
Model Selection via Bilevel Optimization

Kristin P. Bennett, Jing Hu, Xiaoyun Ji, Gautam Kunapuli, and Jong-Shi Pang

Abstract— A key step in many statistical learning methods
used in machine learning involves solving a convex optimization
problem containing one or more hyper-parameters that must
be selected by the users. While cross validation is a commonly
employed and widely accepted method for selecting these
parameters, its implementation by a grid-search procedure in
the parameter space effectively limits the desirable number
of hyper-parameters in a model, due to the combinatorial
explosion of grid points in high dimensions. This paper pro-
poses a novel bilevel optimization approach to cross validation
that provides a systematic search of the hyper-parameters.
The bilevel approach enables the use of the state-of-the-art
optimization methods and their well-supported softwares. After
introducing the bilevel programming approach, we discuss
computational methods for solving a bilevel cross-validation
program, and present numerical results to substantiate the
viability of this novel approach as a promising computational
tool for model selection in machine learning.

I. INTRODUCTION

Support Vector Machines (SVM), [5], [26], kernel meth-
ods, [24], and other statistical learning methods have been
applied with great success. But the many papers reporting
the success of such methods frequently gloss over an im-
portant issue: model selection. For example, consider kernel
methods. In kernel methods, the learning task, such as
regression, classification, ranking, and novelty detection [25],
is to construct a linear function that minimizes a regularized
convex loss function. Nonlinear functions can be constructed
using the so-called “kernel trick”. The resulting optimization
problem is convex (thus, is generally not difficult to deal
with, both theoretically and computationally), but typically
it contains hyper-parameters that must be selected by the
users. For example in SVM, the appropriate kernel function
and tradeoff parameter between error and regularization must
both be selected. While there have been many interesting
attempts to use bounds or other techniques to pick these
hyper-parameters [6], [9], the most commonly used and
widely accepted method for selecting these hyper-parameters
is still cross validation (CV).

In cross validation, the hyper-parameters are selected to
minimize some estimate of the out-of-sample generalization
error. A typical method would define a grid over the hyper-
parameters of interest, and then do 10-fold cross validation
for each of the grid values [21]. The inefficiencies and
expense of such a grid-search cross-validation approach
effectively limit the desirable number of hyper-parameters
in a model, due to the combinatorial explosion of grid
points in high dimensions. Problems with many parameters

The authors are with the Department of Mathematical Sciences, Rens-
selaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590,
U.S.A. Email: (bennek,huj,jix, kunapg,pangj)@rpi.edu.

are pervasive in data analysis, e.g., they arise frequently in
feature selection [16], [2], kernel construction [19], [22],
and multitask learning [4], [10]. For such high-dimensional
problems, greedy strategies such as stepwise regression,
backward elimination, filter methods, or genetic algorithms
are used. Yet, these heuristic methods, including grid search,
have a fundamental deficiency in addition to their practical
inefficiency; namely, they are incapable of assuring the
overall quality of the produced “solution”.

Another drawback in grid search is that the discretization
fails to take into account the fact that the model parameters
are continuous. Recent work on determining the full regular-
ization path of support vector machines underscores the fact
that regularization parameter is continuous. In particular, the
paper [18] argues that the choice of the single regularization
parameter C is critical and shows that it is quite tractable
to compute the SVM solution for all possible values of
the regularization parameter C. But as it is well known in
optimization, this parametric programming approach for a
single parameter is not extendable to models with multiple
parameters and certainly is not possible for models with
a large number of parameters. Bayesian methods can treat
model parameters as random variables but then the challenge
becomes the choice of appropriate priors. In the end, out-
of-sample testing is still the gold standard for selecting
parameters values. From the standpoint of “optimizing model
selection” using out-of-sample estimates, there is an urgent
need for improved methodologies that combine sound theo-
retical foundation and robust computational efficiency. This
paper proposes one such methodology that is based on the
methods of bilevel optimization.

The novelty of this research is to directly tackle the model
selection using out-of-sample testing as an optimization
problem, albeit with an “inner” and an “outer” objective.
The main idea of the approach is as follows. The data is
partitioned or bootstrapped into training and test sets. We
seek a set of hyper-parameters, such that when the optimal
training problem is solved for each training set, the loss
over the test sets is minimized. The resulting optimization
problem is a bilevel program. Each learning function is
optimized in its corresponding training problem with fixed
hyper-parameters—the inner (or lower-level) optimization
problem, while the overall testing objective is minimized—
the outer (or upper-level) optimization problem. Prior bilevel
approaches have been developed and successfully used for
lower-level problems with closed form solutions and a single
parameter, e.g. the generalized cross validation method for
selecting the ridge parameter in ridge regression [15]. But
these approaches are limited to a single hyper-parameter and
lower-level function with a closed-form solution.

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

1922

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on May 10,2024 at 05:59:52 UTC from IEEE Xplore. Restrictions apply.

The proposed bilevel programming approaches offer sev-
eral fundamental advantages over prior approaches. First,
recent advances in bilevel programming in the optimization
community permit the systematic treatment of models based
on the popular loss functions used for SVM and kernel
methods with many hyper-parameters; see Section III for a
brief summary of such advances. In addition to the ability to
simultaneously optimize many hyper-parameters, the bilevel
programming approach offers a broad framework in which
novel regularization methods can be developed, valid bounds
on the test set errors can be obtained, and most significantly,
improved model selection can be produced.

II. CHALLENGES IN MODEL SELECTION

At one level, the model selection problem is easy. Pick
a parametric family of models, and an appropriate training
loss function, such that the model performs well according to
some estimate of the generalization error based on the given
training data. Yet, every stage of the process can introduce
errors that can degrade the quality of the resulting inductive
functions. We highlight three sources of such errors. The first
source of error is the fact that the underlying true function
and error distribution is unknown; thus any choice of data
representation, model family and loss functions may not be
suitable for the problem and thus introduce inappropriate
bias. The second source of error stems from the fact that
only finite amount of (possibly noisy) data is available. Thus
even if we pick appropriate loss functions, models, and out-
of-sample estimates, the method may still yield inappropriate
results. The third source of error stems from the difficulty of
the nonconvex optimization problem that underlies the model
selection problem. Support vector and other kernel methods
are usually regarded as convex optimization problems, but in
fact they are not; they are made convex when the parameters
are fixed. Ideally, both the variables and parameters used in
these models must be selected. As mentioned above, the com-
monly used grid-search approach and other heuristic methods
are highly deficient for dealing with problems with many pa-
rameters. Our proposal of the bilevel programming approach
places this parameter selection problem on a firm ground,
enabling the employment of the state-of-the-art nonlinear
programming (NLP) methodology, including many highly
effective algorithmic solvers that are freely available on the
NEOS website, http://www-neos.mcs.anl.gov/neos/solvers/, to
tackle this third challenge of model selection. In addition
to such a rich resource, on-going research is underway to
improve the effectiveness of these solvers applied to this class
of optimization problems; these details are beyond the scope
of this paper.

Since our focus is the third challenge, we assume that
the model family and the loss function for the training data,
and the method for estimating the generalization error are
given. While the bilevel programming approach is broadly
applicable to many function classes and learning methods,
we focus in this paper on support vector based training.
Specifically, we optimize the model with respect to the ε-
insensitive loss function with 2-norm regularization and with

a trade-off parameter C [26]. Further we assume the data
has irrelevant variables; to help identify them, we introduce
a symmetric box constraint on the support vector1. This
introduces an additional nonnegative vector of parameters,
denoted w(= −w), each of whose components is the size
of the box for an individual dimension of the data. Thus the
linear regression problem for n-dimensional data has n + 2
parameters, C, ε, and w, which are chosen such that the
k-fold least-absolute deviation cross-validation error is min-
imized. Note that the linear model for each fold is a convex
quadratic program that is easy to solve to global optimality
for each choice of parameters. Among many questions raised
by this formulation, we focus on two: Can the bilevel k-
fold CV optimization problem be solved efficiently? Do we
get improved generalization errors? Results are reported in
Section VI.

III. BILEVEL OPTIMIZATION

Since bilevel optimization is a novel tool in the machine
learning community, we introduce this methodology by way
of a brief historical perspective. In a nutshell, bilevel opti-
mization problems are a class of constrained optimization
problems whose constraints contain a lower-level optimiza-
tion problem that is parameterized by a multi-dimensional
design variable. In the operations research literature, the
class of bilevel optimization problems was introduced in the
early 1970s by Bracken and McGill [3]. These problems are
closely related to the economic problem of Stackelberg game,
whose origin predates the work of Bracken and McGill. In
the late 1980s, the bilevel program was given a renewed study
in the extended framework of a mathematical program with
equilibrium constraints (MPEC) [20], which is an extension
of a bilevel program with the optimization constraint replaced
by a finite-dimensional variational inequality [11].

The systematic study of the bilevel optimization problem
and its MPEC extension attracted the intensive attention
of mathematical programmers about a decade ago with the
publication of a focused monograph [20], which is followed
by two related monographs [23] and [7]. During the past
decade, there has been an explosion of research on these
optimization problems. See the annotated bibliography [8]
which contains many references. In general, bilevel pro-
grams/MPECs provide a powerful computational framework
for dealing with parameter identification problems in an
optimization setting. As such, they offer a novel paradigm
for dealing with the model selection problem described in
the last section. Instead of describing a bilevel optimization
problem in its full generality, we focus our discussion on its
application to CV for model selection.

IV. A BILEVEL SUPPORT-VECTOR REGRESSION MODEL

As mentioned before, we focus on a bilevel support-vector
regression (SVR) problem and use it to illustrate the kind of
problems that the bilevel approach can treat. Specifically,

1This idea was suggested by Stan Uryasev at the University of Florida,
Gainesville in a private communication to the last author of this paper in
March 2004.

1923

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on May 10,2024 at 05:59:52 UTC from IEEE Xplore. Restrictions apply.

suppose that the regression data are described by the �
points {(x1, y1), . . . , (x�, y�)} in the Euclidean space �n+1

for some positive integers � and n. Consider the regression
problem of finding a function f∗ : �n → � among a given
class that minimizes the regularized risk functional

R[f] ≡ P [f] +
C

�

�∑
i=1

L(yi, f(xi)),

where L is a loss function of the observed data and
model outputs, P is a regularization operator, and C is
the regularization parameter. Usually the ε-insensitive loss
Lε(y, f(x)) = max{|y−f(x)|−ε, 0} is used in SVR, where
ε > 0 is the tube parameter, which could be difficult to
select as one does not know beforehand how accurately the
function will fit the data. For linear functions: f(x) = w ′x =

n∑
i=1

wixi, where the bias term is ignored but can easily be

accommodated, the regularization operator in classic SVR
is the squared �2-norm of the normal vector w ∈ �n; i.e.,

P [f] ≡ ‖w‖2
2 =

n∑
i=1

w2
i .

The classic SVR approach has two hyper-parameters, the
regularization constant C and the tube width ε, that are
typically selected by cross validation based on the mean
square error (MSE) or mean absolute deviation (MAD)
measured on the out-of-sample data. In what follows, we
focus on the latter and introduce additional parameters for
feature selection and improved regularization and control.
We partition the � data points into T distinct partitions,

Ωt for t = 1, . . . , T , such that
T⋃

t=1

Ωt = {1, . . . , �}. Let

Ωt ≡ {1, . . . , �} \ Ωt be the subset of the data other than
those in group Ωt. In a fairly general formulation in which
we list only the essential constraints, the model selection
bilevel program is to find the parameters ε, C, λ, and wt for
t = 0, 1, · · · , T , and also the bounds w and w in order to

minimize
C,ε,λ,wt,w,w

1
T

T∑
t=1

1
|Ωt |

∑
i∈Ωt

|x ′
iw

t − yi |

subject to ε, C, λ ≥ 0, w ≤ w,

and for t = 1, . . . , T,

(1)

wt ∈ arg min
w≤w≤w

C
∑
j∈Ωt

max(|x ′
jw − yj | − ε, 0)

+
1
2
‖w ‖2

2 +
λ

2
‖w − w0 ‖2

2

}
,

(2)

where the argmin in the last constraint denotes the set
of optimal solutions to the convex optimization problem
(2) in the variable w for given hyper-parameters ε, C, λ,
w0, w, and w. Problem 1 is called the first-level or outer
problem. Problem (2) is referred to as the the second-level
or inner problem. The bilevel programming approach has no
difficulty handling the additional hyper-parameters and other

convex constraints (such as prescribed upper bounds on these
parameters) because it is based on constrained optimization
methodology.

The parameter λ is inspired by current research in mul-
titask learning [4], [10], which in turn is motivated by
statistical learning theory. Since we have set λ = 0 in our
experiments reported in Section VI, we will not discuss this
parameter further. We included λ in the formulation (1) in
order to make the point that the bilevel optimization method-
ology is applicable to multitask learning. The parameters, w
and w, are related to feature selection and regularization.
The bound constraints w ≤ w ≤ w enforce the fact that
the weights on each descriptor must fall in a range for all
of the cross-validated solutions. This effectively constrains
the capacity of each of the functions, leading to an increased
likelihood of improving the generalization performance. It
also forces all the subsets to use the same descriptors, a form
of variable selection. This effect can be enhanced by adopting
the one-norm which will force w to be sparse. The box
constraints will ensure that a consistent but not necessarily
identical set will be used across the folds. This represents a
fundamentally new way to do feature selection, embedding
it within cross validation for model selection.

Note that the loss functions used in the first level and
second level to measure errors need not match. For the inner-
level optimization, we adopt the ε-insensitive loss function
because it produces robust solutions that are sparse in the
dual space. But typically, ε-insensitive loss functions are
not employed in the outer cross-validation objective; so here
we use mean absolute deviation (as an example). Variations
of the bilevel program (1) abound, and these can all be
treated by the general technique described next, suitably
extended/modified/specialized to handle the particular for-
mulations. For instance, we may want to impose some
restrictions on the bounds w and w to reflect some a priori
knowledge on the desired support vector w. In particular,
we use −w = w ≥ 0 in Section VI to restrict the search
for the weights to square boxes that are symmetric with
respect to the origin. Similarly, to facilitate comparison with
grid search, we restrict C and ε to be within prescribed
upper bounds. In general, each such variation of the basic
formulation (1) will have interesting modeling implications;
details of these are beyond the scope of this first paper on
the subject and are presently being further investigated.

A. More about the bilevel problem

The bilevel optimization problem (1) determines all the
model parameters via the minimization of the outer objective
function:

1
T

T∑
t=1

1
|Ωt |

∑
i∈Ωt

|x ′
iw

t − yi |,

subject to the simple restrictions on these parameters, and
most importantly, to the additional lower-level optimality
requirement of each wt for t = 1, . . . , T . To solve (1), we
rewrite the lower-level optimization problem (2) as follows:

1924

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on May 10,2024 at 05:59:52 UTC from IEEE Xplore. Restrictions apply.

for given ε, C, λ, w0, w, and w,

minimize C
∑
j∈Ωt

ej +
1
2
‖w ‖2

2 +
λ

2
‖w − w0 ‖2

2

subject to w ≤ w ≤ w

and
ej ≥ x ′

jw − yj − ε

ej ≥ −x ′
jw + yj − ε

ej ≥ 0

 j ∈ Ωt,

(3)

which is easily seen to be a convex quadratic program in the
variables w and {ej}j∈Ωt

. By letting γt,± be the multipliers
of the bound constraints: w ≤ w ≤ w, respectively, and ηt,±

j

be the multipliers of the constraints ej ≥ x ′
jw − yj − ε and

ej ≥ −x ′
jw + yj − ε, respectively, we obtain the Karush-

Tucker-Tucker optimality conditions of (3) as the following
linear complementarity problem in the variables wt, γt,±,
ηt,±

j , and et,±
j :

0 ≤ γt,− ⊥ wt − w ≥ 0

0 ≤ γt,+ ⊥ w − wt ≥ 0

0 ≤ ηt,−
j ⊥ x ′

jw
t − yj + ε + et

j ≥ 0

0 ≤ ηt,+
j ⊥ yj − x ′

iw
t + ε + et

j ≥ 0

0 ≤ et
j ⊥ C − ηt,+

j − ηt,−
j ≥ 0

 ∀j ∈ Ωt

(4)

0 = wt +λ(wt −w0)+
∑
j∈Ωt

(ηt,+
j − ηt,−

j)xj +γt,+ −γt,−,

where a ⊥ b means a′b = 0. The orthogonality conditions
in (4) express the well-known complementary slackness
properties in the optimality conditions of the lower-level
(parametric) quadratic program. The overall two-level regres-
sion problem is therefore

minimize
1
T

T∑
t=1

1
|Ωt |

∑
i∈Ωt

zt
i

subject to ε, C, λ ≥ 0, w ≤ w,

and for all t = 1, . . . , T{ −zt
i ≤ x ′

iw
t − yi ≤ zt

i , ∀ i ∈ Ωt

plus all conditions in (4)

}
.

(5)

The most noteworthy feature of the above optimization
problem is the complementarity conditions in the constraints,
making the problem an instance of an MPEC. A particular
case of the problem is of further interest; namely, when
λ = 0; i.e., when the variance of the support vector w is not
of concern in the model selection. In this case, (5) is a linear
program with linear complementarity constraints (sometimes
called an LPEC). The discussion in the remainder of this
paper focuses on this case.

V. A RELAXED NLP REFORMULATION

Exploiting the LPEC structure, the solution method that
is implemented in our experiments for solving (5) with
λ = 0 employs a relaxation of the complementarity con-
straint. Whereas (5) is by itself a nonlinearly constrained
optimization problem, it is well recognized that a straight-
forward solution using this formulation is not appropriate
because of the complementarity constraints, which give
rise to both theoretical and computational anomalies that
require special attention. Among various proposals to deal
with these constraints, two are particularly effective: one is
via a penalty approach that allows the violation of these
constraints but penalizes the violation by adding a penalty
term in the objective function of (5). The other proposal
is to relax the complementarity constraints and retain the
relaxations in the constraints. There are extensive studies
of both treatments, including detailed convergence analyses
and numerical experimentations on realistic applications and
random problems. For our purpose, we choose the relaxed
complementarity formulation. Specifically, let tol > 0 be
a prescribed tolerance of the complementarity conditions.
Consider the relaxed formulation of (5), with λ = 0,

minimize
1
T

T∑
t=1

1
|Ωt |

∑
i∈Ωt

zt
i

subject to ε, C ≥ 0, w ≤ w,

and for all t = 1, . . . , T

−zt
i ≤ x ′

iw
t − yi ≤ zt

i , ∀ i ∈ Ωt

0 ≤ γt,− ⊥tol wt − w ≥ 0

0 ≤ γt,+ ⊥tol w − wt ≥ 0

0 ≤ ηt,−
j ⊥tol x ′

jw
t − yj + ε + et

j ≥ 0

0 ≤ ηt,+
j ⊥tol yj − x ′

iw
t + ε + et

j ≥ 0

0 ≤ et
j ⊥tol C − ηt,+

j − ηt,−
j ≥ 0

 ∀j ∈ Ωt

0 = wt +
∑
j∈Ωt

(ηt,+
j − ηt,−

j)xj + γt,+ − γt,−,

where a ⊥tol b means ab ≤ tol. The latter formulation con-
stitutes the relaxed bilevel support-vector regression problem
that we employ to determine the hyper-parameters C, ε, w
and w; the computed parameters are then used to define the
desired support-vector model for data analysis.

The relaxed complementary slackness is a novel feature
that aims at enlarging the search region of the desired
regression model; the relaxation corresponds to inexact cross
validation whose accuracy is dictated by the prescribed scalar
tol. This reaffirms an advantage of the bilevel approach
mentioned earlier, namely, it adds flexibility to the model
selection process by allowing early termination of cross
validation, and yet not sacrificing the quality of the out-of-
sample errors.

1925

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on May 10,2024 at 05:59:52 UTC from IEEE Xplore. Restrictions apply.

The above NLP remains a nonconvex optimization prob-
lem; thus finding a global optimal solution is hard, but the
state-of-the-art general-purpose NLP solvers such as FILTER

[12], [13] and SNOPT [14] that are available on the NEOS

server are capable of computing good-quality feasible solu-
tions. This internet server offers administration tools to allow
remote users to utilize professionally implemented state-of-
the-art optimization algorithms. To solve a given problem, the
user first specifies the problem in an algebraic language, such
as AMPL or GAMS, or via the NEOS Application Interface,
and then submits the code as a job to NEOS. Upon receipt,
NEOS assigns a number and password to the job, and places
it in a queue. The remote solver unpacks, processes the
problem, and sends the results back to the user.

The nonlinear programming solvers, SNOPT and FILTER,
were chosen to solve our problems. Both are Sequential
Quadratic Programming (SQP) based methods, which are
Newton-type methods for solving problems with nonlinear
objectives and nonlinear constraints. These methods solve
a sequence of approximate convex quadratic programming
subproblems. A recent algorithm, FILTER implements a SQP
algorithm using a trust-region approach with a “filter” to
enforce global convergence [12]. It terminates either when
a Karush-Kuhn-Tucker point is found with a specified tol-
erance or no further step can be processed (possibly due
to the infeasibility of a subproblem). In the experiment,
we used FILTER with the option mxws=60000 to increase
the storage. In some cases with Gaussian noise (see next
section), like “10D and 90 points”, “10D and 60 points”,
“15D and 90 points” and “15D and 90 points”, we added
the option rho=15 to increase the robustness of FILTER.
The code SNOPT uses SQP as well. From a starting point,
the algorithm sets up a quadratic subproblem to search the
direction for the next subproblem. At each iteration, instead
of using a trust-region formulation, an augmented Lagrangian
merit function is minimized along the derived direction to
induce global convergence [14]. In the experiment, we used
SNOPT with the option: scale=2 and option=2. This setting
yields a solution in all cases except a few, where SNOPT

doesn’t deliver a result. The reported computational results
exclude these cases.

VI. EXPERIMENTAL DESIGN

Our preliminary experiments aim to address two issues:
how effective is the NLP relaxation of the bilevel CV prob-
lem and how the results compare with alternative approaches.
We use the slightly modified version of the problem (1)
where we set −w = w and λ = 0. Randomly generated
data with various dimensions were used, with the number
of CV folds being T = 3. We set the complementarity
tol=10−6 throughout except in some cases like 15D data with
Laplacian noise, we used 10−4 for tol in order to increase
the robustness of the NLP solvers. We compare the bilevel
formulation with classical cross-validation methods on both
synthetic and real data problems. The following sections ex-
plain the experimental setup and the implementation details
of grid search.

A. Synthetic Data

Data sets of different dimensionalities, training sizes and
noise models were generated. The dimensionalities i.e., num-
ber of features considered were n = 5, 10, and 15, among
which, only nr = 3, 7, and 10 features respectively, were
relevant. One goal of the experiments is to determine how
effective the bound w is in identifying the irrelevant features.
We trained on sets of � = 15, 30, 60 and 90 points and tested
on a hold-out set of a further 1, 000 points. Two different
noise models were considered: Laplacian and Gaussian. For
each combination of feature size, training set size and noise
model, 5 trials were conducted and the test errors were aver-
aged. In this subsection, we assume the following notation:
U(a, b) represents the uniform distribution on [a, b], N(µ, σ)
represents the normal distribution with probability density
function 1√

2πσ
exp

(
− (x−µ)2

2σ2

)
, and L(µ, b) represents the

Laplacian distribution with the probability density function
1
2b exp

(
− |x−µ|

b

)
.

For each data set, the data, wreal and labels were generated
as follows. For each point, 20% of the features were drawn
from U(−1, 1), 20% were drawn from U(−2.5, 2.5), another
20% from U(−5, 5), and the last 40% from U(−3.75, 3.75).
Each feature of the regression hyperplane wreal was drawn
from U(−1, 1) and the smallest n − nr features were set
to 0 and considered irrelevant. Once the training data and
wreal were generated, the noise-free regression labels were
computed as yi = x′

iwreal. Note that these labels now depend
only on the relevant features. Depending on the chosen noise
model, noise drawn from N(0, 0.4σy) or L(0,

0.4σy√
2

) was
added to the labels, where σy is the standard deviation of
the noise-less training labels.

B. Real-world QSAR data

We examined four real-world regression cheminformatics
data sets: Aquasol, Blood/Brain Barrier (BBB), Cancer,
and Cholecystokinin (CCK), previously studied in [1]. The
goal is to create Quantitative Structure Activity Relationship
(QSAR) models to predict bioactivites typically using the
supplied descriptors as part of a drug design process. The

TABLE I

4 QSAR DATA SETS

Data set No of Obs. No of Vars. No of Vars.
Aquasol 197 640 149
B/B Barrier (BBB) 62 694 569
Cancer 46 769 362
Cholecystokinin (CCK) 66 626 350

data is scaled and preprocessed to reduce the dimensionality.
As was done in [1], we standardize the data at each di-
mension and eliminate the uninformative variables that have
values outside of ±4 standard deviations range. Next, we
do PCA(Principle Component Analysis), and use the top 25
principal components as descriptors. The FILTER solver on
NEOS cannot currently reliably solve our bilevel programs
resulting from data with more than 25 dimensions.

1926

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on May 10,2024 at 05:59:52 UTC from IEEE Xplore. Restrictions apply.

C. Grid Search

In classical cross-validation, parameter selection is per-
formed by discretizing the parameter space into a grid and
searching for the combination of parameters that minimizes
the validation error (which corresponds to the upper level
objective in the bilevel problem). This is typically followed
by a local search for fine-tuning the parameters. Typical
discretizations are logarithmic grids of base 2 or 10 on the
parameters. In the case of the classic SVR, cross validation is
simply a search on a two-dimensional grid of C and ε. This
approach, however, is not directly applicable to the current
problem formulation because, in addition to C and ε, we also
have to determine w, and this poses a significant combina-
torial problem. In the case of k-fold cross validation of n-
dimensional data, if each parameter takes d discrete values,
cross validation would involve solving roughly O(kdn+2)
problems, a number that grows to intractability very quickly.

To counter the combinatorial difficulty, we implement the
following heuristic procedures:
• Perform a two-dimensional grid search on the uncon-
strained (classic) SVR problem to determine C and ε. We
call this the unconstrained grid search (Unc.Grid). A coarse
grid with values of 0.1, 1 and 10 for C, and 0.01, 0.1 and 1
for ε was chosen.
• Perform an n-dimensional grid search to determine the
features of w using C and ε obtained from the previous
step. Only two distinct choices for each feature of w
are considered: 0, to test if the feature is redundant, and
some large value that would not impede the choice of
an appropriate feature weight, otherwise. Cross validation
under these settings would involve solving roughly O(3.2N)
problems; this number is already impractical and necessitates
the heuristic. We label this step the constrained grid search
(Con.Grid).
• We further restrict to a maximum of n = 10 features. For
data sets with more features, recursive feature elimination
[17] is used to rank the features and the 10 largest features
are chosen.

D. Post-processing

The outputs from the bilevel approach and grid search
yield the bound w and the parameters C and ε. With these,
we solve a constrained support vector problem on all the data
points:

minimize C

�∑
i=1

max(|x ′
iw − yi | − ε, 0) + 1

2 ‖w ‖2
2

subject to −w ≤ w ≤ w

to obtain the vector of model weights ŵ, which is used in
computing the generalization errors on the hold-out data:

MAD ≡ 1
1000

∑
(x,y) hold-out

|x ′ŵ − y |

and
MSE ≡ 1

1000

∑
(x,y) hold-out

(x ′ŵ − y)2.

VII. COMPUTATIONAL RESULTS: SYNTHETIC DATA

There are in total 12 sets of problems being solved; each
set corresponds to a given dimensionality (n = 5, 10, and
15) and a number of training points (� = 15, 30, 60, and 90).
For each set of problems, 4 methods (Unc.Grid, Con.Grid,
FILTER and SNOPT) were employed. For each method, 10
random instances of the same problem are solved, 5 with
Gaussian noise and 5 with Laplacian noise. The results of
these 10 runs are averaged and reported in Tables II, III and
IV. Each table shows the results for increasing sizes of the
training sets for a fixed dimensionality. We report Obj, the
bilevel objective value found (for Grid search, this is simply
the outer objective value produced by the folds); Time, the
computation time as reported by MATLAB for Grid Search
and by AMPL for the NLP results (note that the NEOS times
include the total time for submission, waiting, and solution);
MAD, mean absolute deviation on the 1000 point testing
set; and MSE, mean square error on the 1000 point testing
set. Standard deviations are provided for Obj and Time to
indicate variability. For MAD and MSE, the results in bold
refer to those that are significantly different than those of the
unconstrained grid as measured by a two-sided t-test with
significance of 0.1.

From an optimization perspective, the bilevel program-
ming methods significantly outperform the Grid approaches.
The objective values found by the bilevel methods are much
smaller than those found by the Grid methods. FILTER finds a
lower objective more often than SNOPT. Of the 120 problems
attempted, the objective value of FILTER was lower than
that of SNOPT in 67 of them. The coarse grid size and
heuristic used in the grid search cause it to find relatively
poor objective values.

The reported times provide a rough idea of the computa-
tional effort of each algorithm. As noted above, the compu-
tation times for the 2 NEOS solvers include transmission, and
waiting times as well as solve times. Also it is quite possible
to speed up the grid searches through smart restart and
parametric programming strategies. But clearly the Con.Grid
algorithm becomes impractical as the problem size grows.
The computation times of FILTER and SNOPT are both much
less than that of Con.Grid. So as expected, the bilevel
approach is much more computationally efficient than grid
search on the fully parameterized problems. The results are
amazingly efficient and quite acceptable when considering
that they include miscellaneous times for solution by NEOS.
It is reasonable to expect that a FILTER implementation on
a local machine (instead of over the internet) would require
significantly less computation times, which could bring it
even closer to the times of Unc.Grid.

Of course in machine learning, an important measure of
performance is generalization error. These problems were
generated with irrelevant variables; presumably, appropriate
choices of the symmetric box parameters in the bilevel
problem could improve generalization. (This topic is worth
further investigation but is beyond the scope of this paper.)
Compared to classic SVR optimized with Unconstrained

1927

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on May 10,2024 at 05:59:52 UTC from IEEE Xplore. Restrictions apply.

Grid, FILTER yields solutions that are significantly better on 5
of the 12 problems and never significantly worse. In contrast,
the Con.Grid only does significantly better than Unc.Grid on
one of the 12 sets of problems. Between two NLP solvers,
SNOPT is much slower than FILTER (though still much faster
than Con.Grid) and the generalization results for FILTER are
more consistent. Thus, for this set of experimented problems,
FILTER seems like the preferred approach.

TABLE II

RESULTS FOR 5D DATA WITH LAPLACIAN AND GAUSSIAN NOISE

Method Objective Time MAD MSE
15 pts
Unc. Grid 1.436 ± 0.419 5.2± 0.4 1.519 3.886
Con. Grid 1.268 ± 0.355 19.5± 1.4 1.505 3.854
Snopt (9) 1.335 ± 0.291 19.7± 3.1 1.450 3.475
Filter 1.180 ± 0.324 17.9± 2.6 1.374 3.167
30 pts
Unc. Grid 1.345 ± 0.411 5.2± 0.4 1.269 2.733
Con. Grid 1.283 ± 0.364 19.9± 1.2 1.244 2.633
Snopt 1.223 ± 0.388 25.9± 5.4 1.273 2.733
Filter 1.174 ± 0.318 17.2± 2.7 1.251 2.620
60 pts
Unc. Grid 1.203 ± 0.258 6.1± 0.3 1.149 2.284
Con. Grid 1.172 ± 0.250 23.0± 1.6 1.142 2.267
Snopt (9) 1.163 ± 0.244 42.5±15.8 1.160 2.284
Filter 1.144 ± 0.226 21.1± 5.0 1.169 2.341
90 pts
Unc. Grid 1.169 ± 0.260 7.0± 0.6 1.149 2.296
Con. Grid 1.149 ± 0.243 24.7± 1.7 1.133 2.239
Snopt (9) 1.168 ± 0.287 59.3±22.6 1.161 2.303
Filter 1.121 ± 0.229 28.8± 7.5 1.141 2.260

TABLE III

RESULTS FOR 10D DATA WITH LAPLACIAN AND GAUSSIAN NOISE

Method Objective Time MAD MSE
15 pts
Unc. Grid 1.896 ± 0.661 5.1± 0.6 1.812 5.336
Con. Grid 1.368 ± 0.437 604.3± 49.4 1.840 6.124
Snopt 0.807 ± 0.293 23.7± 1.7 1.806 5.737
Filter 0.803 ± 0.266 19.6± 3.8 1.605 4.129
30 pts
Unc. Grid 1.385 ± 0.323 5.2± 0.5 1.376 2.973
Con. Grid 1.220 ± 0.276 635.3± 59.1 1.391 3.044
Snopt 1.019 ± 0.254 42.5± 7.6 1.351 2.871
Filter 1.065 ± 0.265 18.7± 2.2 1.284 2.583
60 pts
Unc. Grid 1.200 ± 0.254 5.9± 0.5 1.208 2.324
Con. Grid 1.143 ± 0.245 709.2± 55.5 1.232 2.418
Snopt 1.070 ± 0.204 116.5± 70.1 1.202 2.284
Filter 1.099 ± 0.181 23.3± 4.4 1.213 2.328
90 pts
Unc. Grid 1.151 ± 0.195 7.2± 0.5 1.180 2.215
Con. Grid 1.108 ± 0.192 789.8± 51.7 1.163 2.154
Snopt (9) 1.073 ± 0.211 184.9±156.7 1.160 2.144
Filter 1.069 ± 0.182 39.6± 14.1 1.155 2.129

VIII. COMPUTATIONAL RESULTS: QSAR DATA

Table V shows the average results for the QSAR data, on
which we ran 12 experiments. After the data is preprocessed,
we randomly partition the data into 20 different training
and testing sets. The number of training points are 100, 60,
40, 60 for Aquasol, BBB, Cancer, CCK respectively. For

TABLE IV

RESULTS FOR 15D DATA WITH LAPLACIAN AND GAUSSIAN NOISE

Method Objective Time MAD MSE
15 pts
Unc. Grid 2.653 ± 0.576 6.1± 1.5 2.377 9.090
Con. Grid 1.790 ± 0.646 730.0±260.5 2.726 11.959
Snopt (9) 0.741 ± 0.262 37.4± 2.2 2.714 11.713
Filter 0.563 ± 0.205 23.7± 8.5 2.528 10.546
30 pts
Unc. Grid 1.995 ± 0.421 9.1± 9.3 1.726 4.871
Con. Grid 1.659 ± 0.312 735.8± 92.5 1.854 5.828
Snopt (8) 1.191 ± 0.173 62.6± 19.8 1.730 4.962
Filter 1.116 ± 0.163 28.7± 7.3 1.753 5.004
60 pts
Unc. Grid 1.613 ± 0.257 7.3± 1.3 1.584 4.147
Con. Grid 1.520 ± 0.265 793.5± 83.1 1.589 4.254
Snopt (8) 1.243 ± 0.101 232.4± 38.4 1.427 3.439
Filter 1.298 ± 0.238 52.6± 36.4 1.511 3.874
90 pts
Unc. Grid 1.553 ± 0.261 8.2± 0.5 1.445 3.553
Con. Grid 1.575 ± 0.421 866.2± 67.0 1.551 4.124
Snopt (7) 1.393 ± 0.236 477.1±144.6 1.456 3.527
Filter 1.333 ± 0.254 64.7± 12.9 1.407 3.398

each of the training sets, 5-fold cross validation is optimized
using bilevel programming. The results are averaged 20 runs.
We report results for Unc.Grid, , Unc.Grid, Con.Grid, and
FILTER. The parameters settings used in the grid searches
and FILTER and the statistics reported are the same as those
used for the synthetic data. For MAD and MSE, the bold
results are the ones which are significantly different from
those of unconstrained grid as measured by a two-sided t-
test with significance of 0.1.

TABLE V

AVERAGE RESULTS FOR 4 QSAR DATASETS

Method Objective Time MAD MSE
aquasol
Unc. Grid 0.700 ± 0.103 17.2± 0.6 0.669 0.992
Con. Grid 0.754 ± 0.095 1396.5± 10.5 0.855 1.634
Filter 0.532 ± 0.059 594.0±272.8 0.700 1.021
BBB
Unc. Grid 0.364 ± 0.048 13.4± 1.9 0.314 0.229
Con. Grid 0.463 ± 0.081 1285.7±155.3 0.733 0.856
Filter 0.174 ± 0.011 371.3±452.4 0.336 0.185
cancer
Unc. Grid 0.489 ± 0.032 10.3± 0.9 0.502 0.472
Con. Grid 0.477 ± 0.065 1035.3± 1.5 0.611 0.653
Filter 0.220 ± 0.024 129.0± 64.4 0.418 0.289
CCK
Unc. Grid 0.804 ± 0.060 12.0± 0.5 0.975 1.493
Con. Grid 0.777 ± 0.068 1173.6± 32.3 1.234 2.425
Filter 0.516 ± 0.036 217.3±101.9 1.006 1.534

Evaluating the problem from an optimization standpoint,
FILTER is the preferred approach since it always find so-
lutions with strictly lower objective values than either of
the grid method. The difficulty of the underlying bilevel
optimization problem is underscored by the fact that the
greedy Con.Grid search in Section VI.C sometimes fails to
find a better solution than the unconstrained grid search. The
constrained search drops important variables that cause it to
have bad generalization.

In terms of test set error, FILTER significantly outperforms

1928

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on May 10,2024 at 05:59:52 UTC from IEEE Xplore. Restrictions apply.

Unc.Grid on the cancer data and does as well on the
remaining three datasets. Thus the results suggest that bilevel
programming approach is resistant to overfitting and can lead
to significantly improved results on some but not all data sets.
As expected, the computational times for FILTER are between
those of Unc.Grid and Con.Grid.

IX. DISCUSSION

Cross validation is an optimization problem of some sort
that aims to identify the hyper-parameters of the model
such that a generalization error is minimized. Grid search
tackles this problem by discretizing the parameter space and
searching in a small finite set. The proposed NLP formulation
relaxes the problem by, among other things, introducing a
tolerance in the training step, thus allowing an enlarged
parameter space to be searched more effectively.

Our preliminary computational results indicate that general
purpose SQP solvers can tractably find high-quality solutions
that generalize well. The computation times of the FILTER

solver are especially impressive considering the fact that they
are obtained via internet connections and shared resources.
Generalization results on random data show that the NLP
methods yield comparable if not better results than current
methods. The computational results presented here are very
preliminary and additional testing on real and synthetic
problems is in progress.

From a machine-learning perspective, the novel bilevel
programming opens up many possibilities. We can extend
the approach to bilevel cross validation or bootstrapping
combined with any of the widely used convex optimization
formulations for a wide variety of tasks including classifi-
cation, regression, novelty detection, and multitask learning.
The ability to optimize a large number of parameters allows
one to consider new forms of models and regularization. Here
we have tested two types: addition of box constraints and a
relaxation of exact cross validation. We can easily envision
the treatment of other additions such as a term to reduce the
variance in the weights across the folds and variants of the
basic model.

From an optimization perspective, the novel formulation
introduces many challenges but offers great promises. The
improvement of the optimization methods for solving the
bilevel machine learning problems is presently under inves-
tigation. Future results in this area will be reported elsewhere.

ACKNOWLEDGMENT

This work was supported in part by the Office of Naval
Research under grant no. N00014-06-1-0014. The authors are
grateful to Professor Stan Uryasev for sharing his suggestion
of a bounded-variable approach to regression.

REFERENCES

[1] A. DEMIRIZ, K. BENNETT, C. BRENMAN, AND M. EM-
BRECHTS. Support Vector Regression Methods in Cheminfor-
matics. Computer Science and Statistics 33 (2001) available at
http://www.galaxy.gmu.edu/interface/I01/I2001HTML.

[2] J. BI, K. BENNETT, M. EMBRECHTS, C. BRENEMAN, AND M.
SONG. Dimensionality reduction via sparse support vector machines.
Journal on Machine Learning Research 3 (2003) 1229-1243.

[3] J. BRACKEN AND J. MCGILL. Mathematical programs with opti-
mization problems in the constraints. Operations Research 21 (1973)
37-44.

[4] R. CARUANA. Multitask learning. Machine Learning 28 (1997) 41–
75.

[5] C. CORTES AND V. VAPNIK. Support-vector networks. Machine
Learning 20 (1995) 273–297.

[6] O. CHAPELLE, V. VAPNIK, O. BOUSQUET, AND S. MUKHERJEE.
Choosing multiple parameters for support vector machines. Machine
Learning 46 (2002) 131–159.

[7] S. DEMPE. Foundations of Bilevel Programming. Kluwer Academic
Publishers (Dordrecht 2002).

[8] S. DEMPE. Annotated bibliography on bilevel programming and
mathematical programs with equilibrium constraints. Optimization 52
(2003) 333–359.

[9] K. DUAN, S. KEERTHI, AND A. POO. Evaluation of simple perfor-
mance measures for tuning SVM hyperparameters. Neurocomputing
51 (2003) 41–59.

[10] T. EVGENIOU AND M. PONTIL. Regularized multi–task learning. In
Proceedings of the 2004 ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2004) pp. 109–117.

[11] F. FACCHINEI AND J.S. PANG. Finite-Dimensional Variational In-
equalities and Complementarity Problems, Springer-Verlag (New
York 2003).

[12] R. FLETCHER AND S. LEYFFER. Nonlinear programming without a
penalty function. Mathematical Programming 91 (2002) 239-270.

[13] R. FLETCHER AND S. LEYFFER. User manual for FilterSQP. Depart-
ment of Mathematics, University of Dundee (Updated March 1999)
[http://www-unix.mcs.anl.gov/leyffer/papers/SQP manual.pdf].

[14] P.E. GILL, W. MURRAY AND M.A. SAUNDERS. User’s guide for
SNOPT Version 6: A Fortran package for large-scale nonlinear pro-
gramming, Systems Optimization Laboratory, Stanford University
(December 2002) [http://www.cam.ucsd.edu/ peg/papers/sndoc6.pdf].

[15] G. GOLUB, M. HEATH, AND G. WAHBA. Generalised cross - valida-
tion as a method for choosing a good ridge parameter, Technometrics
21 (1979) 215–223.

[16] I. GUYON, J. WESTON, S. BARNHILL, AND V. VAPNIK. Gene
selection for cancer classification using support vector machines.
Machine Learning 46 (2002) 389–422.

[17] I. GUYON AND A. ELISSEEFF. An introduction to variable and
feature selection. Journal of Machine Learning Research 3 (2003)
1157–1182.

[18] T. HASTIE AND S. ROSSETT. The entire regularization path for the
support vector machine. Journal of Machine Learning Research 5
(2004) 1391-1415.

[19] G. LANCKRIET, N. CRISTIANINI, P. BARTLETT, L. EL GHAOUI, M.
JORDAN. Learning the kernel matrix with semidefinite programming.
Journal of Maching Learning Research 5 (2004) 27–72.

[20] Z.Q. LUO, J.S. PANG, AND D. RALPH. Mathematical Programs With
Equilibrium Constraints, Cambridge University Press, Cambridge,
England (1996).

[21] M. MOMMA AND K. BENNETT. A pattern search method for model
selection of support vector regression. In Proceedings of the Second
SIAM International Conference on Data Mining. R. Grossman, J. Han,
V. Kumar, H. Mannila, and R. Motwani, Editors, SIAM Publications
(2002).

[22] C. ONG, A. SMOLA, R. WILLIAMSON. Learning the kernel with
hyperkernels. Journal of Machine Learning Research 6 (2005) 1043–
1071.

[23] J. OUTRATA, M. KOCVARA, AND J. ZOWE. Nonsmooth Approach
to Optimization Problems with Equilibrium Constraints: Theory, Ap-
plications and Numerical Results. Kluwer Academic Publishers (Dor-
drecht 1998).

[24] J. SHAWE-TAYLOR AND N. CRISTIANINI. Kernel Methods for Pat-
tern Analysis. Cambridge University Press (Cambridge 2004).

[25] B. SCHÖLKOPF, R. WILLIAMSON, A. SMOLA, J. SHAWE-TAYLOR,
AND J. PLATT. Support vector method for novelty detection. Ad-
vances in Neural Information Processing Systems 12 (2000) 582–588.

[26] V.N. VAPNIK. The Nature of Statistical Learning Theory. Second
Edition. Springer-Verlag (New York 2000).

1929

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on May 10,2024 at 05:59:52 UTC from IEEE Xplore. Restrictions apply.

