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Bilevel Model Selection for Support Vector Machines
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Abstract. The successful application of Support Vector Machines (SVMs),
kernel methods and other statistical machine learning methods requires selec-
tion of model parameters based on estimates of the generalization error. This
paper presents a novel approach to systematic model selection through bilevel
optimization. We show how modelling tasks for widely used machine learning
methods can be formulated as bilevel optimization problems and describe how
the approach can address a broad range of tasks—among which are parame-
ter, feature and kernel selection In addition, we also discuss the challenges in
implementing these approaches and enumerate opportunities for future work
in this emerging research area.

1. Introduction

Currently, Support Vector Machines (SVM) [12] and kernel methods enjoy enor-
mous popularity in the machine learning community. There are several reasons:
theoretically, their foundations are rooted in Structural Risk Minimization (SRM)
[54], which leads to excellent generalization capabilities; practically, they are very
flexible owing to the fact that they are modular and can be “kernelized” to cap-
ture highly nonlinear relationships [51]; and computationally, they are tractable
and can be applied to large high-dimensional data sets which contain several thou-
sand points. The kernel framework can be readily adapted to many learning tasks,
e.g. regression, classification, ranking, and novelty detection. One other reason why
SVMs may be considered one of the pre-eminent methods is because, with regard to
applicability, they have had wide ranging success on a variety of real-world applica-
tions. However, the many papers reporting the success of such methods frequently
gloss over an important issue: model selection.

In kernel methods, the root learning task is to construct a linear function that
minimizes a regularized convex loss function. Nonlinear functions can then be con-
structed using the so-called “kernel trick”. The resulting optimization problem is
convex, but it typically contains hyper-parameters that must be selected by the
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user. For example, in SVMs, the appropriate kernel function and trade-off parame-
ter between error and regularization must both be selected. Certain loss functions,
such as the ε-insensitive loss, require the selection of additional hyper-parameters.
There have been many interesting attempts to pick these hyper-parameters; no-
table among these are approaches that use bounds [10] or attempt to trace the
complete regularization path of the SVM [31]. However, the most systematic, com-
monly used and widely accepted method for selecting these hyper-parameters is
still T -fold cross validation (CV).

The focus of this chapter is to demonstrate how T -fold cross-validation model
selection for many different learning tasks can be formulated as bilevel optimization
problems. We begin with a review of the cross-validation problem. We illustrate the
bilevel programming model using support vector regression as an example. Then,
we introduce the generic T -fold CV formulation and discuss many possible varia-
tions. We briefly review possible methods for solving the models and direct the
reader to references that present computational results for one approach applied to
support vector regression and classification. Solution of the other resulting prob-
lems is left as a significant and compelling challenge to mathematical programming
researchers.

1.1. Model selection. The general predictive learning task is to construct
a function using present data that performs well on future data. A loss function
specific to the learning tasks is used to measure how well the function is performing.
Cross validation (CV) is a method of estimating the out-of-sample generalization
error of the model for given hyper-parameters. Cross validation leaves out subsets
of the training data, trains models on the reduced sets of data, and then tests the
resulting models on the left-out data. Cross validation can be applied to arbitrary
machine learning problems, gives a very good estimate of generalization error (even
for small data sets) which shows a strong correlation with the test error [20]. The
CV step is typically followed by a post processing step in which the final model is
trained on all the available data, using the “optimal” hyper-parameters given by
CV, to build the final model. The efficacy is this model may further be examined
by observing its performance on a hold-out test set.

To perform model selection, CV must be embedded within an optimization
algorithm. In the most common approach, Grid Search, CV is performed over
a grid that discretizes the hyper-parameter space of interest and involves, for T
folds, training T models at each grid point. As the number of hyper-parameters
grows, so does the number of problems to be solved and cross validation becomes
prohibitively expensive. Efficiency can only be achieved at the expense of grid
refinement and coarser grids inevitably yield poor models. In fact, even for a small
number of parameters, cross validation can still be expensive for high-dimensional
data sets. For example, feature selection for high-dimensional data sets leads to a
combinatorial explosion of grid points. Such problems are ubiquitous in machine
learning e.g., in feature selection [5, 30], kernel construction [37, 48], and multi-
task learning [9, 21]. For such high-dimensional problems, greedy strategies such
as stepwise regression, backward elimination, filter methods, or genetic algorithms
are used. Yet, these heuristic methods, including grid search, have a fundamental
deficiency in addition to their practical inefficiency; namely, they are incapable of
assuring the overall quality of the produced “solution”.
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Another drawback in grid search is that the discretization is restricted to exam-
ining only a finite set of points. Recent work on determining the full regularization
path of support vector machines underscores the fact that regularization parameter
is continuous. In particular, the paper [31] argues that the choice of the single
regularization parameter, C, is critical and shows that it is quite tractable to com-
pute the SVM solution for all possible values of the regularization parameter C.
But as it is well known in optimization, this parametric programming approach
for a single parameter is not extendable to models with multiple parameters and
certainly is not possible for models with a large number of parameters. Bayesian
methods can treat model parameters as random variables but then the challenge
becomes the choice of appropriate priors. In the end, out-of-sample testing is still
the gold standard for selecting parameters values. From the standpoint of “op-
timizing model selection” using out-of-sample estimates, there is an urgent need
for improved methodologies that combine sound theoretical foundation and robust
computational efficiency. This paper proposes one such methodology that is based
on the methods of bilevel optimization.

In addition to model selection for support vector machines through continuous
cross validation, the bilevel approach can also be applied to a wide variety of prob-
lems like semi-supervised learning, predicting missing values in the data, kernel
selection, multi-task learning and complexity minimization. This is because each
of these problems can be formulated as a bilevel program where the overall test-
ing/generalization objective is minimized in the “outer” (or upper) level subject to
the learning functions which are optimized in the “inner” (or lower) level. For ex-
ample, in cross validation, training is performed in the inner level and validation in
the outer level. Prior bilevel approaches have been developed and successfully used
for inner-level problems with closed form solutions and a single parameter, e.g. the
generalized cross-validation method for selecting the ridge parameter in ridge re-
gression [28]. Still, these approaches are limited to a single hyper-parameter and
inner-level function with a closed-form solution.

Bilevel model selection offers several advantages over prior approaches. The
most obvious advantage is the ability to deal with multi-parametric model selec-
tion and deal with them in continuous rather than discrete space. This is possible
because of recent advances in bilevel programming in the optimization community,
which permit the systematic treatment of models based on different loss and regu-
larization functions and kernels. In addition to being able to incorporate existing
methods, the bilevel approach offers a broad framework in which novel regulariza-
tion methods and generalization measures can be developed. Most significantly,
these advantages allow for improved model selection.

1.2. Bilevel programming. In this subsection, we introduce the bilevel
methodology by means of a brief historical perspective. Succinctly, bilevel pro-
grams are a class of hierarchical optimization problems in variables x and y, with
the optimal x being chosen by solving a constrained optimization problem whose
constraints themselves are optimization problems in y, or possibly both x and y. In
operations research literature, the class of bilevel optimization problems was intro-
duced by Bracken and McGill [6], and applied to defence problems like minimum-
cost weapon mix and economic problems like optimal production and marketing
decision making models. Their work is closely related to the extensively studied
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economic problem of the Stackelberg game [53], whose origin predates the work of
Bracken and McGill.

Stackelberg used a hierarchical model to describe the market situation where
different decision makers try to optimize their decisions based on individually differ-
ent objectives according to some hierarchy. The Stackelberg game can be considered
an extension of the well-known Nash game. In the Nash game, there are T players,
each of whom has a strategy set, Yt, and the objective of player t is chose a strategy,
yt ∈ Yt, given that the other players have already chosen theirs, to minimize some
utility function. Thus, each player chooses a strategy based on the choices of the
other players and there is no hierarchy.

In contrast, in the Stackelberg game, there is a hierarchy where a distinctive
player, called the leader is aware of the choices of the other players, called the
followers. Thus, the leader, being in a superior position with regard to everyone
else can achieve the best objective while forcing the followers to respond to this
choice of strategy by solving the Stackelberg game. Consider the case of a single
leader and follower. Let X and Y denote the strategy sets for the leader and
follower; let F (x, y) and f(x, y) be their utility functions respectively. Based on the
selection, x, of the leader, the follower can select the best strategy y(x) ∈ Y such
that f(x, y) is maximized i.e.,

(1.1) y(x) ∈ Ψ(x) = arg max
y∈Y

f(x, y).

The leader then computes the best strategy x ∈ X as (see Fig. 1),

(1.2) x ≡ max
x∈X

{F (x, y) | y ∈ Ψ(x)}.

Equations (1.1) and (1.2) can be combined to express the Stackelberg game com-
pactly as

(1.3)
max
x∈X,y

F (x, y)

s. t. y ∈ arg max
η∈Y

f(x, η).

Bilevel programs are more general than Stackelberg games in the sense that the
strategy sets, also known as admissible sets, can depend on both x and y. This
leads us to the general bilevel program formulated by Bracken and McGill:

(1.4)

max
x∈X,y

F (x, y) outer level

s. t. G(x, y) ≤ 0,

y ∈




arg max
y∈Y

f(x, y)

s. t. g(x, y) ≤ 0



 , inner level

The bilevel program, (1.4), is a generalization of several well-known optimization
problems as noted in [18]. If F (x, y) = −f(x, y), we have classical minimax prob-
lem; if F (x, y) = f(x, y), we have a realization of the decomposition approach to
optimization problems; if the dependence of both problems on y is dropped, we
have bicriteria optimization.

Now, a given model selection problem can be recast in the bilevel framework
by optimizing the generalization criteria in the outer level while performing the
required machine learning task in the inner level (see Figure 1). This reformulation
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Figure 1. The Stackelberg game (left), showing the hierarchy be-
tween the leader and the follower; Cross validation modelled as a
bilevel program (right), showing the interaction between the pa-
rameters, which are optimized in the outer level and the models
which are trained in the inner level.

gives rise to a significant difficulty: many machine learning problems are convex
and differentiable, while the bilevel program is non-convex and functions like Ψ(x),
which are not even Fréchet differentiable in general, occur in the constraints—for
example, in (1.1). There exist techniques to convert bilevel programs into solvable
optimization problems such as using implicit function theorems. However, we will
restrict our attention to the approach where the inner-level problems are replaced
by their Karush–Kuhn–Tucker conditions, a semi-infinite system of inequalities or
finite-dimensional variational inequalities. Such an optimization problem is called
a Mathematical Program with Equilibrium Constraints (MPEC).

The systematic study of the bilevel optimization problem and its MPEC exten-
sion attracted the intensive attention of mathematical programmers about a decade
ago with the publication of a focused monograph [40], which is followed by two re-
lated monographs, [49, 18]. During the past decade, there has been an explosion of
research on these optimization problems. See the annotated bibliography [19] which
contains many references. In general, bilevel programs/MPECs provide a powerful
computational framework for dealing with hyper-parameter identification problems
in an optimization setting. As such, they offer a novel paradigm for dealing with
the model selection problems described in this chapter. We illustrate the bilevel
paradigm on a specific learning task—linear SV regression—and then proceed with
the more general formulation.

2. Parameter Selection for Linear SV Regression

Cross validation for support vector regression was the first problem to reformu-
lated as a bilevel program that can perform parameter selection [3]. The learning
task is to construct a linear regression function that minimizes the ε-insensitive
error regularized by the 2-norm of the weights of the linear function. Thus, SV
regression has two hyper-parameters to be picked by T -fold cross validation. More
specifically the goal is to find a function, f(x) = x′w, such that the the function
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generalizes well on future data e.g. f(x) ≈ y and, typically the generalization error
is estimated by cross validation.

2.1. Cross validation. We start with a few words about our notation. The
training set consists of ` pairs of data and labels, {(xi, yi)}`

i=1 ⊂ Rn+1, denoted
by Ω; thus, |Ω| = `. Let the set of indices for the points in Ω be N = {1, . . . , `}.
Since we are interested in performing T -fold cross validation, Ω is partitioned into
T pairwise disjoint subsets, Ωt, the validation sets within each fold. The sets
Ωt = Ω\Ωt are the training sets within each fold. The corresponding index sets for
the validation and training sets are Nt and N t respectively. The tth training set,
Ωt is used to train the linear function xwt ∈ Rn. For simplicity of presentation,
we ignore the bias term for now. For compactness of notation, the vectors xwt

are collected, column-wise, into the matrix xW ∈ Rn×T . Also, given two vectors
xr,xs ∈ Rn, the complementarity condition xr ⊥ xs is equivalent to xr′xs = 0. A
vector of ones of arbitrary dimension is denoted 1.

The support vector regression (SVR) problem contains two hyper-parameters:
the regularization constant, C, and the tube width, ε, for the ε-insensitive loss
function, which are to be selected by cross validation. This is typically accomplished
using grid search. Grid search involves discretizing the C-ε space, typically on a
logarithmic scale of base 2 or 10 (see Fig. 2). At each grid point, the parameters of
the regression functions, {wt}T

t=1, are trained on the corresponding training sets,
Ωt, using the quadratic program

(2.1) wt ∈ arg min
w∈Rn





1
2
‖w‖22 +

C

|N t|
∑

j∈N t

max(|xx′jw − yj | − ε, 0)



 .

Figure 2. T -fold cross validation at a particular grid point,
(Ck, εk), on a base-10 logarithmic grid.
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Equation (2.1) represents the regression problem of finding a function, f? : Rn → R,
among a given class that minimizes the regularized risk functional,

(2.2) R[f ] ≡ P[f ] +
C

`

∑̀

j=1

L(
yj , f(xxj)

)
.

where L is the ε-insensitive loss function and P is the classic SVR `2-norm regu-
larization operator. The regression functions are validated at each grid point by
computing the generalization error, such as the mean average deviation (MAD), on
the validation sets, Ωt:

(2.3) Θ(W) =
1
T

T∑
t=1

1
|Nt|

∑

i∈Nt

|x′iw − yi|,

or alternatively the mean squared error (MSE),

(2.4) Θ(W) =
1
T

T∑
t=1

1
|Nt|

∑

i∈Nt

(x′iw − yi)2.

The grid point with the smallest estimate of the generalization error, Θ(W), yields
the choice of “optimal” hyper-parameters; this choice may be further refined by
a local search. Assuming that each parameter is discretized to take on d distinct
values, T -fold cross validation involves solving O(Td2) problems, a number that
grows quickly as more accuracy is desired or if the number of parameters increases.
This, combined with other issues described in Section 1.1, leads us to formulate the
bilevel cross-validation model.

2.2. Bilevel cross validation. In a fairly general formulation in which we
list only the essential constraints, the model selection bilevel program is to find the
hyper-parameters ε and C and the hyperplanes, wt in order to

(2.5)

minimize
C,ε,wt

Θ(W)

subject toε, C ≥ 0,

and for t = 1, . . . , T,

wt ∈ arg min
w∈Rn





1
2
‖w‖22 +

C

|N t|
∑

j∈N t

max(|x′jw − yj | − ε, 0)



 ,

where the outer-level objective function, Θ(W), is an estimate of the generalization
error and a performance measure as described in (2.3) and (2.4). Thus, the hyper-
parameters are optimized in the outer level while the learning is performed in the
inner level. It should be noted that the inner- and outer-level loss functions do not
need to match. The inner-level optimization problem is the classic SV regression
machine which uses ε-insensitive loss because it produces robust solutions that
are sparse in the dual space. The ε-insensitive loss is not typically used for the
generalization estimate in cross validation since it contains an unknown parameter
ε; instead, we will use the MAD, (2.3), in the analysis below. The bilevel program
that uses MSE can easily be formulated with only minor changes.

To solve (2.5), we rewrite each of the T inner-level problems, assuming that
the hyper-parameters, C and ε, are fixed. In particular, for the tth problem, we
introduce slack variables, ξt ≥ 0, to reformulate the max function in the inner level
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using the standard trick from linear programming, to give the following convex,
quadratic program:

(2.6)

min
wt,ξt

1
2
‖w‖22 +

C

|N t|
∑

j∈N t

ξt
j

s. t.

ξt
j ≥ yj − x′jw − ε,

ξt
j ≥ x′jw − yj − ε,

ξt
j ≥ 0,





, ∀j ∈ N t.

This is the SV regression problem that trains wt using the training set, Ωt, within
the tth fold. Let αt,+

j , αt,−
j ≥ 0 be the Lagrange multipliers for the upper and

lower hyperplane constraints respectively. Using these multipliers, we can write
down the primal and dual feasibility and complementarity slackness conditions of
(2.6) as follows.

(2.7)

0 ≤ αt,+
j ⊥ yj − x′jw

t + ε + ξt
j ≥ 0,

0 ≤ αt,−
j ⊥ x′jw

t − yj + ε + ξt
j ≥ 0,

0 ≤ ξt
j ⊥

C

|N t|
− αt,+

j − αt,−
j ≥ 0,





∀j ∈ N t.

There also exists the following first-order condition:

(2.8) wt +
∑

j∈N t

(αt,+
j − αt,−

j )xj = 0.

Equations (2.7) and (2.8) together constitute the well-known Karush–Kuhn–Tucker
first-order optimality conditions for (2.6). The outer-level objective also needs to
be rewritten as it contains the absolute value function, which is not everywhere
differentiable. This is easily achieved by introducing additional variables zt and
the constraints,

(2.9) −zt
i ≤ x′iw

t − yi ≤ zt
i , ∀i ∈ Nt,

into the outer level. Here, zt measures the mean absolute deviation of each point
in the validation set, Ωt, from the hyperplane, wt, trained on Ωt. Thus, the overall
two-level regression problem can be converted to a one-level problem as shown
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below

(2.10)

min
C,ε,wt,zt,

αt,±,ξt

1
T

T∑
t=1

1
|Nt|

∑

i∈Nt

zt
i

s. t. ε, C ≥ 0,

and for t = 1, . . . , T,

− zt
i ≤ x′iw

t − yi ≤ zt
i , ∀i ∈ Nt,

0 ≤ αt,+
j ⊥ yj − x′jw

t + ε + ξt
j ≥ 0,

0 ≤ αt,−
j ⊥ x′jw

t − yj + ε + ξt
j ≥ 0,

0 ≤ ξt
j ⊥

C

|Nt|
− αt,+

j − αt,−
j ≥ 0,





, ∀j ∈ N t,

wt +
∑

j∈Nt

(αt,+
j − αt,−

j )xj = 0.

The optimization problem (2.10) is an instance of a Linear Program with Equilib-
rium Constraints (LPEC); it is a nonlinearly constrained problem and is non-convex
in general because of the presence of the complementarity constraints. Several ap-
proaches can be used to solve (2.10) including exact penalty methods, integer pro-
gramming approaches and nonlinear programming techniques, to name a few. We
defer a discussion of these techniques until Section 8.

3. Generalized Bilevel Cross validation

The number of machine learning tasks that can be cast into the bilevel cross-
validation framework is virtually limitless. These learning tasks determine the
objective and constraints used in the inner-level problems and the outer-level ob-
jective. The resulting cross-validation problem can be re-formed as a bilevel op-
timization problem as long as the inner-level problems can be replaced by their
corresponding KKT conditions, and the outer-level objective and constraints can
be replaced by differentiable counterparts. Keeping this in mind, T -fold cross vali-
dation for some general machine learning problem can be written as

(3.1)

minimize
ft,λ

Θ(f1|Ω1 , . . . , f
T |ΩT ; λ)

subject to λ ∈ Λ,

and for t = 1, . . . , T,

f t ∈ arg min
f∈F



P(f, λ) +

∑

j∈N t

L(yj , f(xj), λ)



 .

Here, f t : (Rn × R) ∩ F → R is the learning function trained within the tth fold,
λ ∈ Λ is the set of model selection parameters for the machine learning problem, P
is the regularization operator and L is the inner-level loss function. This definition
admits many variations and well-known machine learning problems. We provide
some more examples below.
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4. Parameter Selection for Linear SV Classification

In linear SV classification (SVC), the learning task is to construct a decision
function that distinguishes one class from another. In this section, we extend
the parameter selection idea introduced in the previous section to support vector
classification and show how the bilevel formulation can handle a large number of
hyper-parameters; this is a review of work that was first introduced in [36]. The
inner-level problem is the standard SVC model [12] augmented with additional
feature selection constraints. The outer-level objective minimizes the number of
points misclassified in each of the T folds.

We again consider a labelled data set, Ω = {(xi, yi)}`
i=1 ⊂ Rn+1, containing `

training examples. However, the labels yi are restricted to ±1 as we are interested
in binary classification. We also introduce the bias into the decision rule: the
hyperplane, x′wt − bt = 0, is to be represented by the pair (wt, bt). If x′wt > 0,
then x is predicted to be in class 1 by decision rule t, otherwise x is predicted to be
in class −1. As before, the vectors, wt, are collected column-wise into the matrix
W ∈ Rn×T . The scalars, bt, are collected into the vector b ∈ RT .

Using this additional notation, the formulation of cross validation for SV clas-
sification as a bilevel program [36] is shown below.

(4.1)

minimize
C,w,wt,bt

Θ(W,b)

subject to Clb ≤ C ≤ Cub,

wlb ≤ w ≤ wub,

and for t = 1, . . . , T,

(wt, bt) ∈ arg min
−w≤w≤w

b∈R





1
2
‖w‖22 +

C

|N t|
∑

j∈N t

max(1− yj(x′jw − b), 0)



 .

It should be noted that the T inner-level problems are nearly identical to the clas-
sical support vector classification problem except for the introduction of the addi-
tional constraints −w ≤ w ≤ w. These constraints can be thought of as a weighted
`∞-norm on w and provide additional regularization while also performing feature
selection. To intuitively see how the box-constrained SV classifier (BoxSVC) per-
forms feature selection, consider the following. An irrelevant feature would induce
the corresponding weight in w to be small, which, in turn, forces the respective
weights in each fold, wt, to be small. Therefore, in addition to ensuring con-
sistency across the folds, the box constraint performs capacity control leading to
potentially improved overall generalization.

As a consequence, w ∈ Rn enters the outer level as a n-dimensional feature se-
lecting hyper-parameter, with the box constraint entering each inner-level problem.
Here, n is the dimension of the input space. The bilevel program (4.1) contains
n + v/1 hyper-parameters that need to be optimized and model selection entails
simultaneous parameter and input-space feature selection. In addition to the box
constraints, bounds, 0 < Clb ≤ Cub and 0 < wlb ≤ wub, have also been introduced
on the hyper-parameters in the outer level. This is to cut-off degenerate stationary
points that are meaningless in the machine learning context.
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4.1. The inner-level problems. Just as in the regression case, we can re-
place the inner-level problems with their corresponding constraints in order to con-
vert the bilevel program to an MPEC. First, slack variables, ξt ≥ 0, are introduced
to reformulate the non-differentiable max function in the inner-level objective giving
the following quadratic program to train a decision rule within the tth fold:

(4.2)

min
wt,bt,ξt

1
2
‖wt‖22 +

C

|N t|
∑

j∈N t

ξt
j

s. t. −w ≤ wt ≤ w,

yj(x′jw
t − bt) ≥ 1− ξt

j ,

ξt
j ≥ 0,

}
, ∀j ∈ N t.

In addition to the Lagrange multipliers, αt, for the hyperplane constraints and ηt

for the non-negativity of ξt constraints, we introduce γt,+ and γt,− for the lower
and upper box constraints. Thus, the KKT complementarity conditions for (4.2)
are

0 ≤ αt
j ⊥ yj(x′jw

t − bt)− 1 + ξt
j ≥ 0,

0 ≤ ξt
j ⊥

C

|N t|
− αt

j ≥ 0,





, ∀j ∈ N t,

0 ≤ γt,+ ⊥ w −wt ≥ 0,

0 ≤ γt,− ⊥ w + wt ≥ 0,

and the KKT first order conditions are

(4.3)

wt −
∑

j∈N t

yjα
t
jxj + γt,+ − γt,− = 0,

∑

j∈N t

yjα
t
j = 0.

We now look at various outer-level objectives.

4.2. The outer-level objective. The standard performance measure used to
validate classification models is the average misclassification error on the validation
sets, i.e.,

(4.4) Θ(W,b) =
1
T

T∑
t=1

1
|Nt|

∑

i∈Nt

[−yi(x′iw
t − bt)]?,

where the inner summand counts the number of misclassifications of points in the
validation set within each fold and the outer summand sums the averaged misclas-
sification error over each fold. The objective, (4.4), is formulated in terms of the
step function, which, for a vector, r?, is defined as

(4.5) (r?)i =

{
1, ri > 0,

0, ri ≤ 0.

The step function, unlike the absolute value or the max functions, is not even
continuous. This poses a problem, since now, the outer-level objective is not dif-
ferentiable. However, the step function can be characterized as the solution to a
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linear program [41]:

(4.6) r? = arg min
ζ

{−ζ′r | 0 ≤ ζ ≤ 1}.

Thus, in order to count the number of misclassifications in the T validation sets, it
is necessary to introduce T additional inner-level problems of the type (4.6),

(4.7) ζt ∈ arg min
0≤ζ≤1

{ ∑

i∈Nt

ζiyi(x′iw
t − bt)

}
.

Then, as in the case of the inner-level problems (4.2), we can replace (4.6) with
linear complementarity conditions. This necessitates the introduction of additional
Lagrange multipliers, (4.6) also satisfies

(4.8)
0 ≤ ζ ⊥ −r + z ≥ 0,

0 ≤ z ⊥ 1− ζ ≥ 0.

Thus, combining (4.3)–(4.3), and (4.7)–(4.8), we can replace the bilevel program
with a single-level program, which is also an instance of an MPEC. Note that the
variables, zt, measure the distance of the misclassified validation points from the
trained hyperplane within each fold

(4.9)

min
C,w,wt,bt,z

t,
ξt,ζt,αbt,γt,±

1
T

T∑
t=1

1
|Nt|

∑

i∈Nt

ζt
i

s. t. Clb ≤ C ≤ Cub,wlb ≤ w ≤ wub,

and for t = 1, . . . T,

0 ≤ ζt
i ⊥ yi(x′iw

t − bt) + zt
i ≥ 0,

0 ≤ zt
i ⊥ 1− ζt

i ≥ 0,

}
, ∀i ∈ Nt,

0 ≤ αt
j ⊥ yj(x′jw

t − bt)− 1 + ξt
j ≥ 0,

0 ≤ ξt
j ⊥

C

|N t|
− αt

j ≥ 0,





, ∀j ∈ N t,

0 ≤ γt,+ ⊥ w −wt ≥ 0,

0 ≤ γt,− ⊥ w + wt ≥ 0,

wt −
∑

j∈N t

yjα
t
jxj + γt,+ − γt,− = 0,

∑

j∈N t

yjα
t
j = 0,

The outer-level objective, Θ(W,b), can be treated not just as performance measure
that can estimate the generalization error but also as a loss function. This obser-
vation combined with the flexibility of the bilevel approach allows us to formulate
several different approaches to model selection.

The most straightforward variation is to use the average distance of the mis-
classified validation point from the trained decision rule within each fold i.e.,

(4.10) Θ(W,b) =
1
T

T∑
t=1

1
|Nt|

∑

i∈Nt

zt
i .
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Alternately, the hinge loss could be used in the outer-level objective. The hinge
loss is a relaxed overestimate of the misclassification loss. Using this loss in the
outer level effectively matches the inner- and outer-level loss functions.

(4.11) Θ(W,b) =
1
T

T∑
t=1

1
|Nt|

∑

i∈Nt

max(1− yi(x′iw
t − bt), 0).

4.3. `1-norm regularization. Different norms can be used to regularize the
inner-level problem. It is well-known that `1-norm regularization produces sparser
solutions than its `2 counterpart, hence performing better feature selection if used
for regularization. This can easily be incorporated into, say, the classification bilevel
formulation (4.1) by replacing 1

2‖w‖22 with ‖w‖1, yielding the following inner-level
problems:

(4.12) arg min
−w≤wt≤w

bt∈R



‖w‖1 +

C

|N t|
∑

j∈N t

max(1− yj(x′jw
t − bt), 0)



 .

Since the ‖wt‖1 is not differentiable at 0, we introduce two new variables, wt,±, such
that wt = wt,+−wt,−. If we choose to retain the box constraints as well, then the
bounds, 0 ≤ wt,± ≤ w, must also hold. Since the inner-level problems are simply
LPs, all the KKT conditions can be simplified to complementarity constraints,

(4.13)

0 ≤ αt
j ⊥ yj(x′j(w

t,+ −wt,−)− bt)− 1 + ξt
j ≥ 0,

0 ≤ ξt
j ⊥

C

|N t|
− αt

j ≥ 0,





, ∀j ∈ N t,

0 ≤ γt,+ ⊥ w −wt,+ ≥ 0,

0 ≤ γt,− ⊥ w −wt,− ≥ 0,

0 ≤ wt,+ ⊥ 1−
∑

j∈N t

yjα
t
jxj + γt,+ ≥ 0,

0 ≤ wt,− ⊥ 1+
∑

j∈N t

yjα
t
jxj + γt,− ≥ 0,

except for the equality constraints that are dual to bt,

(4.14)
∑

j∈N t

yjα
t
j = 0.

If the box constraint in the inner-level problems was to be dropped, then their cor-
responding dual variables, γ±, would disappear from the complementarities above.
Many other regularization schemes could also be incorporated into (3.1)) such as
ones which use hinge loss combined with the so-called lasso penalty, µ1‖w‖22 +
µ2‖w‖1 (elastic nets, [56]), `∞-norm regularization [2, 57] or the modified support
vector machine which uses 1

2 (‖w‖22 + b2) for regularization [44]. The last regu-
larization operator is nearly identical to classical SVMs except that the equality
constraint, (4.14), vanishes from the dual (and subsequently from the first order
conditions of the inner-level problems). This is useful if it is desired that all equal-
ity constraints be removed in order to apply solution techniques such as successive
over-relaxation or linear programming chucking [8].
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4.4. `0-norm Regularization. Let us assume that it was known a priori for
the given n-dimensional data set, that at most nmax features are desired. This can
be incorporated into the model by introducing the constraint, ‖w‖0 ≤ nmax, into
the outer-level problem, where ‖ · ‖0 is the so-called zero-norm1, or the cardinality
of a vector, i.e., it counts the number of non-zero elements in its argument. This
constraint bounds the number of allowable features and causes the smallest feature
weights to be dropped from the model. Since ‖w‖0 = 1′w?, the constraint can
be reformulated using the ( )? function and its LPEC conditions, (4.6). Thus,
the following complementarity constraints are added to (4.9), with δ counting the
selected features of w and d being the multipliers to the constraints 1− δ ≥ 0

n∑
m=1

δm ≤ nmax,

0 ≤ δ ⊥ −w + d ≥ 0,

0 ≤ d ⊥ 1− δ ≥ 0.
(4.15)

If the resulting LPEC can be solved efficiently, then the optimal value of nmax can
be found using a line search or an scheme similar to recursive feature elimination
[30], i.e., by successively decreasing nmax as long as the error rate continues to
decrease. Alternately, the ‖w‖0 term can be moved into the inner-level objective
as the regularization operator [7],

(4.16) arg min
−w≤wt≤w

bt∈R



λ‖w‖0 +

1− λ

`

∑

j∈N t

max(1− yj(x′jw
t − bt), 0)



 .

This, however, converts the overall cross-validation problem into a trilevel problem,
since the ( )? function, which is used to rewrite ‖ · ‖0, adds a nested inner-level
problem of its own to (4.16).

5. Kernel Bilevel Cross Validation

The SVMs considered thus far have all been linear machines and as such are
unable to handle non-linear data sets effectively; this severely limits their usefulness
to real data sets. We now demonstrate how one of the most powerful features of
SVMs—their ability to deal with high-dimensional, highly nonlinear data using the
kernel trick—can be incorporated into the bilevel model.

We continue this discussion using the bilevel classification example, (4.1), though
the results below can easily be generalized to other kernel methods. The classifi-
cation model was formulated to perform parameter and feature selection, taking
advantage of the ability of the bilevel framework to handle multiple parameters.
However, a glance at the first-order conditions, (4.3), shows that wt depends, not
only on the training data, but also on the multipliers, γt,±, of the box constraints.
In order to apply the kernel trick and construct RKHS spaces for the kernel meth-
ods to operate in, it is essential that the hyperplane, wt, be expressed solely as a
linear combination of the training data. This is a fundamental assumption that is
at the heart of all kernel methods through the representer theorem. In order to
make this so, we temporarily set aside feature selection, drop the box constraints

1It should be noted that the zero-norm is not really a norm because, the positive homogeneity
condition does not hold except for very special cases, i.e., ‖aw‖0 6= |a|‖w‖0, in general. However,
the term has found widespread use in both the optimization and machine learning communities.
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(effectively causing γt,± to drop out of the program) and work with the classical SV
classifier. The resulting first order conditions within each fold include the following
constraints:

(5.1) wt =
∑

j∈N t

yjα
t
jxj , ∀t = 1, . . . , T.

Now, we can eliminate wt within each fold of (4.9) using (5.1) and then apply the
kernel trick, i.e., the resulting linear inner-product terms, x′ixj , are replaced with
symmetric, positive semi-definite kernel functions, κ(xi,xj). The final bilevel cross-
validation model for SV classification when the kernel is fixed can be computed if
we

(5.2)

min
C,bt,z

t,
ζt,αt,ξt

1
T

T∑
t=1

1
|Nt|

∑

i∈Nt

ζt
i

s. t. C ≥ 0,

and for t = 1, . . . T,

0 ≤ ζt
i ⊥ yi


 ∑

k∈N t

ykαt
kκ(xi,xk)− bt


 + zt

i ≥ 0,

0 ≤ zt
i ⊥ 1− ζt

i ≥ 0,





, ∀i ∈ Nt,

0 ≤ αt
j ⊥ yj


 ∑

k∈N t

ykαt
kκ(xj ,xk)− bt


− 1 + ξt

j ≥ 0,

0 ≤ ξt
j ⊥

C

|N t|
− αt

j ≥ 0,





, ∀j ∈ N t,

∑

j∈N t

yjα
t
j = 0.

While it may not appear so at first glance, the optimization problem above is
still an instance of an LPEC. Unfortunately, it is usually unreasonable to expect
ready-made kernels for most machine learning tasks; in fact, most kernel families
are parametrized, and the kernel parameters are typically determined via cross val-
idation. Also, unlike its linear counterpart, this model is not capable of performing
feature selection.

The issues of parameter selection (for regularization and the kernel) and feature
selection can be combined as in the linear model if we use a parametrized kernel of
the form κ(xi,xk;p,q). The nonnegative vector, p ∈ Rn

+, is the feature selection
or scaling vector, and q ≥ 0 is a vector of kernel parameters. Let P = diag(p).
The parametrized versions of some commonly used kernels are shown below.

(5.3)

Linear kernel κ(xi,xk;p) = x′iPxk,

Polynomial kernel κ(xi,xk;p, c, d) = (x′iPxk + c)d,

Gaussian kernel κ(xi,xk;p) = exp
(−(xi − xk)′P (xi − xk)

)
.

Other kernels can be similarly extended and used in the model. Consequently,
the new kernel parameters, p and q, enter the outer level of the kernel model
as variables in the problem. The introduction of the parametrized kernel is a
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very powerful extension to the linear model (4.9) as it is capable of picking the
regularization parameters, kernel parameters and features leaving only the choice
of kernel family to the user. Problem (5.2), optimized with added variables p, q in
the parametrized kernel, is an MPEC with non-linear complementarity constraints
and in general is a very difficult problem to solve.

Alternately, taking advantage of the ability of the bilevel model to deal with a
large number of hyper-parameters, the following kernel can be used:

(5.4) κ(xi,xk;βi,k,pk) = exp
(
(xi − xk)′Pk(xi − xk)big).

This is a generalization of the commonly used Gaussian kernel in that it contains a
different width parameter, βk, for each support vector which has to be determined.
The resulting function becomes a Radial Basis Function Network. Kernels of this
type are useful for time-series analysis and function approximations owing to the
excellent fitting properties of the Gaussian.

6. Semi-supervised Learning and Transduction

We have, thus far, focused on model selection for supervised learning tasks such
as classification and regression, with the label information available for all training
points. Frequently, however, in applications like text classification, drug design,
medical diagnosis, and graph and network search, the training set consists of a large
number of unlabelled data points and a relatively small number of labelled training
points. This necessitates semi-supervised learning, where training is performed
using both the labelled and unlabelled data. If all the training data is unlabelled,
the problem becomes one of unsupervised learning, e.g., clustering.

The concept of semi-supervised learning is closely related to that of transduc-
tive learning, which can be contrasted with the more typically performed inductive
learning. In induction, the given labelled data is used to construct a robust decision
rule that is valid everywhere. This rule is fixed after training and can subsequently
be applied to the future test data. In transduction, the labelled training data and
the unlabelled test data are both given. All available data is used to construct the
decision rule in order to avoid over-fitting. The learning task in transduction is
to only predict the labels for the specific test points and not for all future data.
Performing transductive learning may result in improvement in generalization error
bounds [54], thus reducing the number of labelled data required for good general-
ization.

Some additional notation is now introduced. As before, Ω = {xi, yi}`
i=1 rep-

resents the set of labelled data, with ` = |Ω|. Let Ψ = {xi}u
i=1 represent the

unlabelled training data, with the corresponding labels (to be determined) being
zi, and u = |Ψ|. The sets, Ω and Ψ, are indexed by N and M respectively.

6.1. Semi-supervised regression. In bilevel semi-supervised regression, the
labels of the unlabelled training data are treated as control variables, z. The general
bilevel model for semi-supervised machine learning problems can be formulated as

(6.1)

minimize
f,z,λ

Θ(f, z; Ω,Ψ, λ)

subject to λ ∈ Λ,

f ∈ arg min
f∈F



P(f, λ) +

∑

j∈N
Ll(yj , f(xj), λ) +

∑

j∈M
Lu(zj , f(xj), λ)



 .
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In the model above, the loss functions, Ll and Lu, are applied to the labelled and
unlabelled data respectively, while P performs regularization. All the appropriate
parameters, λ, are optimized in the outer level; these parameters can include the
regularization constant, tube width (for regression) and feature selection vectors
among others. Optimizing the unknown labels, z in the outer level corresponds to
inductive learning, while optimizing them in the inner level corresponds to trans-
ductive learning. A more robust solution can be found by combining both types of
learning by optimizing z in both levels.

For semi-supervised support vector regression, we can choose both loss func-
tions to be ε-insensitive and `2-norm regularization. For the case of one labeled
training set, one unlabeled training set, and one test set, this yields the following
bilevel program [34]:

(6.2)

minimize
C,D,ε,w,b,z

∑

i∈N
|x′iw − b− yi|

subject to ε, C, D ≥ 0,

(w, b) ∈ arg min
(w,b)∈Rn+1





1
2
‖w‖22 +

C

|N |
∑

j∈N
max(|x′jw − b− yj | − ε, 0)

+
D

|M|
∑

j∈M
max(|x′jw − b− zj | − ε, 0)





.

The outer-level objective is simply the mean average deviation (MAD) on all the
labelled data. The inner-level objective uses both the labelled and unlabelled data
sets making this an instance of transductive learning. The labels, z, are used in
the inner-level loss function but are optimized as outer-level variables along with
the hyper-parameters ε, C, and D. Additional upper and lower bounds can be
imposed on these parameters if desired. This program can be converted to an LPEC
as before. It should be noted that in typical semi-supervised learning problems,
the number of unlabelled examples, u is far greater than the number of labelled
examples, `. This means that (6.2) will have a large number of outer-level variables
(z) and complementarity constraints arising from the unlabelled data points.

The model (6.2) performs simultaneous transductive learning and parameter
selection. The quality of the “optimal” parameters can potentially be improved
by combining semi-supervised learning with T -fold cross validation. This can be
achieved if we

(6.3)

minimize
C,D,ε,wt,bt,z

1
T

T∑
t=1

1
|Nt|

∑

i∈Nt

|x ′iw − b− yi|

subject to ε, C,D ≥ 0,

and for t = 1, . . . , T,

(wt, bt) ∈ arg min
(w,b)∈Rn+1





1
2
‖w‖22 +

C

|Nt|
∑

j∈Nt

max(|x′jw − b− yj | − ε, 0)

+
D

|M|
∑

j∈M
max(|x′jw − b− zj | − ε, 0)





,

so that the resultant program is again a novel combination of inductive and trans-
ductive learning. Here, the unlabelled data is used to train the decision rule for
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each fold. As there are T inner level problems, the complementarity conditions con-
taining the unlabelled data will occur T times, though each time with a different
(wt, bt) in the constraints.

6.2. Semi-supervised classification. Turning our attention to classification
problems, we encounter several choices for both the inner- and outer-level loss
functions. As always, we use the hinge loss for the labelled points. We look at
three loss functions that were introduced in [16] for the unlabelled points in the
inner level. The first is the so-called hard-margin loss,

(6.4) Lu(w, b) =

{
∞, for − 1 < x′w − b < 1,

0, otherwise.

This can be introduced into the inner level through the very hard constraint max(1−
|x′w − b|, 0) = 0, resulting in the following inner-level optimization problem:

(6.5)

min
w,b,ξ,z+,z−

1
2
‖w‖22 + C

∑

j∈N
ξt
j

s. t. yi(x′iw − b) ≥ 1− ξi, ξi ≥ 0, ∀i ∈ N
− (x′jw − b) ≥ 1− z+

j , z+
j ≥ 0,

(x′jw − b) ≥ 1− z−j , z−j ≥ 0,

z+
j z−j = 0





, ∀j ∈M.

This results in a non-convex, quadratically-constrained quadratic program (QCQP)
which is challenging to solve in general. Furthermore, the hard-margin condition
might be too strong to allow for feasible solutions, leading us to consider soft-margin
variants: the quadratic-margin penalty,

(6.6) Lu(w, b) = max(1− (x′w − b)2, 0),

and the non-convex hat-loss function,

(6.7) Lu(w, b) = max(1− |x′w − b|, 0).

These loss functions arise from the relaxing the hard constraint z+
j z−j = 0 in (6.5)

by moving it into the inner-level objective; if the product, z+
j z−j , is used directly,

a quadratic penalty function, (6.6), results, and if the minimum error, min(z+
j , z−j )

is used, the hat loss function results. Using the quadratic penalty function for the
unlabelled data is precisely the transductive idea proposed by Vapnik [54]. The
“optimal” labels on the unlabelled data can be calculated as sign(z+

j − z−j ).
Finally, we can use the step function to formulate loss functions that use the

number of misclassifications for both the labelled and unlabelled data sets if we
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solve

(6.8)

minimize
C,D,w,b,ζ,z

1
|N |

∑

i∈N
ζi

subject to C,D ≥ 0,

ζ ∈ arg min
0≤ζ≤1

{∑

i∈N
ζiyi(x′iw − b)

}
,

z ∈ arg min
0≤z≤1

{∑

i∈M
−zi(x′iw − b)

}
,

(w, b) ∈ arg min
(w,b)∈Rn+1





1
2
‖w‖22 +

C

|N |
∑

j∈N
max(1− yj(x′jw − b), 0)

+
D

|M|
∑

j∈M
max(1− zj(x′jw − b), 0)





.

The outer-level objective performs misclassification minimization on the labelled
data, with the first inner-level problem counting the number of misclassifications.
The second inner-level problem computes the labels on the unlabelled data which
are used to perform learning in the third inner-level problem. As in the regression
case, the problem (6.8) and its variants that use the various loss functions above
can be combined with cross validation to perform more effective parameter selec-
tion. Feature selection can also be incorporated into these models by adding extra
constraints on w or by changing the regularization as discussed in Section 3. It is
also relatively straightforward to kernelize the models discussed above as per the
discussion in Section 5, as long as care is taken in dealing with the labelled and
unlabelled kernels.

7. Incorporating Multitask Learning

We return to the problem of cross validation to demonstrate that multitask
learning concepts can easily be incorporated in the bilevel setting. Multitask learn-
ing [9] is defined as learning multiple related tasks simultaneously. This type of
learning is an instance of inductive transfer, otherwise called transfer learning,
where the knowledge learned from some tasks may be applied to learning a related
task more efficiently.

In the T -fold bilevel cross validation setting, each of the T inner-level prob-
lems attempts to construct a decision rule on subsets of the same training sample,
which, by statistical learning theory assumptions, are drawn i.i.d. from the same
distribution. Thus, the tasks of training within each fold are related and amenable
to incorporating multitask principles. We do this by introducing new variables,
(w0, b0), into the inner-level problems. For example, consider the following SV
regression inner level, (2.1) with added multi-task terms (and including the bias
term):

(7.1) (wt, bt) ∈ arg min
(w,b)∈Rn+1





1
2
‖w‖22 +

C

|N t|
∑

j∈N t

max(|x′jw − yj | − ε, 0)

+
λw

2
‖w −w0‖22 +

λb

2
(b− b0)2





.
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The variables (w0, b0) enter the bilevel model as outer-level variables as do the pa-
rameters λw and λb. The multitask terms provide variance control by making each
of the individual hyperplanes less susceptible to variations within their respective
training sets. They also provide additional regularization. Finally, they ensure fold
consistency because of the enforced task relatedness. We can replace (7.1) with its
corresponding KKT conditions:

0 = (1 + λw)wt − λww0 +
∑

i∈N t

(αt,+
i − αt,−

i )xi,

0 = λb(bt − b0) +
∑

i∈N t

(αt,+
i − αt,−

i ),

0 ≤ ξt
i ⊥

C

|N t|
− αt,+

i − αt,−
i ≥ 0,

0 ≤ αt,+
i ⊥ ξt

i + ε− x′iw
t + bt + yi ≥ 0,

0 ≤ αt,−
i ⊥ ξt

i + ε + x′iw
t − bt − yi ≥ 0,





, ∀i ∈ N t.(7.2)

From (7), we deduce

(7.3)

wt =
1

1 + λw


λww0 −

∑

i∈N t

(αt,+
i − αt,−

i )xi


 ,

bt = b0 − 1
λb

∑

i∈N t

(αt,+
i − αt,−

i ),

where it is understood that if λb = 0, then the latter expression for bt reduces to

(7.4)
∑

i∈N t

(αt,+
i − αt,−

i ) = 0,

which does not involve bt. In the interest of kernelizing (7), we postulate that

(7.5) w0 ≡
∑

j∈N
βjxj ,

for some scalars, βj , to be determined. We obtain

(7.6) wt ≡ 1
1 + λw


λw

∑

j∈N
βjxj −

∑

j∈N t

(αt,+
j − αt,−

j )xj


 .

This last expression can be substituted into the complementarities in (7) to give

(7.7)

0 ≤ ξt
i ⊥

C

|N t|
− αt,+

i − αt,−
i ≥ 0,

0 ≤ αt,+
i ⊥ ξt

i + ε− 1
1 + λw


λw

∑

j∈N
βjx′ixj −

∑

j∈N t

(αt,+
j − αt,−

j )x′ixj




+ bt + yi ≥ 0,

0 ≤ αt,−
i ⊥ ξt

i + ε +
1

1 + λw


λw

∑

j∈N
βjx′ixj −

∑

j∈N t

(αt,+
j − αt,−

j )x′ixj




− bt − yi ≥ 0.
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The “kernel trick” can now be applied to (7.7); see Section 5 for details.

8. Optimization Methods for Bilevel Models

The bilevel and multilevel model selection models proposed here require the
solutions of LPECs/MPECs. There exist several approaches that can deal with
the complementarity constraints that arise in and LPECs/MPECs. Some of these
are: penalty methods, which allow for the violation of the complementarity con-
straints, but penalize them through a penalty term in the outer-level objective;
smoothing methods, that construct smooth approximations of the complementar-
ity constraints; and relaxation methods, that relax the complementarity constraints
while retaining the relaxations in the constraints.

LPECs (or MPECs) are difficult to solve since they contain linear (or nonlinear)
complementarity constraints; it is known that linear complementarity problems be-
long to the class of NP-complete problems [11]. Furthermore, the complementarity
constraints cause the feasible region of a bilevel program to lack closedness and
convexity or, even possibly, be disjoint [40]. Aside from these obvious sources of in-
tractability, stationary points for MPECs always fail to satisfy linear independence
constraint qualification (LICQ) or Mangasarian-Fromovitz constraint qualification
(MFCQ) in the nonlinear programming sense. There is yet another consideration,
that of local optimal points, which is particularly important in the machine learning
context. Machine learning problems lead to well-posed complementarity problems,
in general, that have multiple local minima [41] which can be useful, especially if it
is hard to construct globally optimal solutions

8.1. Stationarity and constraint qualification for MPECs. In this sub-
section, we introduce some standard assumptions and definitions from MPEC the-
ory in order to better understand the properties of MPECs at optimality. We
consider bilevel programs of the type shown below, which is slightly different from
the Bracken and McGill formulation, (1.4),

(8.1)

min
x,y

F (x, y)

s. t. G(x, y) ≥ 0,

y ∈




arg min
y

f(x, y)

s. t. gi(x, y) ≥ 0, ∀i = 1, . . . , m



 .

Introducing Lagrange multipliers, λi ≥ 0, for the inner-level constraints, (8.1) can
be rewritten using either the first-order KKT conditions or a variational inequality
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as follows:

(8.2)

min
x,y

F (x, y)

s. t. G(x, y) ≥ 0,

∇f(x, y)−
m∑

i=1

λi∇gi(x, y) = 0,

0 ≤ λi ⊥ gi(x, y) ≥ 0, ∀i = 1, . . . , m

⇐⇒

min
x,y

F (x, y)

s. t. G(x, y) ≥ 0,

(u− y)′∇f(x, y) ≥ 0, for some y,

u ∈ {y | gi(x, y) ≥ 0, ∀i = 1, . . . , m} .

The two formulations above are equivalent nonlinear programs; we shall use
the one with the inner-level KKT conditions. As noted above, LICQ or MFCQ,
which are necessary to guarantee the existence of the multipliers, λi, at stationarity,
fail to hold for (8.2) because the gradients of the complementarity constraints,
λigi(x, y) = 0, are never linearly independent. Denoting the feasible region of the
LPEC/MPEC (including the complementarities) is S0, and the set of multipliers
that satisfies the first-order KKT conditions of the inner-level problem is Λ(x, y), we
can define a key regularity assumption called the sequentially bounded constraint
qualification (SBCQ).

Definition 1 (SBCQ). For any convergent subsequence {(xk, yk)} ⊆ S0, there
exists, for each k, a multiplier vector, λk ∈ Λ(xk, yk), and {λk}∞k=1 is bounded.

If SBCQ is satisfied, then it guarantees the non-emptiness of the set of mul-
tipliers, Λ(x, y), and the existence of bounds on the multipliers on bounded sets.
More importantly, it also guarantees the equivalence of (8.1) and (8.2) with regard
to global optima; equivalence with regard to local optima can also be guaranteed if
the functions gi(x, y) are convex in y. The SBCQ condition is weak and is easily sat-
isfied under (implied by) other stronger constraint qualifications for the inner-level
problem such as MFCQ.

In order to derive stationarity conditions for the MPEC, (8.2), we can relate
it to the tightened and relaxed non-linear programs, where the first-order equality
constraints have been collected into H(x, y, λ),

(8.3)

min
x,y

F (x, y) (tightened) min
x,y

F (x, y) (relaxed)

s. t. G(x, y) ≥ 0, H(x, y, λ) = 0, s. t. G(x, y) ≥ 0, H(x, y, λ) = 0,

λi = 0, ∀i ∈ Iα, λi = 0, ∀i ∈ Iα,

gi(x, y) = 0, ∀i ∈ Iγ , λi = 0, ∀i ∈ Iα,

λi = 0, gi(x, y) = 0, ∀i ∈ Iβ . λi ≥ 0, gi(x, y) ≥ 0, ∀i ∈ Iβ .

and with the Lagrangian function,
(8.4)

L(x, y, λi, µ, ν, u, v) = F (x, y)− µG(x, y)− νH(x, y, λ)−
m∑

i=1

uiλi −
m∑

i=1

vigi(x, y),
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where

(8.5)

Iα := {i | λi = 0, gi(x, y) > 0},
Iβ := {i | λi = 0, gi(x, y) = 0},
Iγ := {i | λi > 0, gi(x, y) = 0}.

If the index set, Iβ , is empty, then strict complementarity is said to hold and if
not, the complementarity constraints in Iβ are said to be degenerate. We can now
define some stationarity concepts.

Definition 2 (B-stationarity). A feasible point (x∗, y∗, λ∗) is said to be
Bouligand or B-stationary if it is a local minimizer of an LPEC obtained by lin-
earizing all the MPEC functions about the point (x∗, y∗, λ∗) i.e., ∇F (x, y)′z ≥ 0,
∀z ∈ Tlin(x∗, y∗, λ∗), where Tlin denotes the tangent cone.

This is a primal stationarity condition and is very general. However, as a
certificate, it is not very useful as verifying it is combinatorially expensive due to
the difficulty in characterizing the tangent cone. Alternately, we can look at various
dual stationarity conditions.

Definition 3 (W-stationarity). A feasible point (x∗, y∗, λ∗) is said to be
weakly or W-stationary if there exist multipliers µ, ν, u and v ≥ 0 such that

(8.6)
∇L(x, y, λi, µ, ν, u, v) = 0,

µ ≥ 0, ui = 0, ∀i ∈ Iγ , vi = 0, ∀i ∈ Iα.

The conditions above are simply the non-trivial first-order KKT conditions of
the tightened nonlinear program. W-stationarity is a very important concept for
computational purposes as it can help identify points that are feasible but not
stationary2.

Definition 4 (S-stationarity). A feasible point (x∗, y∗, λ∗) is said to be
strongly or S-stationary if the W-stationarity conditions, (8.6), and the condition:
∀i ∈ Iβ , ui, vi ≥ 0, hold.

As in the weak case, the conditions for S-stationarity are simply the first-order
KKT conditions for the relaxed nonlinear program. Finally, it can be shown that if
“LICQ for MPECs” holds, then B-stationarity is equivalent to S-stationarity [50].
This discussion can be easily extended to the case where the outer-level problem
may have equality constraints.

We now discuss some approaches to solving MPECs.

2W-stationarity concepts can be strengthened by enforcing additional constraints on the
multipliers in (8.4). For example, replacing λigi(x, y) = 0 with min

`
λi, gi(x, y)

´
= 0 in (8.2)

yields a non-smooth nonlinear program. The first-order KKT conditions for the latter can be
written using the Clarke generalized gradient, and are precisely the conditions for Clarke or C-
stationarity. See [55] for more details.
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8.2. Nonlinear programming approaches. In machine learning, since the
inner level problems are typically linear or quadratic, the reformulated bilevel pro-
gram, yields an LPEC of the following general form

(8.7)

min
x,y

c′x + d′y

s. t. 0 ≤ y ⊥ w = Nx + My + q ≥ 0,

Ax + By + p ≥ 0,

Gx + Hy + f = 0.

where some subset of variables of y are the multipliers λi. The complementarity
condition can also be expressed using min(y, w) = 0. This equality condition is
equivalent to y − (y − w)+ = 0. Here, r+ = max(r, 0), the component wise plus
function applied to some vector r ≥ 0.

8.2.1. Inexact solutions. This solution approach can be thought of as similar
to the well-known machine learning technique of early stopping. As mentioned
before, inexact and approximate solutions as well as local minima yield fairly good
optimal points in the machine learning context. We take advantage of this fact
and use the relaxation approach to solve MPECs. This method simply involves
replacing all instances of “hard” complementarity constraints of the form

0 ≤ y ⊥ w ≥ 0 ≡ y ≥ 0, w ≥ 0, y′w = 0

with relaxed, “soft” complementarity constraints of the form

0 ≤ y ⊥tol w ≥ 0 ≡ y ≥ 0, w ≥ 0, y′w ≤ tol

where tol > 0 is some prescribed tolerance of the complementarity conditions. If
the machine learning problem yields an LPEC, the resulting inexact formulation
will be a quadratically constrained quadratic program. For general MPECs, the
relaxation will be a nonlinearly constrained optimization problem which can be
solved using off-the-shelf NLP solvers such as filter [24, 25] or snopt [27], which
are freely available on the neos server [13]. Both these solvers implement the
sequential quadratic programming (SQP) method; filter uses trust-region based
SQP while snopt uses line search based SQP.

Inexact cross validation was used to solve bilevel cross validation for support
vector regression, (2.5), in [3] and support vector classification, (4.1), in [36] using
filter. In spite of the fact that filter provides no guarantee of global optimality
and generally converges to locally optimal solutions, this method performed well
with regard to generalization error, indicating that local optimal solutions can be
practically satisfactory. The reported results also compared favourably with grid
search techniques with regard to parameter and feature selection and objective
values. However, they were more efficient than grid search, especially with regard
to feature selection.

8.2.2. Smooth approximations. The condition, min(y,Nx + My + q) = 0, can
be replaced by a function φ(y, w), possibly non-smooth, such that φ(y, w) = 0 ≡
0 ≤ y ⊥ w ≥ 0. The Fischer-Burmeister function [23], φ(y, w) = y+w−

√
y2 + w2,

is a non-smooth example of such a function. This function is smoothed using a
parameter ε to give the smoothed Fischer-Burmeister function, φ(y, w) = y + w −√

y2 + w2 + ε2. The smoothed function is everywhere differentiable and yields the
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following approximation of (8.7):

(8.8)

min
x,y,w

c′x + d′y

s. t. w = Nx + My + q ≥ 0, y ≥ 0,

Ax + By + p ≥ 0,

Gx + Hy + f = 0

yi + wi −
√

y2
i + w2

i + ε2
k = 0, ∀i = 1, . . . ,m.

Pang and Fukushima [26] showed that for decreasing values of εk, the sequence
of stationary points to the nonlinear program (8.8), (xk, yk, wk), converges to a
B-stationary point, (x∗, y∗, w∗), if weak second order necessary conditions hold at
each (xk, yk, wk), and LICQ for MPECs holds at (x∗, y∗, w∗). Various methods
can be used to solve the sequence of problems (8.8); for example, the sequential
quadratic programming (SQP) algorithm [35].

Another approach that was proposed for nonlinear and mixed complementar-
ity problems involves solving the non-smooth equation, y = (y − w)+; the right
hand side of the equation, max(y − w, 0), is not differentiable at zero, and can be
replaced by an everywhere differentiable smooth approximation. Chen and Man-
gasarian [15] propose several different smooth approximations to the max function
generated from different parametrized probability density functions that satisfy
certain consistency properties. One approximation generated from the smoothed
Dirac delta function that is commonly used in neural network literature is

(8.9) p(z, α) = z +
1
α

log (1 + e−αz), α > 0,

where α is some smoothing parameter. Now, the smoothed non-linear equation
representing the complementarity system is φ(y, w) = y − p(y − w,α) = 0.

8.2.3. Exact penalty methods. Penalty and augmented Lagrangian methods
have been widely applied to solving LPECs and MPECs [33]. These methods
typically require solving an unconstrained optimization problem. In contrast, exact
penalty methods penalize only the complementarity constraints in the objective:

(8.10)

min
x,y,w

c′x + d′y + µφ(y, w)

s. t. w = Nx + My + q ≥ 0, y ≥ 0,

Ax + By + p ≥ 0,

Gx + Hy + f = 0.

One approach to solving exact penalty formulations like (8.10) is the successive
linearization algorithm, where a sequence of problems with a linearized objective,

(8.11) c′(x− xk) + d′(y − yk) + µ
(
∂xφ(yk, wk)(x− xk) + ∂yφ(yk, wk)(y − yk)

)

is solved to generate the next iterate. The algorithm requires concavity of the
objective (to guarantee the existence of vertex solutions at each iteration) and
lower-boundedness of the objective. An example of a differentiable penalty function
is φ(y, w) = y′w. The resulting quadratic program can be solved using the Frank-
Wolfe method [41].

Alternately, the concave penalty function, min(y, w), has also been proposed.
Various approaches can be used to handle the non-smoothness of the penalized
objective function arising from this choice of φ(y, w). The most straight-forward
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approach is to use successive linearization with the gradients in the linearized ob-
jective being replaced by the supergradients [43],

(8.12)

∂xφ =
m∑

j=1





0, if yj < wj ,

(1− λj)0 + λjNj , if yj = wj ,

Nj , if yj > wj .

,

∂yφ =
m∑

j=1





Ij , if yj < wj ,

(1− λj)Ij + λjMj , if yj = wj ,

Mj , if yj > wj .

and 0 ≤ λ ≤ 1. A second approach makes use of the fact that min(r, s), for any
two scalars, r and s, can be computed as

(8.13) min(r, s) = arg min
ρ,σ

{ρr + σs | ρ, σ ≥ 0, ρ + σ = 1}.

This gives a separable bilinear program [42],

(8.14)

min
x,y,w

c′x + d′y + ρ′r + σ′s

s. t.w = Nx + My + q ≥ 0, y ≥ 0,

Ax + By + p ≥ 0,

Gx + Hy + f = 0.

which can be solved using a finite Frank-Wolfe method. A third approach requires
replacing the non-smooth min with its smooth approximation, which can be de-
fined analogous to the approximation for the max function shown in the previous
subsection,

(8.15) m(z, α) = − 1
α

log(1 + e−αz), α > 0.

The application of these methods to the bilevel machine learning applications is
presently under investigation.

8.3. Integer programming approaches. The connections between bilevel
programs, MPECs and mixed integer programs (MIPs) are well known. It was
shown in [1] that there exists a polynomial time reformulation to convert a mixed
integer program to a bilevel program. Also demonstrated in [1] was an implicit
reformulation of a bilevel program as a mixed integer program via MPECs. Specif-
ically, a program with equilibrium constraints, such as (8.7), can be converted to
a MIP by splitting the complementarity constraints through the introduction of
integer variables, z, and a large finite constant θ.

(8.16)

min
x,y,z

c′x + d′y

s. t. 0 ≤ Nx + My + q ≤ θ(1− z),

0 ≤ y ≤ θz, z ∈ {0, 1}m,

Ax + By + p ≥ 0,

Gx + Hy + f = 0.

Care must be taken to compute the value of θ large enough so as not to cut off
parts of the feasible region. This is done by solving several LPs to obtain bounds
on all the variables and constraints of (8.16) and setting θ to be equal to the largest
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bound. Once θ is fixed, the MIP can now be solved by using standard techniques
such as branch and bound.

The biggest drawback of this approach is that the computation of the bound, θ,
requires solving a very large number of LPs. Other drawbacks are that the approach
can only be applied to LPECs with bounded feasible regions (thus ensuring that
the feasible region of the MIP is also bounded) and does not necessarily always
converge to a global optimum. These latter limitations tend to be less of a concern
for bilevel programs arising from machine learning applications. However, all of
the drawbacks mentioned here are all satisfactorily dealt with in the method of
[32], wherein a parameter-free dual program of (8.16) is derived, reformulated as
a minimax problem, and solved using Bender’s approach. The application of this
method to the bilevel machine learning applications is presently under investigation.

8.4. Other approaches. The discussion of the solution approaches above is
not meant to be exhaustive. There are several other approaches to solving MPECs
and LPECs such as active set identification methods [38], interior point methods
[40, 39], implicit programming [14, 40] and non-smooth methods [49].

9. Conclusions

We showed how various important machine learning problems can be cast as
bilevel programs. This includes cross validation for support vector regression and
classification in order to perform parameter and feature selection, kernel methods,
semi-supervised learning and multi-task learning. This is certainly not an exhaus-
tive list of machine learning problems to which bilevel programming can be applied.
Noting that all the methods proposed here were nonparametric methods, an inter-
esting avenue of further research with regard to modelling is the incorporation
of parametric or generative methods based on probability models into the bilevel
framework.

In our approach, the inner-level problems in the bilevel programs are replaced
by their first-order KKT conditions. This yields mathematical programs with equi-
librium constraints, a class of non-convex, nonlinear, and generally hard problems.
Under some mild conditions, the equivalence of bilevel programs and their corre-
sponding MPECs can be guaranteed. However, the presence of complementarity
constraints in MPECs is a major theoretical and computational challenge, as the
principles of nonlinear programming theory cannot be directly extended to MPECs.
However, additional stationarity and constraint qualification concepts enable one
to guarantee the existence of solutions for these problems. In the machine learning
context, many of the theoretical considerations are not a source of difficulty as ma-
chine learning applications generally yield reasonably well-posed and well-behaved
MPECs.

A major outstanding open question is the development of efficient algorithms
for bilevel programs. It should also be noted that machine learning problems, partic-
ularly support vector machines, yield elegant, convex, sparse and highly structured
problems; it should not be surprising that a lot of these desirable characteristics
get carried over to their bilevel counterparts. While the MPECs resulting from the
bilevel programs are non-convex, they are certainly very sparse and highly struc-
tured.

The structure inherent in SVMs and kernel methods makes them an attractive
target for decomposition methods. Well-known machine learning methods such as
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sequential minimal optimization (SMO) take this to the extreme by decomposing
the problem to consider pairs of points. More recently, the method [32] has taken an
important step in this direction of algorithmic development. Mangasarian showed
that variables in MPECs such as misclassification minimization problems [41] are
typically uncoupled, allowing the problem to be decomposed into smaller linear
programs. Many of the algorithms presented in this monograph have similar struc-
tures. It has already been demonstrated that bilevel machine learning problems
perform fairly well with regards to generalization error [3, 36] when solved using
SQP-based methods such as filter. It should be noted that since the ultimate goal
is to produce good generalization, the solutions found need not necessarily be highly
accurate or global optimal. However, as the number of complementarities grows
rapidly with increasing data set sizes, problem size becomes all but intractable for
these general purpose solvers. An urgent need is to specifically exploit the structure
and properties of machine learning problems to yield algorithms that are efficient
and scalable. We present these models as challenges to mathematical programming
researchers.
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