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Support vector machines and related classification models require the solution of convex optimization
problems that have one or more regularization hyper-parameters. Typically, the hyper-parameters are
selected to minimize the cross-validated estimates of the out-of-sample classification error of the model.
This cross-validation optimization problem can be formulated as a bilevel program in which the outer-level
objective minimizes the average number of misclassified points across the cross-validation folds, subject
to inner-level constraints such that the classification functions for each fold are (exactly or nearly) optimal
for the selected hyper-parameters. Feature selection is included in the bilevel program in the form of bound
constraints in the weights. The resulting bilevel problem is converted to a mathematical program with
linear equilibrium constraints, which is solved using state-of-the-art optimization methods. This approach
is significantly more versatile than commonly used grid search procedures, enabling, in particular, the use
of models with many hyper-parameters. Numerical results demonstrate the practicality of this approach
for model selection in machine learning.

Keywords: support vector classification; cross-validation; bilevel programming; model selection; feature
selection

1. Introduction

Support vector machines (SVM) [6,33] are one of the most widely used methods for classification.
The underlying quadratic programming problem is convex (thus, is generally not difficult to
deal with, both theoretically and computationally), but typically it contains hyper-parameters
that must be selected by the users. Despite many interesting attempts to use bounds or other
techniques [5,9,21], the most widely accepted and commonly used method for selecting these
hyper-parameters is still based on minimizing cross-validated estimates of the classification errors.
For example, one might define a grid over the hyper-parameters of interest and then perform
10-fold cross validation for each of the grid values. Since the size of the grid grows exponentially
with the number of hyper-parameters, grid search becomes prohibitively expensive for a large
number of parameters. In this work, we use bilevel programming to identify hyper-parameters for
classification problems.
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The work nontrivially extends our recent work on applying the methodology of bilevel pro-
gramming to parameter identification problems in machine learning. The motivation and benefits
of the bilevel approach are explained in our previous paper [3], where we have discussed the
application to constrained regression within the framework of cross validation. In essence, unlike
many traditional grid search methods used in machine learning that are severely restricted by
the number of hyper-parameters to be searched, the bilevel approach enables the identifica-
tion of many such parameters all at once by way of the state-of-the-art optimization methods
and their softwares (such as those publicly available on the NEOS servers). Another impor-
tant advantage of the bilevel approach is its modelling versatility in handling multiple machine
learning goals simultaneously and efficiently; these include optimal choice of model parame-
ters [5,19], feature selection for dimension reduction [4], inexact cross validation, kernelization
to handle nonlinear data sets [31], and variance control for fold consistency through multi-
tasking.

Solution path methods [21,35] also tackle the selection of regularization parameters as a
continuous optimization problem using parametric linear/quadratic programming, which nec-
essarily restricts the selection to one single parameter only. These methods solve the problem
of picking the best parameter using one training set and one testing set very efficiently. One
paper used this approach to optimize parameters [34] by combining the solution paths of the
two paths for each of the two parameters. Solution path approaches are a special case of the
bilevel approach, but the bilevel approach is far more general in that it can be applied to many
parameters and alternative measures of generalization, based on many solutions such as cross
validation.

From the optimization point of view, bilevel programs resulting from these applications belong
to the general class of mathematical programs with equilibrium constraints (MPECs), [25], for
which there are extensive advances in theory, algorithms, and software in recent years. Some
selected references focusing on algorithm developments and analysis include [1,2,7,8,10,14,16–
18,22,27,29,30].

We focus on the bilevel binary classification problem where the main task is to classify
data into two groups according to a linear model using a classical support-vector (SV) clas-
sifier [6]. The hyper-parameters are selected to minimize the T -fold cross-validated estimate
of the out-of-sample misclassification error. Each fold of training defines an inner-level con-
vex quadratic programme (QP) with parameters constrained by some bounds that are part of
the overall variables to be optimized; such bounds provide a mechanism for feature selection
whereby those features corresponding to small bounds in the solution of the bilevel problem will
be deemed insignificant. The outer-level problem minimizes the T -fold average classification error
based on the optimal solutions of the inner-level QPs for all possible hyper-parameters. Using
the approach in [26], we add inner-level linear programmes (LPs) to compute the number of
misclassified test points for each fold. In principle, the objective functions in the inner-level
classification optimization problems could be rather general; the only restriction we impose
is their convexity, so that the only nonconvexity generated by the inner-level problems in the
MPEC is essentially the complementarity slackness in the optimality conditions of the inner-level
problems.

The organization of the paper is as follows. In Section 2, we present the mathematical formu-
lation of the bilevel cross-validation classification model and show how it can be converted to an
instance of an MPEC. In Section 3, we illustrate the power of the formulations to address varia-
tions of the classification problems. In Section 4, we describe grid search and present a relaxed
nonlinear programming reformulation of the MPEC called inexact cross validation. In Section 5,
we describe the experimental setup, the data sets used, and present some computational results
comparing the grid search and bilevel cross-validation methods. We conclude the paper with some
final remarks in Section 6.



Optimization Methods & Software 477

2. Model formulation

We first say a few words about our notation. Let � denote a given finite set of � = |�| labelled data
points, {(xi , yi)}�i=1 ⊂ R

n+1. Since we are interested in the binary classification case, the labels yi

are ±1. Let the set of indices for the points in � be N = {1, . . . , �}. For T -fold cross-validation, �
is partitioned into T pairwise disjoint subsets, �t , called the validation sets. The sets �t = � \ �t

are the training sets within each fold. The corresponding index sets for the validation and training
sets are Nt and N t , respectively. The hyperplane trained within the t th fold using the training
set �t is identified by the pair (wt , bt ) ∈ R

n+1. For compactness of notation, the vectors wt are
collected, column-wise, into the matrix W ∈ R

n×T, and the scalars bt into the vector b ∈ R
T.

A vector of ones of arbitrary dimension is denoted by 1. Given two vectors, r and s ∈ R
n, the

complementarity condition r ⊥ s means r ′s = 0, where the prime ′ denotes the transpose; and r�

denotes the step function applied to each component of the vector r as defined in Equation (7).
The well-known SV classification problem depends on a nonnegative regularization parameter,

λ, which is selected through cross-validation based on the average misclassification error measured
on the out-of-sample data, i.e. the validation sets. Specifically, the basic bilevel model for SV
classification is formulated as follows:

minimize
w,b,λ,W

�(W, b)

subject to λlb ≤ λ ≤ λub, wlb ≤ w ≤ wub, (1)

and for t = 1, . . . , T ,

(wt , bt ) ∈ argmin
−w ≤ w ≤ w

b∈R

⎧⎨⎩λ

2
‖ w ‖2

2 +
∑
j∈N t

max
(
1 − yj (x ′

j W − b), 0
)⎫⎬⎭ . (2)

Problem (1) is called the outer-level problem and subproblems (2) are called the inner-level
problems. The outer-level objective, �(W, b), is some measure of validation accuracy over all
the folds, typically the average number of misclassifications. There are T inner-level subproblems,
one for each fold in T -fold cross-validation. The argmin is the last constraint in (1) and denotes
the set of all optimal solutions to the T convex optimization problems (2). Each t th subproblem is
simply a classical SV classification problem applied to the corresponding training set, �t , along
with the additional box constraint of the form −w ≤ w ≤ w, where w is a variable in the overall
bilevel optimization; in turn, w is restricted to given bounds wub ≥ wlb ≥ 0.

The symmetric box constraint is included for the purposes of wrapper-type feature selection and
regularization. In addition, the box constraint was selected to illustrate that the bilevel approach
can successfully optimize many hyper-parameters. Note that there is one box constraint parameter
for every descriptor. Consider a particular feature that is expected to be redundant or irrelevant,
i.e. that feature does not contribute much to the final classifier. Then, the corresponding weight in
w would be small or zero, which, in turn, constrains the corresponding weights in each wt , thereby
effectively controlling their capacity and potentially increasing generalization performance. The
bilevel program will effectively be a wrapper feature selection method. Wrapper methods search
for subsets of feature that optimize estimates of the testing generalization error for models trained
with those features [24]. Sparse 1-norm regularization can also be used for feature selection, but
the subset features in each of the CV folds illustrate great variability [4]. The box constraints will
ensure that a consistent subset of the features will be used across all the folds. If w can be picked
effectively, the box constrained SVM, (2), could represent a fundamentally new way to perform
feature selection. Thus, the box constraints are embedded in the bilevel cross-validation scheme
and w becomes a vector of hyper-parameters in the problem.
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Note that we use λ/2‖w‖2
2 for regularization rather than the typical term C

∑
j∈N t

max(1 −
yj (x ′

j w − b), 0), where C is the parameter to be chosen. This is due to our empirical observation
that the former is more numerically robust than the latter within the bilevel setting. Clearly, the
two modes of regularization are equivalent for each inner-level problem with C = 1/λ, provided
that both parameters are positive. Note that the bilevel program selects the hyperparameters. The
final classifier can be constructed by optimizing a single instance of the lower-level problem using
the optimal hyper-parameters and all of the training data. In this case, the final λ should be scaled
by T/(T − 1) to account for the larger training set size.

Similar to w, the parameter λ is subject to the given bounds λub ≥ λlb > 0. This is done for
three reasons: first, to facilitate direct comparison with the grid search-based cross-validation (see
Section 4.2); second, to improve the stability and to speed up the convergence of a general purpose
nonlinear programme (NLP) solver; and third, to ensure the positivity of the parameters λ and w:
such that the bilevel approach yields, in case of the former, a nonzero regularization parameter,
in case of the latter, a nontrivial box constraint for feature selection.

2.1. The inner-level problems

As mentioned above, there are T inner-level problems that model the training of classifiers within
each fold. Consider the inner-level problem corresponding to the t th fold, i.e. the t th training set,
�t , indexed by N t is used. With λ and w fixed in this subproblem, we introduce slack variables, ξ t ,
in Equation (2) to reformulate the max function using standard linear programming techniques.
This gives the box-constrained SV classifier (BoxSVC) which is nearly identical to the classical
SVM for classification, except that it has the additional box constraint for regularization and
feature selection:

minimize
wt , bt , ξ

t

λ

2
‖wt‖2

2 +
∑
j∈N t

ξ t
j

subject to − w ≤ wt ≤ w, (3){
yj (x ′

j wt − bt ) ≥ 1 − ξ t
j

ξ t
j ≥ 0

}
∀j ∈ N t .

The BoxSVC is a convex QP in the variables wt , bt , and {ξ t
j }j∈N t

. Let γ t,− and γ t,+ be the
multipliers of the lower and upper bound constraints −w ≤ wt ≤ w, respectively, and αt

j be the
multiplier for the hyperplane constraint, yj (x ′

j wt − bt ) ≥ 1 − ξ t
j . Using these multipliers, we can

write down the primal and dual feasibility and complementarity slackness conditions of Equation
(3) compactly as follows:

0 ≤ αt
j ⊥ yj (x ′

j wt − bt ) − 1 + ξ t
j ≥ 0

0 ≤ ξ t
j ⊥ 1 − αt

j ≥ 0

}
∀ j ∈ N t ,

0 ≤ γ t,+ ⊥ w − wt ≥ 0, (4)

0 ≤ γ t,− ⊥ w + wt ≥ 0,

which together with the following first-order conditions,

λ wt −
∑
j∈N t

yjα
t
j xj + γ t,+ − γ t,− = 0,

∑
j∈N t

yjα
t
j = 0, (5)
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constitute the Karush–Kuhn–Tucker (KKT) optimality conditions to Equation (3). The KKT
conditions are necessary and sufficient conditions for the optimal solution of Equation (3). Thus
the inner-level optimization problems (2) can be replaced with the system of Equations (4) and (5).

2.2. The outer-level optimization

The inner-level problems solve T box-constrained SV classification problems on the training sets
to yield T hyperplanes, (wt , bt ), one for each fold. The outer-level objective function is a measure
of generalization error based on the T out-of-sample validation sets, which we minimize. The
measure used here is the classical cross-validation error for classification, the average number
of points misclassified. The outer-level objective that achieves this can be written using the step
function, ()�, as

�(W, b) = 1

T

T∑
t=1

1

| Nt |
∑
i∈Nt

[−yi(x ′
i w

t − bt )
]
�
. (6)

Note that in the inner summation, �t , the t th validation set, indexed by Nt , is used. The inner
summation averages the number of misclassifications within each fold, while the outer summation
averages the averaged misclassification error over the folds. The step function used in Equation (6)
can be defined, componentwise, for a vector, r, as

(r�)i =
{

1, if ri > 0,

0, if ri ≤ 0.
(7)

It is clear that ()� is discontinuous and that Equation (6) cannot be used directly in the bilevel
setting. The step function, however, can be characterized as the solution to an LP as demonstrated
in [26], i.e.

r� = arg min
ζ

{−ζ ′r : 0 ≤ ζ ≤ 1}. (8)

Thus, we have to solve T LPs of the form (9) to determine which validation points, xi ∈ Nt ,
are misclassified within the t th fold, i.e. when the sign of yi(x ′

i w
t − bt ) is negative. These LPs

are inserted as inner-level problems into the bilevel setting in order to recast the discontinuous
outer-level objective into a continuous one. They yield ζ t = [−yi(x ′

i w
t − bt )

]
�
, with ζ t

i = 1 if
the point xi is misclassified and 0 otherwise. Finally, it should be noted that if xi lies on the
hyperplane, (wt , bt ), then we will have 0 < ζ t

i < 1.

ζ t ∈ arg min
0 ≤ζ ≤1

⎧⎨⎩∑
i∈Nt

ζiyi

(
x ′

i W
t − bt

)⎫⎬⎭. (9)

Returning to the general case, we introduce additional multipliers, z, for the constraint ζ ≤ 1.
Consequently, any solution to Equation (8) should satisfy the following linear complementarity
conditions:

0 ≤ ζ ⊥ − r + z ≥ 0,

0 ≤ z ⊥ 1 − ζ ≥ 0.
(10)

We noted in Section 2.1 that the inner-level problems, Equation (2), can be replaced with the
first-order KKT conditions, (4)–(5). Furthermore, the inner-level step function LPs, Equation (9),
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can be rewritten using the linear complementarity conditions, Equation (10). The overall two-level
classification problem becomes

min
1

T

T∑
t=1

1

| Nt |
∑
i∈Nt

ζ t
i

Subject to λ lb ≤ λ ≤ λub, w lb ≤ w ≤ w ub ,

and for t = 1 . . . T ,

0 ≤ ζ t
i ⊥ yi

(
x ′

i w
t − bt

) + zt
i ≥ 0

0 ≤ zt
i ⊥ 1 − ζ t

i ≥ 0

⎫⎬⎭ ∀ i ∈ Nt ,

0 ≤ αt
j ⊥ yj (x ′

j wt − bt ) − 1 + ξ t
j ≥ 0

0 ≤ ξ t
j ⊥ 1 − αt

j ≥ 0

⎫⎬⎭ ∀ j ∈ N t ,

0 ≤ γ t,+ ⊥ w − wt ≥ 0,

0 ≤ γ t,− ⊥ w + wt ≥ 0,

λ wt −
∑
j∈N t

yjα
t
j xj + γ t,+ − γ t,− = 0,

∑
j∈N t

yjα
t
j = 0,

(11)

which is an instance of an MPEC. It is a nonconvex optimization problem because of the com-
plementarity constraints. We refer to this problem as the bilevel misclassification minimization
(BilevelMM) problem.

3. Bilevel classification variations

There are many possible variations of the bilevel classification problem. To illustrate the versatility
of the bilevel approach, we discuss the outer-level objective, feature selection strategies, and kernel
selection.

3.1. Outer-level objective

The outer-level objective, Equation (6), is not the only criterion that can be used to estimate the
generalization error within the cross-validation scheme. An intuitively appealing alternative is
to use the same misclassification measure for both the outer- and inner-level problems. Thus,
we can also use the hinge loss, which minimizes the distance of each misclassified validation
point from the classifier margin trained within each fold. The hinge loss is an upper bound on the
misclassification objective:

�(W, b) = 1

T

T∑
t=1

1

| Nt |
∑
i∈Nt

max
(
1 − yi(x ′

i w
t − bt ), 0

)
. (12)

The resulting MPEC is simpler, because the lower-level problems, Equation (9), introduced to
calculate the average number of points misclassified are not required. One might expect that this
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would lead to faster solutions by the FILTER solver on NEOS. But as we see later, this is not the
case. When the hinge loss is used in the outer-level, the MPEC becomes

min
1

T

T∑
t=1

1

| Nt |
∑
i∈Nt

zt
i

Subject to λ lb ≤ λ ≤ λub, w lb ≤ w ≤ w ub ,

and for t = 1 . . . T ,

zt
i ≥ 1 − yi

(
x ′

i w
t − bt

)
zt
i ≥ 0

⎫⎬⎭ ∀ i ∈ Nt ,

0 ≤ αt
j ⊥ yj (x ′

j wt − bt ) − 1 + ξ t
j ≥ 0

0 ≤ ξ t
j ⊥ 1 − αt

j ≥ 0

⎫⎬⎭ ∀ j ∈ N t ,

0 ≤ γ t,+ ⊥ w − wt ≥ 0,

0 ≤ γ t,− ⊥ w + wt ≥ 0,

λ wt −
∑
j∈N t

yjα
t
j xj + γ t,+ − γ t,− = 0,

∑
j∈N t

yjα
t
j = 0.

(13)

We refer to this problem as bilevel hinge loss (BilevelHL) problem.

3.2. Enhanced feature selection

The introduction of W into the SVM represents a novel and powerful way to perform feature
selection and to force w to be sparse. A simple way to enhance this would be to use either an
L1-norm regularization or a combination of L1 and L2 norms (elastic nets [32,36]) in the inner
level. These variations would only require straightforward modifications to the model. However,
we will focus on yet another variation, one that attempts to incorporate prior knowledge into
feature selection.

Suppose, for n-dimensional data, it was known a priori that at most nmax features are sufficient.
This can be incorporated into the model by introducing the constraint ‖w‖0 ≤ nmax into the outer-
level problem, where ‖ · ‖0 is called the zero-norm or the cardinality of a vector, i.e. it counts
the number of nonzero elements in its argument. This constraint forces the number of allowable
features to be bounded above by some user-defined maximum and causes the features with the
smallest weights to be dropped from the model. The constraint can be rewritten using the ()�
function, since we have ‖w‖0 = 1′w�. If the conditions (10) are used to rewrite the constraint, the
following inequality and complementarity constraints are added to the outer-level of Equation (11):

n∑
m=1

δm ≤ nmax,

0 ≤ δ ⊥ −w + d ≥ 0,

0 ≤ d ⊥ 1 − δ ≥ 0.

(14)
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In the constraints above, δ counts the selected features of w, and d is the multiplier to the constraint
1 − δ ≥ 0.

3.3. Kernel bilevel cross-validation

A fundamental limitation of Equation (11) is the fact that it is linear and cannot handle nonlinear
data sets effectively. One of the most powerful features of SVMs is their ability to deal with
high-dimensional, highly nonlinear data using the kernel trick. We now demonstrate how a linear
bilevel program can be kernelized.

An important feature of the formulation (11) is that it is capable of feature selection. However,
it is clear from the first-order conditions, Equation (5), that wt depends not only on the training
data, but also on the multipliers, γ t,±, of the box constraints. These multipliers are an impediment
to expressing wt solely as a linear combination of the training data, a fundamental assumption
that is at the heart of all kernel methods through the representation theorem. As a consequence,
temporarily setting aside the concerns of feature selection, we drop the box constraints, set γ t,±
to zero, and work with the classical SV classifier. The new first order conditions are

λ wt =
∑
j∈N t

yjα
t
j xj , ∀ t = 1, . . . , T . (15)

Now, we can eliminate wt within each fold of Equation (11) using Equation (15). The resulting
linear inner product terms, x′

ixk , can be replaced by a bilinear, symmetric, positive semi-definite
kernel function, κ(xi , xk). The final bilevel cross-validation for kernel SV classification model is
shown below with C = 1/λ:

min
1

T

T∑
t=1

1

| Nt |
∑
i∈Nt

ζ t
i

subject to C ≥ 0,

and for t = 1 . . . T ,

0 ≤ ζ t
i ⊥ C yi

⎡⎣ ∑
k∈N t

ykα
t
kκ(xi , xk) − bt

⎤⎦ + zt
i ≥ 0

0 ≤ zt
i ⊥ 1 − ζ t

i ≥ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ∀i ∈ Nt ,

0 ≤ αt
j ⊥ C yj

⎡⎣ ∑
k∈N t

ykα
t
kκ(xj , xk) − bt

⎤⎦ − 1 + ξ t
j ≥ 0

0 ≤ ξ t
j ⊥ 1 − αt

j ≥ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ∀j ∈ N t ,

∑
j∈N t

yjα
t
j = 0.

(16)

There are two new challenges raised by the kernel model. First, the kernel contains parameters
that must be determined. Second, as formulated above, this model is not capable of performing
feature selection. These challenges can be overcome by considering a parametrized kernel of the
form κ(xi , xk; p), where p ≥ 0 is the feature scaling vector whose role is similar to w in the linear
model; in particular, if pi = 0, then the ith feature is eliminated. For example, the parametrized



Optimization Methods & Software 483

Gaussian kernel can be written down as below:

κ(xi , xk; p) = exp
(−(xi − xk)

′diag(p) (xi − xk)
)
, (17)

where diag(p) is the diagonal matrix with diagonal entries given by the components of p. Other
kernels can be similarly extended and used in the model. Consequently, the components of this
new vector of kernel parameters, p, become variables in the overall bilevel kernel model. The
introduction of the parametrized kernel is a very powerful extension to the linear model (11) as it
is capable of choosing the regularization parameters, and kernel parameters and features, leaving
only the choice of kernel to the user. Additional research is needed to develop effective solvers
for the bilevel kernel models. Our preliminary computational investigation found that FILTER runs
through NEOS could only successfully solve small problems. Thus, the results and discussion in
this paper are limited to the linear case.

4. Inexact and discretized cross-validation

The bilevel formulations described in the previous section perform model selection by searching
a continuous parameter space. In contrast, classical cross-validation approximately solves the
bilevel problem by searching a discretized version of the same parameter space. In the bilevel
approach also performs inexact cross-validation, by solving a relaxed version of the bilevel MPEC.
Pertinent details of both these methods are described below.

4.1. Inexact cross-validation

There exist several approaches that can deal with the complementarity constraints in MPECs
such as Equation (11). Some of these are: penalty methods that allow for the violation of the
complementarity constraints, but penalize them through a penalty term in the outer-level objective;
smoothing methods, that construct smooth approximations of the complementarity constraints;
and relaxation methods that relax the complementarity constraints while retaining the convex
constraints. We use the relaxation approach to solve Equation (11).

This method of solving an MPEC simply involves replacing all instances of the ‘hard’
complementarity constraints of the form

0 ≤ c ⊥ d ≥ 0 ≡ c ≥ 0, d ≥ 0, c ′d = 0,

with relaxed, ‘soft’ complementarity constraints of the form

0 ≤ c ⊥tol d ≥ 0 ≡ c ≥ 0, d ≥ 0, c ′d ≤ tol,

where tol > 0 is some prescribed tolerance of the complementarity conditions. This leads us to
the bilevel SVC problem with inexact cross-validation, which is the same as Equation (11) except
that all the ⊥ conditions are replaced by ⊥tol.

Even though this is still a nonconvex optimization problem, it represents a novel approach in
the context of machine learning. The tolerance parameter, tol, which is set a priori, determines the
accuracy of the relaxation and performs inexact cross-validation. That means: an appropriately
chosen tol can enlarge the search region of the model at the expense of a tolerable decrease in
model accuracy. This is similar to the well-known machine-learning concept of ‘early stopping’
in that the quality of the out-of-sample errors – measured in the outer-level objective of the bilevel
program – is not affected significantly by the small perturbations to a computed solution, in turn
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facilitating an early termination of cross-validation. This approach also has the advantage of easing
the difficulty of dealing with the disjunctive nature of the complementarity constraints. The exact
same approach can also be applied to the hinge loss MPEC, (13).

4.2. Grid search

Classical cross-validation is performed by discretizing the parameter space into a grid and search-
ing for the combination of parameters that minimizes the out-of-sample error, also referred to
as validation error. This corresponds to the outer-level objective of the bilevel programme (11).
Typically, coarse logarithmic parameter grids of base 2 or 10 are used. Once a locally optimal
grid point with the smallest validation error has been found, it may be refined or fine-tuned by a
local search.

In the case of SV classification, the only hyper-parameter is the regularization constant, λ.
However, the bilevel model (11) uses the box-constrained SVM for feature selection; grid search
has to determine w as well. It is this search in the w-space that causes a serious combinatorial
difficulty for the grid approach. To see this, consider the case of T -fold cross-validation using
grid search, where λ and w are each allowed to take on d discrete values. Assuming the data
is n-dimensional, grid search would have to solve roughly O(T dn+1) problems. The resulting
combinatorial explosion makes grid search intractable for all but the smallest n. In this paper, to
counter this difficulty, we implement the following heuristic scheme:

• To determine λ: Perform a one-dimensional grid search using the classical SVC problem (with-
out the box constraint). The range [λlb, λub] is discretized into a coarse, base-10, logarithmic
grid. These grid points constitute the search space for this step, which we will call unconstrained
grid search. At each grid point, T SVC problems are solved on the training sets and the error
is measured on the validation sets. The grid point with the smallest average validation error, λ,
is ‘optimal’.

• To determine w: Perform an n-dimensional grid search to determine the relevant features of w
using the BoxSVC problem and λ obtained from the previous step. Only two distinct choices
for each feature are considered: 0, to test feature redundancy, and some large value that would
not affect the choice of an appropriate feature weight. In this setting, three-fold cross-validation
would involve solving about O(3 ∗ 2n) BoxSVC problems. We call this step the constrained
grid search.

• The number of problems in constrained grid search is already impractical necessitating a further
restriction of the relevant features to a maximum of n = 10. If a data set has more features, they
are ranked using recursive feature elimination (RFE) [20], and the 10 best features are chosen.

5. Numerical tests

We compare unconstrained and constrained grid search approaches with the bilevel approaches
(11) and (13) relaxed through inexact cross-validation. The bilevel programs were implemented
in AMPL and solved using FILTER [12,13,15], which is a general-purpose nonlinear programming
solver available on the NEOS server (www-neos.mcs.anl.gov). Unconstrained and constrained grid
were solved using MOSEK’s QD solver accessed through a MATLAB interface.

5.1. Experimental design

We used six real-world classification data sets, four of which are available via anonymous ftp
from the UCI repository for machine learning and two from the Star/Galaxy database at the
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University of Minnesota. The data sets were all standardized to zero norm and unit standard
deviation. Twenty instances of each data set were randomly generated and each instance was split
into a training set with �train points, which is used for cross-validation and a hold-out test set,
with �test points. The data descriptions are shown in Table 1. The hyper-parameters in the bilevel
programme were restricted as follows: λ ∈ [10−4, 104] and w ∈ [0, 1.5]. Grid search used the
exact same bounds but was further restricted to λ ∈ {10−4, 10−3, . . . , 103, 104} and w ∈ {0, 1.5}.
The complementarity tolerance was set to be tol = 10−6 in all runs except in the BilevelHL
problem on the dim data set, where the value of tol = 10−4 was used. These settings were used
to perform a three-fold cross-validation on each instance.

Using the cross-validated hyper-parameters λ̂ and ŵ obtained from the bilevel and the grid
search approaches, we implement a post-processing procedure to calculate the generalization
error on the hold-out data for each instance. Specifically, a constrained SVC problem is solved on
all the training data using (3/2)̂λ and ŵ giving the final classifier (ŵ , b̂) which is used to compute
the test (hold-out) error rate:

ERRORtest = 1

�test

∑
(x,y) test

1

2
| sign(ŵ′x − b̂) − y|.

Recall that the bilevel model uses a three-fold cross-validation and that each training fold con-
sists of two-thirds of the total training data. Consequently, the final regularization parameter,
λ̂, is rescaled by a factor of 3/2 because the final model, which is constructed in the post-
processing phase, uses all of the training data. For general T -fold cross-validation, as mentioned
before, this factor will be T/(T − 1), T > 1, assuming that each fold contains the same fraction
of data.

In addition, we also compute the cardinality of the final w returned by the different approaches
to determine the effectiveness of feature selection. For the bilevel approaches, the features in
w with weights less than

√
tol were considered irrelevant and set to zero, after which the test

error was computed. Various criteria are used to compare the bilevel approach with the grid
search approach: cross-validation error, test error, feature selection, and execution time. The
results, averaged over 20 instances for each data set, are presented in Table 2. Results which
are significantly different (using a paired t-test at 10% confidence) with respect to unconstrained
grid are shown in bold. The computational results in Table 2 all used T = 3 cross-validation
folds.

To study the effect of increasing the number of folds on cross-validation error and test error,
we report, in Figure 1, the results averaged over five instances of the pima data set. The results
clearly demonstrate that larger number of folds can be successfully solved, but computation time
does grow with the number of folds. The range of generalization values observed for different
numbers of folds is not large, so T = 3 represents a reasonable choice. The best choice of the
number of folds for a particular data set remains an open question.

Table 1. Descriptions of data sets used.

Data set �train �test n T

Pima Indians Diabetes Database 240 528 8 3
Wisconsin Breast Cancer Database 240 442 9 3
Cleveland Heart Disease Database 216 81 14 3
Johns Hopkins University Ionosphere Database 240 111 33 3
Star/Galaxy Bright Database 600 1862 14 3
Star/Galaxy Dim Database 900 3292 14 3
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Table 2. Computational results comparing grid search and bilevel approaches.

Data set Method CV error Test error ‖w‖0 Time (sec)

pima Unconstrained grid 23.10 ± 2.12 23.75 ± 0.94 8.0 12.3 ± 1.1
Constrained grid 21.04 ± 1.63 24.13 ± 1.13 4.5 434.9 ± 35.1
Bilevel (misclass min) 21.87 ± 2.25 23.90 ± 0.95 6.4 51.8 ± 23.0
Bilevel (hinge loss min) 44.04 ± 3.19 23.80 ± 1.14 5.4 156.5 ± 57.5

cancer Unconstrained grid 3.54 ± 1.14 3.61 ± 0.64 9.0 11.7 ± 0.4
Constrained grid 2.73 ± 0.88 4.42 ± 0.85 5.8 815.5 ± 29.7
Bilevel (misclass min) 3.13 ± 1.05 3.59 ± 0.79 8.2 19.9 ± 8.3
Bilevel (hinge loss min) 6.13 ± 2.22 3.76 ± 0.74 6.8 58.3 ± 33.6

heart Unconstrained grid 15.93 ± 2.02 16.05 ± 3.65 13.0 10.6 ± 0.8
Constrained grid 13.94 ± 1.69 16.85 ± 4.15 7.1 1388.7 ± 37.6
Bilevel (misclass min) 14.49 ± 1.47 16.73 ± 3.89 11.2 64.0 ± 20.5
Bilevel (hinge loss min) 28.89 ± 3.20 16.30 ± 3.29 8.8 217.1 ± 82.5

ionosphere Unconstrained grid 22.27 ± 2.45 23.06 ± 2.45 33.0 7.5 ± 0.6
Constrained grid 19.25 ± 2.07 22.34 ± 2.02 6.9 751.1 ± 3.0
Bilevel (misclass min) 19.16 ± 2.44 23.65 ± 2.99 20.2 423.0 ± 159.5
Bilevel (hinge loss min) 33.79 ± 2.79 22.79 ± 2.03 14.2 1248.8 ± 618.5

bright Unconstrained Grid 0.78 ± 0.34 0.74 ± 0.13 14.0 22.7 ± 0.2
Constrained Grid 0.51 ± 0.24 0.97 ± 0.33 6.7 3163.7 ± 11.5
Bilevel (misclass min) 0.62 ± 0.31 0.79 ± 0.14 11.2 110.9 ± 61.2
Bilevel (hinge loss min) 1.12 ± 0.58 0.75 ± 0.14 8.9 564.2 ± 335.7

dim Unconstrained grid 4.71 ± 0.55 4.96 ± 0.29 14.0 55.0 ± 5.1
Constrained grid 4.36 ± 0.51 5.21 ± 0.37 7.2 7643.5 ± 74.5
Bilevel (misclass min) 4.77 ± 0.64 5.51 ± 0.33 7.7 641.5 ± 344.1
Bilevel (hinge loss min) 9.54 ± 1.00 5.28 ± 0.36 5.7 1465.2 ± 552.9

Figure 1. Effect of increasing the number of folds on learning rate of classifiers for pima.
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5.2. Discussion

We first examine the performance of the BilevelMM programming approach with respect to
the grid search methods. The first conclusion that can be drawn, from computational efficiency
perspective, is that BilevelMM vastly outperforms the constrained grid search approach; the
execution times for the former are several orders of magnitude smaller than the latter. It should
be noted that the reported computation times for FILTER include transmission times as well as
solve times, and that the reported computation times for grid search are enhanced by the use
of smart restarting heuristics. However, despite the latter, it is clear that the constrained grid
search quickly becomes impractical as the problem size grows. This effect is clearly noticeable
in the computation times for the Star/Galaxy data sets, where the execution time is affected,
not only by the number of features, but also by the data set sizes, which contain hundreds of
training points. BilevelMM, on the other hand, is capable of cross-validating the dim data set,
with 900 training points, in around 10–11 minutes on average. This suggests that the scalability
of the bilevel approach could be improved significantly by exploiting the structure and sparsity
inherent in SVMs. Research is currently underway in this direction and findings will be reported
elsewhere.

With regard to generalization error, two interesting points emerge. First, the BilevelMM
approach consistently produces results that are comparable to, if not slightly better than the
grid search approaches, in spite of the fact that the cross-validation error is typically higher. This
can be attributed to the fact that the general-purpose NLP solvers tend to converge to accept-
able solutions, with no guarantee of global optimality. Second, the only exception is the dim
data set where the slight degradation in generalization performance can be imputed to numerical
difficulties experienced by the NLP solvers because of large dimensionality and large data set
size. Again, a specialized algorithm that could guarantee global optimality could produce better
generalization performance.

With regard to feature selection, it is clear that unconstrained grid performs nothing at all, while,
interestingly, constrained grid search uses less features than BilevelMM, albeit at the expense of
excessive computational times and poorer generalization. This can be attributed to the fact that
constrained grid is greedy, i.e. it analyses every combination of features to find an optimal set
and performs feature selection aggressively on data sets with more than 10 features as it drops
the remaining features using RFE. BilevelMM has no such heuristic or mechanism to drive the
number of selected features down. Despite this, it is clear that it does succeed in performing a
better trade-off between feature selection and generalization. See Section 3.2 for ideas that might
improve feature selection in the bilevel setting.

Next, we discuss the performance of the BilevelHL approach and compare it with BilevelMM.
The most striking difference is in the computation times of the two approaches, with BilevelHL,
quite unexpectedly, taking two to three times longer. We theorize that this is because BilevelMM
has many more stationary points (for an intuitive explanation of this curious property that is
endemic to misclassification minimization problems, see [26]) than BilevelHL and consequently,
a general-purpose NLP solver tends to converge to stationarity faster. However, BilevelHL is still
considerably faster than grid search; again, the only exception being the ionosphere data set.
It should be noted that the constrained grid search used only 10 features – after recursive feature
elimination was used to drop 23 of the 33 features – while BilevelHL solved the full problem
using all the features. If constrained grids were to use all 33 features, it would have to solve around
O(1011) BoxSVC problems.

In terms of generalization error, BilevelHL performs as well or better than BilevelMM and
never significantly worser than the unconstrained grid (except for the dim data set), despite the
fact that the CV errors of BilevelHL are uniformly higher. Recall that a complementarity tolerance
of 10−4 was used for the dim data set. This was to relax the problem further for the numerical
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stability of the NLP solver. This relaxation, however, leads to a slight degradation in the quality
of the solution.

Finally, BilevelHL tends to pick fewer features than BilevelMM, but still more than constrained
grid. This comparison between BilevelMM and BilevelHL indicates that the best choice of outer-
level objective is still an open question in need of further research.

6. Conclusions

We demonstrated how T -fold cross validation can be cast as a continuous bilevel program: inner-
level problems are introduced for each of the T -folds to compute classifiers on the training sets
and to calculate the misclassification errors on the training sets within each fold. Furthermore,
we introduced the box-constrained SVM which has a hyper-parameter for each feature to per-
form feature selection. The resulting bilevel program is converted to an MPEC, which is in turn
converted to a nonlinear programming problem through inexact cross-validation. The advantage
of the bilevel approach is that many hyper-parameters can be optimized simultaneously, unlike
prior grid search approaches that are practically limited to one or two parameters. Initial com-
putational results using FILTER through NEOS were very promising. High quality solutions were
found using few features using much less computation time than grid search approaches over the
same hyper-parameters.

This work represents a first proof of concept. We showed that cross validation through mini-
mization of different objectives such as averaged misclassification error and hinge loss could be
solved efficiently with large numbers of hyper-parameters. The resulting classifiers demonstrated
good generalization ability and were dependent on only a few features. The success of these two
different bilevel approaches suggest that other changes in the objective and regularization can
lead to further enhancement of performance for classification problems. Furthermore, the versa-
tility of the bilevel approach suggests that further variations could be developed to tackle other
challenges in machine learning such as missing data, semi-supervised learning, kernel learning,
and multi-task learning. Future theoretical and computational work is needed to investigate this
flexibility – that the bilevel approach has the ability to optimize large number of hyper-parameters
for many types of outer-level objectives.

A major outstanding research question is the development of efficient optimization algorithms
for the bilevel program. Our current work is limited to the use of an off-the-shelf NLP solver. A
recent linear time SVM algorithm can solve traditional SVM classification problems with millions
of data points [23] using advanced decomposition techniques that exploit the underlying structure
of the problem. Many other efficient and scalable methods for SVM abound and these meth-
ods should be compared with and incorporated into the bilevel approach [11,28]. Solution path
algorithms traverse the feasible regions for very limited bilevel problems. The hope is that by devel-
oping related special purpose solvers the scalability of the bilevel program can be achieved as well.
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