-shot learning method is the meta-learning approach proposed in Ravi and Larochelle
[24]. The key insight here is that LSTM dynamics and gradient descent can be written in effectively
the same way. An LSTM can then be trained to itself train a model from a given episode, with the
performance goal of generalizing well on the query points. MAML [9] is another meta-learning
approach to few-shot learning. It seeks to learn a representation that is easily fit to new data with few
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steps of gradient descent. Matching Networks and Prototypical Networks can also be seen as forms
of meta-learning, in the sense that they produce simple classifiers dynamically from new training
episodes; however the core embeddings they rely on are fixed after training. The FCE extension to
Matching Networks involves a secondary embedding that depends on the support set. However, in
the few-shot scenario the amount of data is so small that a simple inductive bias seems to work well,
without the need to learn a custom embedding for each episode.

Prototypical Networks are also related to the Neural Statistician [7] from the generative modeling
literature, which extends the variational autoencoder [14, 26] to learn generative models of datasets
rather than individual points. One component of the Neural Statistician is the “statistic network”
which summarizes a set of data points into a statistic vector. It does this by encoding each point within
a dataset, taking a sample mean, and applying a post-processing network to obtain an approximate
posterior over the statistic vector. Edwards and Storkey [7] test their model for one-shot classification
on the Omniglot dataset by considering each character to be a separate dataset and making predictions
based on the class whose approximate posterior over the statistic vector has minimal KL-divergence
from the posterior inferred by the test point. Like the Neural Statistician, we also produce a summary
statistic for each class. However, ours is a discriminative model, as befits our discriminative task of
few-shot classification.

With respect to zero-shot learning, the use of embedded meta-data in Prototypical Networks resembles
the method of [3] in that both predict the weights of a linear classifier. The DS-SJE and DA-SJE
approach of [25] also learns deep multimodal embedding functions for images and class meta-data.
Unlike ours, they learn using an empirical risk loss. Neither [3] nor [25] uses episodic training, which
allows us to help speed up training and regularize the model.

5 Conclusion

We have proposed a simple method called Prototypical Networks for few-shot learning based on the
idea that we can represent each class by the mean of its examples in a representation space learned
by a neural network. We train these networks to specifically perform well in the few-shot setting by
using episodic training. The approach is far simpler and more efficient than recent meta-learning
approaches, and produces state-of-the-art results even without sophisticated extensions developed for
Matching Networks (although these can be applied to Prototypical Networks as well). We show how
performance can be greatly improved by carefully considering the chosen distance metric, and by
modifying the episodic learning procedure. We further demonstrate how to generalize Prototypical
Networks to the zero-shot setting, and achieve state-of-the-art results on the CUB-200 dataset. A
natural direction for future work is to utilize Bregman divergences other than squared Euclidean
distance, corresponding to class-conditional distributions beyond spherical Gaussians. We conducted
preliminary explorations of this, including learning a variance per dimension for each class. This did
not lead to any empirical gains, suggesting that the embedding network has enough flexibility on its
own without requiring additional fitted parameters per class. Overall, the simplicity and effectiveness
of Prototypical Networks makes it a promising approach for few-shot learning.
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