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ABSTRACT

Decentralized optimization with multiple networked clients/learners
has advanced machine learning significantly over the past few
years. When data distributions at different nodes/locations are
heterogeneous, consensus-based decentralized algorithms ignore
distinctive features of local data samples. In this paper, we propose
a decentralized client adaptation strategy for personalized learning
by taking local client data structures into account. It turns out that
optimizing the model parameters can be formulated as a decentralized
bilevel programming problem. Motivated by this application, we
propose a stochastic primal-dual framework for solving decentralized
bilevel nonconvex problems and show that the devised algorithm
achieves the Karush–Kuhn–Tucker (KKT) points for this class of
problems at a rate of O(1/

√
nT ), where n denotes the number

of total learners and T the total number of iterations. Multiple
experiments show the superiority of our proposed method compared
to state-of-the-art methods in terms of both training speed and testing
accuracy for decentralized learning problems on real datasets.

Index Terms— Stochastic primal dual decentralized algorithm
(SPD), decentralized bilevel optimization (DBO), personalized client
learning (PCL)

1. INTRODUCTION
Deep neural networks trained in a supervised manner on massive
datasets can make remarkably accurate predictions. However, when
data samples are limited or there are multiple training tasks, data
heterogeneity becomes one of the major barriers that prevent an
increase in testing/validation accuracy. Hence, there is a need for
learning algorithms that can balance the personalized data structure
of each task and the permutation-invariant latent space/features
among all the tasks. For example, model-agnostic meta-learning
(MAML) [1], a hierarchical learning structure, exhibits fast adaptation
performance of learning unseen tasks with some good initialization
learned from other tasks, implying the potential benefits of leveraging
the similarities among tasks over the heterogeneous datasets.

The key technique used in MAML is building two levels of
learners, i.e., a meta-learner and a task-specific learner, which
respectively minimize the task-averaged loss and individual loss of
each task. Besides establishing the strong empirical performance of
MAML [1–3], prior works have studied regret bounds of online
MAML for either the convex case [4, 5] or nonconvex case [6],
convergence rate guarantees of MAML algorithms [7], generalization
error bounds [8], and federated [9, 10] or decentralized [11] MAML.
A recent deeper analysis proposed an almost no inner loop (ANIL)
framework [12] and discovered that the effectiveness of MAML is
actually mainly due to feature reuse rather than meta-initialization,
which further justifies that only the task-specific head of neural nets is
sufficient for rapid learning. ANIL is also computationally much more
efficient than MAML, as only a small set of parameters are involved
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in the adaptation step, and it is shown in [13] that ANIL achieves the
same order of convergence rate as MAML to the first-order stationary
points of general nonconvex problems.

Inspired by MAML and ANIL, it is of interest to design efficient
and simple training algorithms for finding the optimal solutions
of this problem. Mathematically, training a MAML model can
be formulated as one class of bilevel optimization problems (a.k.a.
min-max Stackelberg games) in which two levels of optimization
problems need to be solved with coupled variables in both the upper
and lower levels. A classical method is a double-loop algorithm
(a.k.a. bilevel stochastic approximation (BSA) method) for solving
the stochastic nonconvex bilevel programming problem when the
lower level problem is strongly convex [14]. The idea of BSA is
to solve the lower level sub-problem up to some tolerance first, and
then to perform one step of gradient descent on the loss of the upper
level problem. It turns out that, to achieve an ε-stationary point for a
class of nonconvex problems, BSA requiresO(1/ε2) total number of
iterations. Subsequently, it is shown in [15] that a so-called stochastic
bilevel optimizer (stoBiO) only needs a constant number of inner
loop steps to attain a convergence rate of O(1/ε2) to the stationary
points. There are also single-loop algorithms such as two-timescale
stochastic approximation (TTSA) developed in [16], which employs
different learning rates in the inner and outer optimization steps to
guarantee a convergence rate ofO(1/ε2.5), and the Single-Timescale
stochAstic BiLevEl optimization (STABLE) method proposed in [17],
which adopts an error correction term so that STABLE uses only a
single-timescale learning rate to obtain an O(1/ε2) convergence
rate. Recently, a tighter convergence analysis [18] points out that the
simple TTSA-type of alternating stochastic gradient method can still
reach the convergence rate of O(1/ε2) with only a single timescale
scheduled learning rate for updating the optimization variables in both
upper and lower problems. When the momentum-based techniques
are used, the convergence rate of bilevel algorithms can be further
increased to O(1/ε1.5) [19, 20].

However, all of the above bilevel algorithms are centralized. If
there are multiple computing resources/clients connected through
communication channels, to the best of our knowledge, none
of the existing decentralized optimization algorithms [21–23],
e.g., distributed stochastic gradient descent (DSGD) [24] and/or
gradient-tracking based nonconvex stochastic decentralized (GNSD)
algorithms [25], can solve the bilevel programming problems over a
network. Targeting this issue, we propose a stochastic primal-dual
algorithm for solving decentralized bilevel (SPDB) optimization
problems and build a general decentralized training framework for
personalized client learning (PCL). As an application of decentralized
bilevel optimization (DBO), PCL aims to separate the shared feature
space and the private space so that the training process can be
accelerated by leveraging the data over the network without loss
of personalized local features. We show that, under the standard
assumptions, the proposed SPDB can find the Karush–Kuhn–Tucker
(KKT) points of a class of DBO problems at a rate of O(1/(nε2))
which matches the same iteration and sample complexities as DSGD
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for classical nonconvex problems, where n denotes the total number
of clients. The main contributions of this work are as follows:
I The application of our proposed decentralized PCL framework

covers a wide range of distributed hierarchical optimization
problems, especially with personalized consideration of learning
models.

I SPDB is a single-loop and single-timescale algorithm that can
achieve a linear speedup of the convergence rate to the KKT points
with respect to (w.r.t.) the number of clients. To the best of our
knowledge, SPDB is the first stochastic algorithm that solves the
DBO problem.

I Numerical results that illustrate the proposed decentralized PCL
model with SPDB achieves the best performance compared
with the state-of-the-art decentralized methods for training over
heterogeneous networks in terms of both validation/test-accuracy
and convergence speed.

2. MOTIVATION AND PROBLEM FORMULATION
In this work, we propose a decentralized PCL scheme for training
over heterogeneous networks. To be more specific, consider that there
are n learners connected through a graph denoted by G = {V, E},
where each node i has a set of data samples following distribution
Di. The goal of the networked learners is to jointly minimize the
following (possibly nonconvex) optimization problem:

min
{wi,∀i}

1

n

n∑
i=1

Eξ∼Di [l(wi, T
∗
i (wi; ξ))], s.t. wi=wj , ∀j ∈ Ni,

where l(·) denotes a general loss function,wi is the model parameters
at each node, Ni denotes the neighboring learners of node i, and
the transform function T ∗i (wi; ξ) = arg minMi l(wi,Mi(ξ)), ξ ∼
Di, extracts and processes the distinct features (relative to the rest of
the nodes) to canonicalize data heterogeneity. In practice, mapping
Mi(·) is parameterized either in a linear or nonlinear way [26].

Motivated by decentralized PCL, we consider the following
linearly constrained bilevel optimization problem:

min
x∈Rn

1

n

n∑
i=1

E
ξ∈D(u)

i

[fi(xi,y
∗
i (xi); ξ)] (1a)

s.t. Ax = 0, y∗i (xi)=arg min
yi∈Rm

E
ζ∈D(l)

i

[gi(xi,yi; ζ)], (1b)

where fi(xi,y∗i (xi)) , E
ξ∈D(u)

i

fi(xi,y
∗
i (xi); ξ) is a smooth loss

function (possibly nonconvex), D(u)
i and D(l)

i respectively denote
the local data distributions at the upper and lower levels of this
optimization problem, gi(·) denotes the lower-level loss function
at node i, x , [x1, . . . ,xn]T , and A ∈ R|E|×n represents the
incidence matrix.1

3. STOCHASTIC PRIMAL-DUAL FRAMEWORK
Towards this end, we first introduce the augmented Lagrangian

Lρ(x,λ) = n−11Tf(x,y∗(x)) + 〈λ,Ax〉+
ρ

2
‖Ax‖2, (2)

where f(x,y∗(x)) , [f1(x1,y
∗
1(x1)), . . . , fn(xn,y

∗
n(xn))]T ,

λ ∈ Rn denotes the dual variable that enforces the consensus of
the primal variables, i.e.,Ax, and ρ > 0 is the penalty parameter of
the augmented term.
Stochastic primal-dual structure. Define gi(xi,yi) ,
E
ζ∈D(l)

i

[gi(xi,yi; ζ)], ∀i, and define∇xif(xi,yi) to be the vector

1Here, we assume the problem dimension is 1, without loss of generality,
to simplify the notation in this paper.

Algorithm 1 Stochastic Primal-dual Decentralized algorithm for
Bilevel Optimization (SPDB)

Initialization: x0,y0, α, β
for r = 1, . . . , T do
yr+1
i = yri − βhrg,i,∀i. . adaptation step

xr+1
i =

∑
j∈Ni

Wij

(
2xrj−xr−1

j

)
− 1

α

(
hrf,i−hr−1

f,i

)
.

end for

obtained by replacing y∗i (x) in ∇xifi(xi,y
∗
i (xi)) by yi.2 The

proposed stochastic primal-dual algorithm for solving (1) is

yr+1 = yr − βhrg, (3a)

xr+1 =arg min
x
〈hrf+γAT (λr+ρAxr),x−xr〉+α

2
‖x−xr‖2,

λr+1 = λr + ρAxr+1, (3b)

where r indexes iterations, y , [y1, . . . ,yn]T , g(x,y) ,
[g1(x1,y1), . . . , gn(xn,yn)]T , hrg and hrf are stochastic estimates
of ∇yg(xr,yr) and n−1∇xf(xr,yr+1), 1/α and ρ > 0
respectively denote the step-sizes of the primal and dual updates,
and β is the step-size of the lower-level iterates’ update.

As the objective function in the x sub-problem is quadratic, we
can obtain a closed-form expression for the x update:

xr+1 = xr − 1

α

(
hrf + γATλr + ργATAxr

)
. (4)

Then, subtracting (4) with the same from its previous iteration, we
can have the following update of x after using (3b)

xr+1 = 2Wxr −Wxr−1 − 1

α

(
hrf − hr−1

f

)
, (5)

where W , I − ρATA/τ and τ , α/γ. Therefore, the above
primal and dual updates can be merged into a single step.

The detailed implementation of SPDB from a local view is shown
in Algorithm 1, where hrg,i,h

r
f,i,∀i, denote the gradient estimates

of ∇yigi(x
r
i ,y

r
i ), n−1∇xifi(x

r
i ,y

r+1
i ),∀i, and Wij denotes the

entry at the ith row and jth column of matrixW .
Remark 1. When there is no lower-level optimization problem,

SPDB reduces to a stochastic primal-dual decentralized (SPD)
algorithm that is almost identical to the D2 algorithm [27], with
only a difference in the ordering of the local update and weights
aggregation from neighbors. When full gradient is used, SPD reduces
to the deterministic gradient primal-dual algorithm [28].

Remark 2. Note that SPDB/SPD only needs one communication
round per iteration, half that of gradient tracking technique algorithms
like GNSD [25] and in-Network succEssive conveX approximaTion
(NEXT) [29].

4. THEORETICAL CONVERGENCE RESULTS
Assumptions. The theoretical results are based on the following
assumptions on the properties of the loss functions in both the upper-
and lower-level optimization problems, which are mainly related
to the continuity of the objective function and stochasticity of the
gradient estimates:
A1. (Lipschitz continuity) Assume that functions fi(·),∇fi(·, ),
∇gi(·), ∇2g(·), ∀i, are Lipschitz continuous with constants
Lf,0, Lf,1, Lg,1, Lg,2 for both x and y.

2When gi(·) is strongly convex, ∇xif(xi,yi) , ∇xif(xi,yi) −
∇2

xiyi
g(xi,yi)[∇2

yiyi
gi(xi,yi)]

−1∇yifi(xi,yi) [14, 16, 18].
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A2. (Strong convexity of g(·) w.r.t. y) Function g(·) is µ-strongly
convex w.r.t. y.

A3. (Connectivity of graph) The communication graph G is well
connected, i.e., 1TL = 0 where L = ATA, and the second
smallest eigenvalue ofL is strictly positive, i.e., σ̃min(ATA) >
0.

A4. (Stochasticity of gradient estimate) The stochastic estimates
∇xifi(xi,yi; ξ), ∇yigi(xi,yi; ζ), ∇2

yiyi
gi(xi,yi; ζ), ∀i,

are unbiased and their variances are bounded by σ2
f , σ

2
g,1, σ

2
g,2.

Convergence analysis of SPDB. First, we can show that the
difference between two successive x-iterates is upper bounded on the
order of 1/α2 by the following lemma.
Lemma 1. Under A1, A3, A4, suppose that iterates {xr,∀r}
are generated by (5). Then, there exists a constant C such that
E‖xr+1 − xr‖2 ≤ C2/α2, ∀r, where C only depends on the
constants defined in A1, A3, A4.

Define Fr , σ{y0,x0, . . . ,xr,yr+1} to be the filtration of the
random variables up to iteration r where σ{·} denotes the σ-algebra
generated by the random variables. Then, we can quantify the changes
of the Lagrangian L(x,λ) = n−11T f(x,y∗(x)) + 〈λ,Ax〉 from
point (xr,λr) to (xr+1,λr+1) after one round of variable updates
in the following lemma.
Lemma 2. Under A1-A4, when ‖E[hrf |xr,yr+1] −
∇xf(xr,yr+1)‖ ≤ br , the sequence generated by SPDB satisfies

E
[
L(xr+1,λr+1)|Fr

]
−L(xr,λr) ≤ −

1

2α
‖∇L(xr,λr)‖2

−
(
α

2
−
Lf,1

2

)
‖E[xr+1−xr]‖2 +

2L2
f,1

nα
‖yr+1−y∗(xr)‖2

+

(
σmax(ATA)

τ
+

1

ρ

)
E‖λr+1−λr‖2+

2b2r
nα

+
Lf,1σ

2
f

2nα2
,

where σmax(ATA) denotes the maximum eigenvalue ofATA.
Next, we will use the successive difference of the primal variables

and the distance from yr to the minimizer of the lower-level
optimization problem at point xr to quantify the successive difference
of the dual variables in the ascent part of the Lagrangian.
Lemma 3. Under A1-A4, defineD , αI − ργATA. Suppose that
the sequence {xr,yr,λr} is generated by SPDB. Then, we have

1

ρ
‖E[λr+1 − λr]‖2 ≤

4L2
f,1

n2ργσ̃min(ATA)
E
∥∥xr − xr−1

∥∥2
+

4

ργσ̃min(ATA)

∥∥E[ωr+1]
∥∥2
DTD

+
8β2L2

f,1L
2
g,1

ργσ̃min(ATA)

σ2
g,1

n

+
8β2L2

f,1L
2
g,1

n2ργσ̃min(ATA)
E‖yr−y∗(xr)‖2 +

4(br + br−1)2

ργ
, (6)

where ωr+1 , (xr+1 − xr)− (xr − xr−1).
Now, the ascent part measured by the successive difference of the

dual variables is partially transferred to the term ‖E[ωr+1]‖2. Using
(4), we can construct the following recursion that establishes descent
w.r.t. ‖E[ωr+1]‖2.
Lemma 4. Under A1-A4, suppose that the sequence is generated by
SPDB. Then, there exists a constant ϑ > 0 such that

Qr+1 −Qr ≤ −1

2
‖E[ωr+1]‖2D +

2Lf,1L
2
g,1β

2

n2α
E‖yr − y∗(xr)‖2

+

((
αϑ

2
+

1

n2α

)
Lf,1 +

ϑ

4

)
‖E[xr+1 − xr]‖2

+

(
2β2σ2

g,1 +
σ2
fLf,1

α2

)
1

αnϑ
+

(br + br−1)2

ϑ
, (7)

where Qr , ργ
2
‖AE[xr]‖2 + 1

2
‖E[xr−xr−1]‖2D +

Lf,1

n2α
‖xr−

xr−1‖2.
Combining the contraction property of the lower-level

optimization update w.r.t. y shown in [18, Lemma 3], we have
the following descent lemma by applying Lemma 1 – Lemma 4.
Lemma 5. Under A1-A4, suppose that sequence {xr,yr,λr, ∀r}
is generated by SPDB. When

ϑ =
1

16
, c ,

16ασmax(ATA)

κσ̃min(ATA)
, κ ,

ρσmax(ATA)

α
< 1 (8)

and the step-sizes satisfy α > C̃′Lf,1 and C̃′′/α < β ≤ 2/(µ +
Lg,1), then there exist constants C1, C2, C3, C4, C5 > 0 such that

Pr+1 − Pr ≤ − 1

2α
E‖∇L(xr,λr)‖2 − C1‖E[xr+1 − xr]‖2

−C2E‖yr−y∗(xr)‖2+C3
b2r+b2r−1

α
+C4

σ2
f

nα2
+C5β

2 σ
2
g,1

n

where the potential/Lyapunov-like function is defined as

Pr , E[L(xr,λr)] +
cργ

2
‖AE[xr]‖2 +

c

2
‖E[xr−xr−1]‖2D

+
1

n2

((
σmax(ATA)

τ
+

1

ρ

)
4L2

f,1

σ̃min(ATA)
+
cLf,1

α

)
E‖xr−xr−1‖2

+
1

n2
E‖yr−y∗(xr)‖2, (9)

and the constants C̃′, C̃′′ only depend on the parameters defined in
A1–A4.
Theoretical convergence rate of SPDB. From the above analysis,
we know that the potential function Pr is monotonically decreasing
up to some error. Combining the facts that br in Lemma 2 shrinks
exponentially w.r.t. the mini-batch size ofhrf under a certain sampling
scheme [14, 16] and that Pr is lower bounded will immediately yield
the following theoretical convergence rate guarantees.

Theorem 1. Suppose that A1-A4 hold. When step-sizes are chosen
as α ∼ O(

√
T/n), β ∼ O(

√
n/T ), τ ≥ ρσmax(ATA) the

mini-batch size of hrf is O(log(T )), and T ≥ O(n4), then the
iterates {xri ,λr,yri , ∀i, r} generated by SPDB satisfy

1

T

T∑
r=1

E[‖∇L(xr,λr)‖2] ∼ 1

T

T∑
r=1

E[‖Axr‖2] ∼ O(1/
√
nT )

with T−1∑T
r=1 E[‖yr − y∗(xr)‖2] ∼ O(1/

√
nT ), where T

denotes the total number of iterations.
Remark 3. Passing the limit of the sequence, we can get that the

limit point (x∗,y∗,λ∗) is an exact KKT point of problem (1) .
Remark 4. Theorem 1 quantifies the number of iterations required

to achieve the ε-approximate KKT points of (1) (including both the
first-order stationarity of the solutions and the constraints violation)
to be on the order of 1/(nε2). Therefore, it follows that a linear
speedup w.r.t. the number of learners can be achieved by SPDB. Note
that SPDB is a single timescale algorithm as the learning rates satisfy
1/α ∼ β ∼ O(

√
n/T ).

5. NUMERICAL RESULTS
Toy example. We first compare the performance of our proposed
SPDB algorithm to DSGD [24], GNSD [25], and SPD/D2 [27] on
a decentralized classification learning problem using the MNIST
dataset. The neural network for each agent has only one hidden layer
with 32 neurons followed by sigmoid activation functions, where
the weights at the last layer are used for adaptation and the rest of
the weights must agree across the learners, and where there are 10
learners connected over a random Erdős–Rényi graph. We split the
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(a) Training (limited data)

number of epochs
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DSGD
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SPD
SPDB

(b) Testing (limited data)

DSGD
GNSD
SPD
SPDB

number of epochs

tr
a
in
-a
cc
u
ra
cy

(c) Training (full dataset)

number of epochs

te
st
-a
cc
u
ra
cy

DSGD
GNSD
SPD
SPDB

(d) Testing (full dataset)

Fig. 1: Convergence performance comparison of SPDB with state-of-the-art decentralized training methods.

number of epochs

lo
ss

SPDB-train
SPDB-heldout

SPD-train
SPD-heldout

Baseline-train
Baseline-heldout

(a) Learner 1

number of epochs

lo
ss

SPDB-train
SPDB-heldout

SPD-train
SPD-heldout

Baseline-train
Baseline-heldout

(b) Learner 4

Fig. 2: Convergence performance comparison of SPDB, SPD/D2 and
DSGD on the training and heldout datasets.

whole dataset such that in the ith agent 95% of the data samples
have label i and the remaining samples are drawn randomly from
the full dataset. The initial learning rate of all the algorithms is 0.02,
the mini-batch sizes for both hrf and hrg are 16, and the ratio ρ/τ
in SPDB is 0.2. In Figure 1a and Figure 1b, only 128 training data
samples at each learner are chosen to create a limited data scenario.
In Figure 1c and Figure 1d, the full training dataset is used. It can
be readily observed that SPDB achieves the best training and testing
accuracy with a fast convergence rate, showing the merits of SPDB in
terms of both training speedup over multiple learners and personalized
adaptation at each node.
Automatic speech recognition (ASR). Experiments are also
conducted on decentralized training of acoustic models for ASR.
There are 50 hours of wideband speech data from five sources with
each source contributing 10 hours of speech. The five sources consist
of data from the following five domains: Broadcast News data,
IBM internal dictation data, IBM internal meeting data, hospitality
(travel and hotel reservation) data, and accented data. There are five
learners, each with access to only one data source, which gives rise to
heterogeneous data distributions across learners. In addition to the 10
hours of training data, each learner also has about 2 hours of speech
used as a heldout set. The acoustic models are evaluated on four test
sets from domains of broadcast news (2.21 hours), hospitality (0.34
hours), Asian-accented (2.41 hours) and Latin-accented (3.12 hours)
speech, respectively. They are selected from public and real-world
client data. They match some of the domains in the training data.

The acoustic model is a bi-directional LSTM (BLSTM) based
deep neural network-hidden Markov model (DNN-HMM) containing
5 bidirectional LSTM layers with 256 cells per layer per direction.
There is a linear projection layer of 256 hidden units between the
topmost BLSTM layer and the softmax output layer. There are
9, 300 output units in the softmax output layer corresponding to

context-dependent HMM states. The LSTM is unrolled over 21
frames and trained with non-overlapping feature subsequences of that
length. The dimensionality of the input features is 120 which is a
40-dim logmel and its ∆ and ∆2 coefficients. Therefore, a batch of
size M consists of M 21-frame subsequences and the corresponding
tensor is of size M×120×21. A learner-specific 121× 120 affine
transform layer is used to transform the input features prior to the
first layer of the LSTM. It is initialized to an identity matrix and
zero bias vector. The decoding vocabulary comprises 260K words
and the language model (LM) is a 4-gram LM with 200M n-grams
and modified Kneser-Ney smoothing built using publicly available
training data from a broad variety of sources.

Training minimizes cross-entropy loss on 5 K80 GPUs using
SGD without momentum. The communication graph among learners
is a ring. In each iteration, every learner only communicates with its
left and right neighbors. The initial learning rate is 1.0, it is annealed
by 1/

√
2 after the 20th epoch, and training finishes in 30 epochs. The

batch size is 256 21-frame subsequences.
In PCL, the affine transform layer is optimized locally. In each

iteration, the local transform is first optimized by one-step SGD.
Then, the remaining model parameters are averaged between left and
right neighbors and updated by one-step SGD. For optimization of
the local transform (i.e., the bottom layer of the model), the initial
learning rate is 0.02 and it anneals by 1/

√
2 after the 20th epoch,

same as the model learning rate schedule. No momentum is used.
Due to the page limit, we only plot the training and heldout losses for
learner 1 and 4, which are shown in Figure 2. The comparison of the
word error rates (WER) on the four test sets is reported in Table 1.

S1 S2 S3 S4
DSGD [24] (baseline) 22.0 12.6 22.8 21.3
SPD/D2 [27] 21.9 12.5 22.3 20.5
SPDB (PCL) 21.4 12.4 19.9 18.7

Table 1: Word error rates of four test sets.

6. CONCLUDING REMARKS

In this work, we proposed a stochastic primal-dual based optimization
framework for decentralized bilevel problems, where the resulting
SPDB is a single-loop algorithm that can achieve the same
iteration complexity as DSGD for classical nonconvex objective
functions. We performed numerical experiments on both toy and
practical ASR problems with real datasets. It is shown that our
proposed decentralized parameter splitting approach outperforms
state-of-the-art algorithms in terms of both accuracy and convergence
speed, shedding light on personalized machine learning models over
a consensus network.
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