
On the Global Optimality of Model-Agnostic Meta-Learning:
Reinforcement Learning and Supervised Learning

Lingxiao Wang 1 Qi Cai 1 Zhuoyan Yang 2 Zhaoran Wang 1

Abstract
Model-agnostic meta-learning (MAML) formu-
lates meta-learning as a bilevel optimization prob-
lem, where the inner level solves each subtask
based on a shared prior, while the outer level
searches for the optimal shared prior by opti-
mizing its aggregated performance over all the
subtasks. Despite its empirical success, MAML
remains less understood in theory, especially in
terms of its global optimality, due to the noncon-
vexity of the meta-objective (the outer-level ob-
jective). To bridge such a gap between theory and
practice, we characterize the optimality gap of
the stationary points attained by MAML for both
reinforcement learning and supervised learning,
where the inner-level and outer-level problems
are solved via first-order optimization methods.
In particular, our characterization connects the
optimality gap of such stationary points with (i)
the functional geometry of inner-level objectives
and (ii) the representation power of function ap-
proximators, including linear models and neural
networks. To the best of our knowledge, our anal-
ysis establishes the global optimality of MAML
with nonconvex meta-objectives for the first time.
1

1. Introduction
Meta-learning aims to find a prior that efficiently adapts to
a new subtask based on past subtasks. One of the most pop-
ular meta-learning methods, namely model-agnostic meta-
learning (MAML) (Finn et al., 2017a), is based on bilevel op-
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timization, where the inner level solves each subtask based
on a shared prior, while the outer level optimizes the aggre-
gated performance of the shared prior over all the subtasks.
In particular, MAML associates the solution to each subtask
with the shared prior through one step of gradient descent
based on the subtask data. Due to its model-agnostic prop-
erty, MAML is widely adopted in reinforcement learning
(Finn et al., 2017a;b; Xu et al., 2018; Nagabandi et al., 2018;
Gupta et al., 2018; Yu et al., 2018; Mendonca et al., 2019)
and supervised learning (Finn et al., 2017a; Li et al., 2017;
Finn et al., 2018; Rakelly et al., 2018; Yoon et al., 2018).

Despite its popularity in empirical studies, MAML is
scarcely explored theoretically. In terms of the global op-
timality of MAML, (Finn et al., 2019) show that the meta-
objective is strongly convex assuming that the inner-level
objective is strongly convex (in its finite-dimensional param-
eter). However, such an assumption fails to hold for neural
function approximators, which leads to a gap between theory
and practice. For nonconvex meta-objectives, (Fallah et al.,
2019) characterize the convergence of MAML to a station-
ary point under certain regularity conditions. Meanwhile,
(Rajeswaran et al., 2019) propose a variant of MAML that
utilizes implicit gradients, which is also guaranteed to con-
verge to a stationary point. However, the global optimality
of such stationary points remains unclear. On the other hand,
(Pentina & Lampert, 2014; Amit & Meir, 2017) establish
PAC-Bayes bounds for the generalization error of two vari-
ants of MAML. However, such generalization guarantees
only apply to the global optima of the two meta-objectives
rather than their stationary points.

In this work, we characterize the global optimality of the ε-
stationary points attained by MAML for both reinforcement
learning (RL) and supervised learning (SL). For meta-RL,
we study a variant of MAML, which associates the solution
to each subtask with the shared prior, namely πθ, through
one step of proximal policy optimization (PPO) (Schulman
et al., 2015; 2017) in the inner level of optimization. In
the outer level of optimization, we maximize the expected
total reward associated with the shared prior aggregated
over all the subtasks. We prove that the ε-stationary point
attained by such an algorithm is (approximately) globally
optimal given that the function approximator has sufficient
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representation power. For example, for the linear function
approximator πθ(s, a) ∝ exp(φ(s, a)>θ), the optimality
gap of the ε-stationary point is characterized by the rep-
resentation power of the linear class {φ(·, ·)>v : v ∈ B},
where B is the parameter space (which is specified later).
The core of our analysis is the functional one-point mono-
tonicity (Facchinei & Pang, 2007) of the expected total
reward J(π) with respect to the policy π (Liu et al., 2019)
for each subtask. Based on a similar notion of functional
geometry in the inner level of optimization, we establish
similar results on the optimality gap of meta-SL. Moreover,
our analysis of both meta-RL and meta-SL allows for neural
function approximators. More specifically, we prove that
the optimality gap of the attained ε-stationary points is char-
acterized by the representation power of the corresponding
classes of overparameterized two-layer neural networks.

Challenge. We highlight that the bilevel structure of
MAML makes it challenging for the analysis of its global
optimality. In the simple case where the inner-level objec-
tive is strongly convex and smooth, (Finn et al., 2019) show
that the meta-objective is also strongly convex assuming
that the stepsize of inner-level optimization is sufficiently
small.

• In practice, however, both the inner-level objective and
the meta-objective can be nonconvex, which leads to
a gap between theory and practice. For example, the
inner-level objective of meta-RL is nonconvex even in
the (infinite-dimensional) functional space of policies.

• Even assuming that the inner-level objective is convex
in the (infinite-dimensional) functional space, nonlin-
ear function approximators, such as neural networks,
can make the inner-level objective nonconvex in the
finite-dimensional space of parameters.

• Furthermore, even for linear function approximators,
the bilevel structure of MAML can make the meta-
objective nonconvex in the finite-dimensional space of
parameters, especially when the stepsize of inner-level
optimization is large.

In this work, we tackle all these challenges by analyzing the
global optimality of both meta-RL and meta-SL for both
linear and neural function approximators.

Contribution. Our contribution is three-fold. First, we pro-
pose a meta-RL algorithm and characterize the optimality
gap of the ε-stationary point attained by such an algorithm
for linear function approximators. Second, under an assump-
tion on the functional convexity of the inner-level objective,
we characterize the optimality gap of the ε-stationary point
attained by meta-SL. Finally, we extend our optimality anal-
ysis for linear function approximators to handle overpa-
rameterized two-layer neural networks. To the best of our

knowledge, our analysis establishes the global optimality of
MAML with nonconvex meta-objectives for the first time.

Related Work. Meta-learning is studied by various com-
munities (Evgeniou & Pontil, 2004; Thrun & Pratt, 2012;
Pentina & Lampert, 2014; Amit & Meir, 2017; Nichol et al.,
2018; Nichol & Schulman, 2018; Khodak et al., 2019). See
(Pan & Yang, 2009; Weiss et al., 2016) for the surveys of
meta-learning and (Taylor & Stone, 2009) for a survey of
meta-RL. Our work focuses on the model-agnostic formu-
lation of meta-learning (MAML) proposed by (Finn et al.,
2017a). In contrast to existing empirical studies, the theo-
retical analysis of MAML is relatively scarce. (Fallah et al.,
2019) establish the convergence of three variants of MAML
for nonconvex meta-objectives. (Rajeswaran et al., 2019)
propose a variant of MAML that utilizes implicit gradients
of the inner level of optimization and establish the conver-
gence of such an algorithm. This line of work characterizes
the convergence of MAML to the stationary points of the
corresponding meta-objectives. Our work is complemen-
tary to this line of work in the sense that we characterize
the global optimality of the stationary points attained by
MAML. Meanwhile, (Finn et al., 2019) propose an online
algorithm for MAML with regret guarantees, which rely on
the strong convexity of the meta-objectives. In contrast, our
work tackles nonconvex meta-objectives, which allows for
neural function approximators, and characterizes the global
optimality of MAML. (Mendonca et al., 2019) propose a
meta-policy search method and characterize the global op-
timality for solving the subtasks under the assumption that
the meta-objective is (approximately) globally optimal. Our
work is complementary to their work in the sense that we
characterize the global optimality of MAML in terms of
optimizing the meta-objective. See also the concurrent work
(Wang et al., 2020).

There is a large body of literature that studies the training
and generalization of overparameterized neural networks
for SL (Daniely, 2017; Jacot et al., 2018; Wu et al., 2018;
Allen-Zhu et al., 2018a;b; Du et al., 2018a;b; Zou et al.,
2018; Chizat & Bach, 2018; Li & Liang, 2018; Cao & Gu,
2019a;b; Arora et al., 2019; Lee et al., 2019; Bai & Lee,
2019). See (Fan et al., 2019) for a survey. In comparison,
we study MAML with overparameterized neural networks
for both RL and SL. The bilevel structure of MAML makes
our analysis significantly more challenging than that of RL
and SL.

Notation. We denote by [n] = {1, 2, ..., n} the index set.
Also, we denote by x = ([x]>1 , . . . , [x]>m)> ∈ Rmd a vector
in Rmd, where [x]k ∈ Rd is the k-th block of x for k ∈ [m].
For a real-valued function f defined on X , we denote by
‖f(·)‖p,ν = {

∫
X f

p(x) dν(x)}1/p the Lp(ν)-norm of f ,
where ν is a measure on X . We write ‖f(·)‖2,ν = ‖f(·)‖ν
for notational simplicity and ‖f‖p,ν = ‖f(·)‖p,ν when the
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variable is clear from the context. For a vector φ ∈ Rn, we
denote by ‖φ‖2 the `2-norm of φ.

2. Background
In this section, we briefly introduce reinforcement learning
and meta-learning.

2.1. Reinforcement Learning

We define a Markov decision process (MDP) by a tuple
(S,A, P, r, γ, ζ), where S and A are the state and action
spaces, respectively, P is the Markov kernel, r is the reward
function, which is possibly stochastic, γ ∈ (0, 1) is the
discount factor, and ζ is the initial state distribution over S .
In the sequel, we assume that A is finite. An agent interacts
with the environment as follows. At each step t, the agent
observes the state st of the environment, takes the action
at, and receives the reward r(st, at). The environment
then transits into the next state according to the distribution
P (· | st, at) over S . We define a policy π as a mapping from
S to distributions over A. Specifically, π(a | s) gives the
probability of taking the action a at the state s. Given a
policy π, we define for all (s, a) ∈ S×A the corresponding
state- and action-value functions V π and Qπ as follows,

V π(s) = (1− γ) · E
[ ∞∑
t=0

γt · r(st, at)
∣∣∣∣ s0 = s

]
,

(2.1)

Qπ(s, a) = (1− γ) · E
[ ∞∑
t=0

γt · r(st, at)
∣∣∣∣ s0 = s, a0 = a

]
,

(2.2)

where st+1 ∼ P (· | st, at) and at ∼ π(· | st) for all t ≥ 0.
Correspondingly, the advantage function Aπ is defined as
follows,

Aπ(s, a) = Qπ(s, a)− V π(s), ∀(s, a) ∈ S ×A.
(2.3)

A policy π induces a state visitation measure νπ on S , which
takes the form of

νπ(s) = (1− γ) ·
∞∑
t=0

γt · P(st = s), (2.4)

where s0 ∼ ζ , st+1 ∼ P (· | st, at), and at ∼ π(· | st) for all
t ≥ 0. Correspondingly, we define the state-action visitation
measure by σπ(s, a) = π(a | s)·νπ(s) for all (s, a) ∈ S×A,
which is a probability distribution over S ×A. The goal of
reinforcement learning is to find the optimal policy π∗ that

maximizes the expected total reward J(π), which is defined
as

J(π) = Es∼ζ
[
V π(s)

]
= E(s,a)∼σπ

[
r(s, a)

]
. (2.5)

When S is continuous, maximizing J(π) over all possible
π is computationally intractable. A common alternative is
to parameterize the policy by πθ with the parameter θ ∈ Θ,
where Θ is the parameter space, and maximize J(πθ) over
θ ∈ Θ.

2.2. Meta-Learning

In meta-learning, the meta-learner is given a sample of
learning subtasks {Ti}i∈[n] drawn independently from the
task distribution ι and a set of parameterized algorithms
A = {Aθ : θ ∈ Θ}, where Θ is the parameter space.
Specifically, given θ, the algorithm Aθ ∈ A maps from a
learning subtask T to its desired outcome. For example, an
algorithm that solves reinforcement learning subtasks maps
from an MDP T = (S,A, P, r, γ, ζ) to a policy π, aiming at
maximizing the expected total reward J(π) defined in (2.5).
As an example, given a hypothesis classH, a distribution D
over Z , which is the space of data points, and a loss func-
tion ` : H×Z 7→ R, a supervised learning subtask aims at
minimizing the risk Ez∼D[`(h, z)] over h ∈ H. We denote
the supervised learning subtask T by the tuple (D, `,H).
Similarly, an algorithm that solves supervised learning sub-
tasks maps from T = (D, `,H) to a hypothesis h ∈ H,
aiming at minimizing the risk R(h) = Ez∼D[`(h, z)] over
h ∈ H. In what follows, we denote by HT the objective
of a learning subtask T . If T is a reinforcement learning
subtask, we have HT = J , and if T is a supervised learning
subtask, we have HT = R.

The goal of the meta-learner is to find θ∗ ∈ Θ that optimizes
the population version of the meta-objective L(θ), which is
defined as

L(θ) = ET ∼ι
[
HT
(
Aθ(T )

)]
. (2.6)

To approximately optimize L defined in (2.6) based on the
sample {Ti}i∈[n] of subtasks, the meta-learner optimizes
the following empirical version of the meta-objective,

L(θ) =
1

n
·
n∑
i=1

HTi
(
Aθ(Ti)

)
. (2.7)

The algorithm Aθ∗ corresponding to the global optimum
θ∗ of (2.7) incorporates the past experience through the
observed learning subtasks {Ti}i∈[n], and therefore, facil-
itates the learning of a new subtask (Pentina & Lampert,
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2014; Finn et al., 2017a; Amit & Meir, 2017; Yoon et al.,
2018). As an example, in model-agnostic meta-learning
(MAML) (Finn et al., 2017a) for supervised learning, the
hypothesis classH is parameterized by hθ with θ ∈ Θ, and
the algorithm Aθ performs one step of gradient descent with
θ ∈ Θ as the starting point. In this setting, MAML aims to
find the globally optimal starting point θ∗ by minimizing
the following meta-objective by gradient descent,

L(θ) =
1

n
·
n∑
i=1

Ri
(
hθ−η·∇θRi(hθ)

)
,

where η is the learning rate of Aθ and Ri(h) =
Ez∼Di [`(h, z)] is the risk of the supervised learning subtask
Ti = (Di, `,H). Similarly, in MAML for reinforcement
learning, the algorithm Aθ performs, e.g., one step of policy
gradient with θ as the starting point. We call πθ the main ef-
fect in the sequel. MAML aims to find the globally optimal
main effect πθ∗ by maximizing the following meta-objective
by gradient ascent,

L(θ) =
1

n
·
n∑
i=1

Ji
(
πθ+η·∇θJi(πθ)

)
,

where η is the learning rate of Aθ and Ji is the expected
total reward of the reinforcement learning subtask Ti =
(S,A, Pi, ri, γi, ζi).

3. Meta-Reinforcement Learning
In this section, we present the analysis of meta-
reinforcement learning (meta-RL). We first define the de-
tailed problem setup of meta-RL and propose a meta-RL
algorithm. We then characterize the global optimality of the
stationary point attained by such an algorithm. We refer the
analysis of meta-RL with neural network parameterization
to §A.2.

3.1. Problem Setup and Algorithm

In meta-RL, the meta-learner observes a sample of MDPs
{(S,A, Pi, ri, γi, ζi)}i∈[n] drawn independently from a
task distribution ι. We set the algorithm Aθ that optimizes
the policy to be one step of (a variant of) proximal policy
optimization (PPO) (Schulman et al., 2015; 2017) starting
from the main effect πθ. More specifically, Aθ solves the

following maximization problem,

Aθ(S,A, Pi, ri, γi, ζi)

= argmax
π

Es∼νi,πθ
[
〈Qπθi (s, ·), π(· | s)〉 (3.1)

− 1/η ·DKL
(
π(· | s)

∥∥πθ(· | s))].
Here 〈·, ·〉 is the inner product over R|A|, η is the tuning pa-
rameter of Aθ, and Qπθi , νi,πθ are the action-value function
and the state visitation measure, respectively, corresponding
to the MDP (S,A, Pi, ri, γi, ζi) and the policy πθ. Note that
the objective in (3.1) has DKL(π(· | s)‖πθ(· | s)) in place of
DKL(πθ(· | s)‖π(· | s)) compared with the original version
of PPO (Schulman et al., 2015; 2017). As shown by (Liu
et al., 2019), such a variant of PPO enjoys global optimality
and convergence.

We parameterize the main effect πθ as the following energy-
based policy (Haarnoja et al., 2017) for all (s, a) ∈ S ×A,

πθ(a | s) =
exp
(
1/τ · φ(s, a)>θ

)∑
a′∈A exp

(
1/τ · φ(s, a′)>θ

) , (3.2)

where φ : S × A 7→ Rd is the feature mapping, θ ∈ Rd
is the parameter, φ(·, ·)>θ is the energy function, and
τ is the temperature parameter. The maximizer πi,θ =
Aθ(S,A, Pi, ri, γi, ζi) defined in (3.1) then takes the fol-
lowing form (Liu et al., 2019, Proposition 3.1) for all s ∈ S ,

πi,θ(· | s) ∝ exp
(
1/τ · φ(s, ·)>θ + η ·Qπθi (s, ·)

)
. (3.3)

The goal of meta-RL is to find the globally optimal main
effect πθ by maximizing the following meta-objective,

L(θ) =
1

n
·
n∑
i=1

Ji(πi,θ),

where πi,θ = Aθ(S,A, Pi, ri, γi, ζi). (3.4)

Here Ji is the expected total reward defined in (2.5) corre-
sponding to the MDP (S,A, Pi, ri, γi, ζi) for all i ∈ [n]. To
maximize L(θ), we use gradient ascent, which iteratively
updates θ as follows,

θ`+1 ← θ` + α` · ∇θL(θ`), for ` = 0, 1, . . . , T − 1,
(3.5)

where ∇θL(θ`) is the gradient of the meta-objective at θ`,
α` is the learning rate at the `-th iteration, and T is the
number of iterations. It remains to calculate the gradient
∇θL(θ). To this end, we first define the state-action vis-
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itation measures induced by the main effect πθ, and then
calculate∇θL(θ) in closed form based on such state-action
visitation measures.

Definition 3.1 (Visitation Measures of Main Effect). For
all i ∈ [n], given the MDP (S,A, Pi, ri, γi, ζi) and the
main effect πθ, we denote by σi,πθ the state-action visita-
tion measure induced by the main effect πθ. We further
define the state-action visitation measure σ(s,a)

i,πθ
initialized

at (s, a) ∈ S ×A as follows,

σ
(s,a)
i,πθ

(s′, a′) = (1− γi) ·
∞∑
t=0

γti · P(st = s′, at = a′),

(3.6)

where (s′, a′) ∈ S × A, s0 ∼ Pi(· | s, a), st+1 ∼
Pi(· | st, at), and at ∼ πθ(· | st) for all t ≥ 0.

In other words, given the transition kernel Pi and the dis-
count factor γi, σ

(s,a)
i,πθ

is the state-action visitation measure
induced by the main effect πθ where the initial state dis-
tribution is given by s0 ∼ Pi(· | s, a). Based on the policy
gradient theorem (Sutton & Barto, 2018), the following
proposition calculates the gradient of the meta-objective L
defined in (3.4) with respect to the parameter θ of the main
effect πθ.

Proposition 3.2 (Gradient of Meta-Objective). It holds for
all θ ∈ Rd that

∇θL(θ) =
1

n
·
n∑
i=1

E(s,a)∼σπi,θ

[
hi,θ(s, a) ·Aπi,θi (s, a)

]
,

(3.7)

where the auxiliary function hi,θ takes the form of

hi,θ(s, a) = 1/τ · φ(s, a) (3.8)

+ η · γi/τ · E(s′,a′)∼σ(s,a)
i,πθ

[
φ(s′, a′) ·Aπθi (s′, a′)

]
.

HereAπi,θi andAπθi are the advantage functions of the policy
πi,θ and the main effect πθ, respectively, both corresponding
to the MDP (S,A, Pi, ri, γi, ζi). Also, σ(s,a)

i,πθ
is the state-

action visitation measure induced by the main effect πθ
defined in Definition 3.1, and σπi,θ is the state-action visita-
tion measure induced by the policy πi,θ, both corresponding
to the MDP (S,A, Pi, ri, γi, ζi).

Proof. See §D.1 for a detailed proof.

In the sequel, we assume without loss of generality that the
action-value function Qπ is available once we obtain the

policy π, and the expectations over state-action visitation
measures in (3.7) and (3.8) of Theorem 3.2 are available
once we obtain the policies {πi,θ}i∈[n] and the main effect
πθ. We summarize meta-RL in Algorithm 1. In practice,
we can estimate the action-value functions by temporal dif-
ference learning (Sutton, 1988) and the expectations over
the visitation measures by Monte Carlo sampling (Konda,
2002).

Algorithm 1 Meta-RL
Require: Sampled MDPs {(S,A, Pi, ri, γi, ζi)}i∈[n] from

the task distribution τ , feature mapping φ, number of
iterations T , learning rate {α`}`∈[T ], temperature pa-
rameter 1/τ , tuning parameter τ , initial parameter θ0.

1: Initialization:
2: for ` = 0, . . . , T − 1 do
3: for i ∈ [n] do
4: Update the policy: πi,θ`(· | s) ∝ exp

(
1/τ ·

φ(s, ·)>θ` + η ·Qπθ`i (s, ·)
)
.

5: Compute the auxiliary function hi,θ`(s, a) via
(3.8)

6: end for
7: Compute the gradient of meta-objective ∇θL(θ`)

based on the policies {πi,θ`}i∈[n] and auxiliary func-
tions {hi,θ`}i∈[n] via (3.7).

8: Update the parameter of the main effect: θ`+1 ←
θ` + α` · ∇θL(θ`).

9: Update the main effect: πθ`+1
(· | s) ∝ exp

(
1/τ ·

φ(s, ·)>θ`+1

)
.

10: end for
11: Output: θT and πθT .

3.2. Theoretical Results

In this section, we analyze the global optimality of the ε-
stationary point attained by meta-RL (Algorithm 1). In
the sequel, we assume that the reward functions {ri}i∈[n]
are upper bounded by an absolute constant Qmax > 0 in
absolute value. It then follows from (2.1) and (2.2) that
|V πi (s, a)| and |Qπi (s, a)| are upper bounded by Qmax for
all i ∈ [n] and (s, a) ∈ S ×A. Here we define Qπi and V πi
as the state- and action-value functions of the policy π, re-
spectively, corresponding to the MDP (S,A, Pi, ri, γi, ζi).

To analyze the global optimality of meta-RL, we define the
following meta-visitation measures induced by the main
effect πθ.

Definition 3.3 (Meta-Visitation Measures). We define the
joint meta-visitation measure ρi,πθ over (s′, a′, s, a) ∈ S ×
A × S × A induced by the main effect πθ and the policy
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πi,θ as follows,

ρi,πθ (s
′, a′, s, a) = σ

(s,a)
i,πθ

(s′, a′) · σπi,θ (s, a). (3.9)

We further define the meta-visitation measure ςi,πθ as the
marginal distribution of the joint meta-visitation measure
ρi,πθ of (s′, a′) ∈ S ×A, that is,

ςi,πθ (s
′, a′) = E(s,a)∼σπi,θ

[
σ
(s,a)
i,πθ

(s′, a′)
]
. (3.10)

In addition, for (s′, a′) ∈ S ×A we define the mixed meta-
visitation measure %πθ over all the subtasks as follows,

%πθ (s
′, a′) =

1

n
·
n∑
i=1

ςi,πθ (s
′, a′). (3.11)

In other words, the meta-visitation measure ςi,πθ is the state-
action visitation measure induced by πθ given the transition
kernel Pi, the discount factor γi, and the initial state distri-
bution s0 ∼ E(s,a)∼σπi,θ [Pi(· | s, a)].

In what follows, we impose an assumption on the meta-
visitation measures defined in Definition 3.3.

Assumption 3.4 (Regularity Condition on Meta-Visitation
Measures). We assume for all θ ∈ Rd and i ∈ [n] that

E(s′,a′)∼%πθ

[(
dσπi,θ/d%πθ (s

′, a′)
)2] ≤ C2

0 , (3.12)

E(s′,a′)∼%πθ

[(
dςi,πθ/d%πθ (s

′, a′)
)2] ≤ C2

0 , (3.13)

where C0 > 0 is an absolute constant . Here ςi,πθ and
%πθ are the meta-visitation measure and the mixed meta-
visitation measure induced by the main effect πθ, which are
defined in (3.10) and (3.11) of Definition 3.3, respectively.
Meanwhile, σπi,θ is the state-action visitation measure in-
duced by the policy πi,θ, which is defined in (2.4). Here
dσπi,θ/ d%πθ and dςi,πθ/ d%πθ are the Radon-Nikodym
derivatives.

According to (3.11) of Definition 3.3, the upper bound in
(3.12) of Assumption 3.4 holds if the L2(%πθ )-norms of
dσπi,θ/ dςj,πθ is upper bounded by C0 for all i, j ∈ [n].
For i = j, note that πi,θ is obtained by one step of PPO
with πθ as the starting point. Thus, for a sufficiently small
tuning parameter η in (3.3), πi,θ is close to πθ. Hence,
the assumption that dσπi,θ/ dςj,πθ has an upper bounded
L2(%πθ )-norm for all i = j is a mild regularity condition.
For i 6= j, to ensure the upper bound of the L2(%πθ )-norms
of dσπi,θ/ dςj,πθ in (3.12), Assumption 3.4 requires the
task distribution ι to generate similar MDPs so that the

meta-visitation measures {ςi,πθ}i∈[n] are similar across all
the subtasks indexed by i ∈ [n]. Similarly, to ensure the
upper bound in (3.13), Assumption 3.4 also requires that
the meta-visitation measures {ςi,πθ}i∈[n] are similar across
all the subtasks indexed by i ∈ [n].

The following theorem characterizes the optimality gap of
the ε-stationary point attained by meta-RL (Algorithm 1).
Let θ∗ be a global maximizer of the meta-objective L(θ)
defined in (3.4). For all (s′, a′) ∈ S × A and ω ∈ Rd, we
define

fω(s′, a′) =

( n∑
i=1

A
πi,ω
i (s′, a′)

1− γi
·

dσπi,θ∗

d%πω
(s′, a′)

)
/( n∑

i=1

gi,ω(s′, a′) · dςi,πω
d%πω

(s′, a′)

)
,

(3.14)

where we defined gi,ω as follows,

gi,ω(s′, a′) =1/τ ·Aπi,ωi (s′, a′) · ( dσπi,ω/ dςi,πω )(s′, a′)

+ γi · η/τ ·Gi,πω (s′, a′) ·Aπωi (s′, a′).

Here τ is the temperature parameter in (3.2), η is the tuning
parameter defined in (3.1),Aπi,ωi andAπωi are the advantage
functions of the policy πi,ω and the main effect πω, respec-
tively, corresponding to the MDP (S,A, Pi, ri, γi, ζi), and
Gi,πω is defined as follows,

Gi,πω (s′, a′)

= E(s′,a′,s,a)∼ρi,πω
[
A
πi,ω
i (s, a)

∣∣ s′, a′], (3.15)

where ρi,πω is the joint meta-visitation measure defined in
(3.9) of Definition 3.3.

Theorem 3.5 (Optimality Gap of ε-Stationary Point). Un-
der Assumption 3.4, for all R > 0, ω ∈ Rd, and ε > 0 such
that

∇ωL(ω)>v ≤ ε, ∀v ∈ B = {θ ∈ Rd : ‖θ‖2 ≤ 1},
(3.16)

we have

L(θ∗)− L(ω)

≤ R · ε+ C · inf
v∈BR

‖fω(·, ·)− φ(·, ·)>v‖%πω , (3.17)

where BR = {θ ∈ Rd : ‖θ‖2 ≤ R}, γ = (
∑n
i=1 γi)/n,

and C = 2C0 · Qmax/τ · (1 + 2Qmax · γ · η). Here C0 is
defined in Assumption 3.4, τ is the temperature parameter
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in (3.2), η is the tuning parameter defined in (3.1), and
Qmax is the upper bound of the reward functions {ri}i∈[n]
in absolute value.

Proof. See §C.1 for a detailed proof.

By Theorem 3.5, the global optimality of the ε-stationary
point ω hinges on the representation power of the linear
class {φ(·)>θ : θ ∈ BR}. More specifically, if the function
fω defined in (3.14) is well approximated by φ(·)>θ for
a parameter θ ∈ BR, then ω is approximately globally
optimal.

4. Meta-Supervised Learning
In this section, we present the analysis of meta-supervised
learning (meta-SL). We first define the detailed problem
setup of meta-SL and present a meta-SL algorithm. We then
characterize the global optimality of the stationary point
attained by such an algorithm. We refer the analysis of
meta-SL with neural network parameterization to §A.3.

4.1. Problem Setup and Algorithm

In meta-SL, the meta-learner observes a sample of super-
vised learning subtasks {(Di, `,H)}i∈[n] drawn indepen-
dently from a task distribution ι. Specifically, each subtask
(Di, `,H) consists of a distribution Di over X × Y , where
Y ⊆ R, a loss function ` : H×X × Y 7→ R, and a hypoth-
esis classH. Each hypothesis h ∈ H is a mapping from X
to Y . The goal of the supervised learning subtask (Di, `,H)
is to obtain the following hypothesis,

h∗i = argmin
h∈H

Ri(h) = argmin
h∈H

Ez∼Di
[
`(h, z)

]
, (4.1)

where Ri(h) = Ez∼Di [`(h, z)] is the risk of h ∈ H. To
approximately attain the minimizer defined in (4.1), we
parameterize the hypothesis class H by Hθ with a feature
mapping φ : X 7→ Rd as follows,

Hθ =
{
hθ(·) = φ(·)>θ : θ ∈ Rd

}
, (4.2)

and minimizeRi(hθ) over θ ∈ Rd. We set the algorithm Aθ

in (2.7), which solves (Di, `,H), to be one step of gradient
descent with the starting point θ, that is,

Aθ(Di, `,H) = hθ−η·∇θRi(hθ). (4.3)

Here η is the learning rate of Aθ. The goal of meta-SL is to
minimize the following meta-objective,

L(θ) =
1

n
·
n∑
i=1

Ri(hθi), where hθi = Aθ(Di,R,H).

(4.4)

To minimize L(θ) defined in (4.4), we adopt gradient de-
scent, which iteratively updates θ` as follows,

θ`+1 ← θ` − α` · ∇θL(θ`), for ` = 0, 1, . . . , T − 1.
(4.5)

Here ∇θL(θ`) is the gradient of the meta-objective at θ`,
α` is the learning rate at the `-th iteration, and T is the
number of iterations. (Fallah et al., 2019) show that the
update defined in (4.5) converges to an ε-stationary point of
the meta-objective L under a smoothness assumption on L.
In what follows, we characterize the optimality gap of such
an ε-stationary point.

We first introduce the Fréchet differentiability of the risk Ri
in (4.1).

Definition 4.1 (Fréchet Differentiability). Let H be a Ba-
nach space with the norm ‖ · ‖H. A functional R : H 7→ R
is Fréchet differentiable at h ∈ H if it holds for a bounded
linear operator A : H 7→ R that

lim
h1∈H, ‖h1‖H→0

|R(h+ h1)−R(h)−A(h1)|
‖h1‖H

→ 0.

(4.6)

We define A as the Fréchet derivative of R at h ∈ H, and
write

DhR(·) = A(·). (4.7)

In what follows, we assume that the hypothesis class H
with the L2(ρ)-inner product is a Hilbert space, where ρ is
a distribution over X . Thus, following from the definition
of the Fréchet derivative in Definition 4.1 and the Rieze
representation theorem (Rudin, 2006), it holds for an ah ∈
H that

DhR(·) = A(·) = 〈·, ah〉H, (4.8)

Here we denote by 〈f, g〉H =
∫
X f(x) · g(x) dρ the L2(ρ)-

inner product. In what follows, we write

(δR/δh)(x) = ah(x), ∀x ∈ X , h ∈ H. (4.9)
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We refer to §B for an example of the Fréchet derivative
defined in (4.9). We assume that H contains the parame-
terized hypothesis class Hθ defined in (4.2), and impose
the following assumption on the convexity and the Fréchet
differentiability of the risk Ri in (4.1).

Assumption 4.2 (Convex and Differentiable Risk). We as-
sume for all i ∈ [n] that the riskRi defined in (4.1) is convex
and Fréchet differentiable onH.

Assumption 4.2 is a mild regularity condition on the risk Ri,
which holds for the risks induced by commonly used loss
functions, such as the squared loss and the cross entropy loss.
Specifically, the convexity of Ri holds if the loss function
`(h, z) is convex in h ∈ H for all z ∈ Z (Rockafellar,
1968).

The following proposition holds under Assumption 4.2.

Proposition 4.3 (Convex and Differentiable Risk (Ekeland
& Temam, 1999)). Under Assumption 4.2, it holds for all
i ∈ [n] that

Ri(h1) ≥ Ri(h2) + 〈δRi/δh2, h1 − h2〉H, ∀h1, h2 ∈ H.

Proof. See (Ekeland & Temam, 1999) for a detailed proof.

We highlight that the convexity of the risks over h ∈ H
does not imply the convexity of the meta-objective defined
in (4.4). In contrast, Proposition 4.3 characterizes the func-
tional geometry of the risk Ri in the Hilbert spaceH for all
i ∈ [n], which allows us to analyze the global optimality of
meta-SL in the sequel.

4.2. Theoretical Results

In this section, we characterize the global optimality of the
ε-stationary point attained by meta-SL defined in (4.5). Let
θ∗ be a global minimizer of the meta-objective L(θ) defined
in (4.4), and ω be the ε-stationary point attained by meta-SL
such that

∇ωL(ω)>v ≤ ε, ∀v ∈ B = {θ ∈ Rd : ‖θ‖2 ≤ 1}.
(4.10)

Our goal is to upper bound the optimality gap L(ω)−L(θ∗).
To this end, we first define the mixed distributionM over
all the distributions {Di}i∈[n] as follows,

M(x, y) =
1

n
·
n∑
i=1

Di(x, y), ∀(x, y) ∈ X × Y.

(4.11)

To simplify the notation, we write ωi and θ∗i as the pa-
rameters that correspond to the outputs of the algorithms
Aω(Di, `,H) and Aθ∗(Di, `,H), respectively. More specif-
ically, according to (4.3), we have

ωi = ω − η · ∇ωRi(hω),

θ∗i = θ∗ − η · ∇θ∗Ri(hθ∗), ∀i ∈ [n], (4.12)

where η is the learning rate of the algorithms Aω(Di, `,H)
and Aθ∗(Di, `,H).

The following theorem characterizes the optimality gap of
the ε-stationary point ω attained by meta-SL. We define for
all (x, y, x′) ∈ X × Y × X that

w(x, y, x′) =
1

n
·
n∑
i=1

δRi
δhωi

(x′) · dDi
dM

(x, y), (4.13)

u(x, y, x′) =
1

n
·
n∑
i=1

δRi
δhωi

(x′) ·
hωi(x

′)− hθ∗i (x′)

w(x, y, x′)
,

(4.14)

φ`,ω(x, y, x′) =
(
Id − η · ∇2

ω`
(
φ(x)>ω, (x, y)

))
φ(x′),

(4.15)

where dDi/ dM is the Radon-Nikodym derivative and
δRi/δhωi is the Fréchet derivative defined in (4.9).

Theorem 4.4 (Optimality Gap of ε-Stationary Point). Let
θ∗ be a global minimizer of L(θ). Also, let ω be the ε-
stationary point defined in (4.10). Let `(hθ(x), (x, y)) be
twice differentiable with respect to all θ ∈ Rd and (x, y) ∈
X × Y . Under Assumption 4.2, it holds for all R > 0 that

L(ω)− L(θ∗) (4.16)

≤ R · ε︸︷︷︸
(i)

+ ‖w‖M·ρ︸ ︷︷ ︸
(ii)

· inf
v∈BR

‖u(·)− φ`,ω(·)>v‖M·ρ︸ ︷︷ ︸
(iii)

,

where we define BR = {θ ∈ Rd : ‖θ‖2 ≤ R} as the ball
with radius R and

‖w‖M·ρ =

(∫
w2(x, y, x′) dM(x, y) dρ(x′)

)1/2

as the L2(M · ρ)-norm of w.

Proof. See §C.2 for a detailed proof.

By Theorem 4.4, the optimality gap of the ε-stationary point
ω hinges on the three terms on the right-hand side of (4.16).
Here term (i) characterizes the deviation of the ε-stationary
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point ω from a stationary point. Term (ii) characterizes
the difficulty of all the subtasks sampled from the task dis-
tribution ι. Specifically, given the ε-stationary point ω, if
the output hωi of Aω(Di, `,H) well approximates the min-
imizer of the risk Ri in (4.1), then the Fréchet derivative
δRi/δhωi defined in (4.9) is close to zero. Meanwhile, the
Radon-Nikodym derivative dDi/dM characterizes the de-
viation of the distribution Di from the mixed distribution
M defined in (4.11), which is upper bounded if Di is close
toM. Thus, term (ii) is upper bounded if hωi well approx-
imates the minimizer of Ri and Di is close to M for all
i ∈ [n]. Term (iii) characterizes the representation power
of the feature mapping φ`,ω defined in (4.15). Specifically,
if the function u defined in (4.14) of Theorem 4.4 is well
approximated by φ`,ω(·)>v for some v ∈ BR, then term
(iii) is small. In conclusion, if the subtasks generated by the
task distribution ι are sufficiently regular so that term (ii) is
upper bounded, and the linear class {φ`,ω(·)>v : v ∈ BR}
has sufficient representation power, then ω is approximately
globally optimal. See §B for a corollary of Theorem 4.4
when it is adapted to the squared loss.
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