Dimin o amine
LI TR
IR i

’f . . .
mf Optimization

A Journal of Mathematical Programming and Operations Research

ISSN: 0233-1934 (Print) 1029-4945 (Online) Journal homepage: https://www.tandfonline.com/loi/gopt20

Taylor & Francis

Taylor & Francis Group

New necessary optimality conditions in optimistic
bilevel programming

S. Dempe, J. Dutta & B. S. Mordukhovich

To cite this article: S. Dempe, . Dutta & B. S. Mordukhovich (2007) New necessary
optimality conditions in optimistic bilevel programming, Optimization, 56:5-6, 577-604, DOI:
10.1080/02331930701617551

To link to this article: https://doi.org/10.1080/02331930701617551

ﬁ Published online: 04 Dec 2010.

\]
[:1/ Submit your article to this journal &

||I| Article views: 873

A
h View related articles &'

f&] Citing articles: 27 View citing articles &'

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=gopt20


https://www.tandfonline.com/action/journalInformation?journalCode=gopt20
https://www.tandfonline.com/loi/gopt20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/02331930701617551
https://doi.org/10.1080/02331930701617551
https://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/02331930701617551
https://www.tandfonline.com/doi/mlt/10.1080/02331930701617551
https://www.tandfonline.com/doi/citedby/10.1080/02331930701617551#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/02331930701617551#tabModule

Optimization .
; Taylor &F
Vol. 56, Nos. 5-6, October-December 2007, 577-604 et

New necessary optimality conditions in optimistic
bilevel programming¥

S. DEMPET{, J. DUTTAY and B. S. MORDUKHOVICH*§

tDepartment of Mathematics and Computer Science, Technical University Bergakademie
Freiberg, Freiberg, Germany
iDepartment of Mathematics, Indian Institute of Technology, Kanpur, India
§Department of Mathematics, Wayne State University, Detroit, USA

(Received 18 December 2006, in final form 21 May 2007)

The article is devoted to the study of the so-called optimistic version of bilevel programming
in finite-dimensional spaces. Problems of this type are intrinsically nonsmooth (even for smooth
initial data) and can be treated by using appropriate tools of modern variational analysis and
generalized differentiation. Considering a basic optimistic model in bilevel programming, we
reduce it to a one-level framework of nondifferentiable programs formulated via (nonsmooth)
optimal value function of the parametric lower-level problem in the original model. Using
advanced formulas for computing basic subgradients of value/marginal functions in variational
analysis, we derive new necessary optimality conditions for bilevel programs reflecting
significant phenomena that have never been observed earlier. In particular, our optimality
conditions for bilevel programs do not depend on the partial derivatives with respect to
parameters of the smooth objective function in the parametric lower-level problem. We present
efficient implementations of our approach and results obtained for bilevel programs with
differentiable, convex, linear, and Lipschitzian functions describing the initial data of the
lower-level and upper-level problems.

Keywords: Bilevel programming; Value functions; Variational analysis; Generalized
differentiation; Necessary optimality conditions

Mathematics Subject Classifications 2000: Primary: 90C29; 49J52; Secondary: 49J53

1. Introduction and overview

Bilevel programming deals with a broad class of problems in hierarchical optimization
that consist of minimizing some (upper-level) objective function F: R" x R” — R subject
to upper-level constraints x € X C R" and (x, y) € gph ¥ CcR” x R". Here, gph W stands
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for the graph of the solution/argminimum set-valued mapping to another (lower-level)
parametric optimization problem given by

W(x) = Ar%min{f(x’ »1g(x,y) < 0} (L.1)

with the cost function f:R”xR”—R and the constraint vector function
g R'xR"— R,

More precisely, minimization at the upper level is done with respect to the upper-level
variable x only, and y = y(x) € W(x) is a reaction of the lower-level decision maker to the
upper-level selection. If this reaction is not uniquely determined (and, hence, the upper-
level decision maker is not able to predict it in advance of the lower-level selection),
the upper-level objective function value is not well determined with the choice of x € X.
This implies that the bilevel programming problem is generally not well-defined.
To overcome this obstacle, two different solution concepts are introduced. These are
the optimistic solution and the pessimistic solution concepts.

In the optimistic framework we consider the following problem:

minimize ¢y(x) subject to x € X (1.2)
with @o(x) == inf {F(x, )| y € W(x)}.

A point X € X is called a local optimistic solution of the bilevel programming problem if
wo(x) < ¢o(X) for x € X sufficiently close to X. Local optimistic solutions are of our main
interest in this article, while global optimistic solutions can be defined in a similar way.

In the pessimistic formulation we construct the function

@p(x) :=sup {F(x, ) |y € W(x)}
and then solve the problem of minimizing ¢,(x) on x. Pessimistic optimal solutions can
now be defined similarly to the optimistic case with the replacement of ¢, by ¢, in (1.2).

In this article we concentrate on the optimistic formulation of the bilevel programming
problem and intend to establish efficient necessary optimality conditions for local
optimistic solutions. Note that in the most interesting situations, from the viewpoints
of both the theory and applications, the parametric sets of solutions W(x) to the lower-
level problem in (1.1) are compact in finite dimensions, and thus the infimum in the
construction of the upper-level value function ¢, in (1.2) is realized.

To derive necessary optimality conditions for optimistic bilevel programming
problems of type (1.2), several approaches are possible and have been already investi-
gated. Let us mention and partly discuss the following three approaches to the study of
optimistic bilevel programs in form (1.2).

The first idea is to replace the lower-level problem (1.1) by its Karush—Kuhn—Tucker
(KKT) conditions (where the symbol T stands as usual for transposition):

V6, ») + ATV,g(x,3) =0, g(x,») <0, A>0, A g(x,»)=0

arising from necessary optimality conditions for the parametric lower-level problems.
The resulting upper-level problem belongs to the class of the so-called mathematical
programs with equilibrium constraints (M PECs):

{minimize F(x,y) subject to (x,y,A) € X x R" x R?, (13)

V() +ATV,g(x,») =0, g(x,») <0, A >0, ATg(x,y) =0;

see, e.g., [14,26] and the references therein.
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This approach faces serious difficulties in the case when problem (1.1) is not convex,
since then a point can be detected as a candidate for a local minimum (i.e., a stationary
point), which is not even feasible to the original bilevel program. Considering the case
when the lower-level problem in bilevel programming is smooth and convex, Dempe [6]
developed this approach under the assumption that the parameterized solution set W(x)
is a singleton and that y(x) given by W(x) = {y(x)} is a PC'-function, i.e., a continuous
selection from finitely many smooth functions:

y(x) € ), .. 00} (1.4)

whenever x belongs to a neighborhood of a local minimizer x to the bilevel program
under consideration. In (1.4), the natural number ¢>1 corresponds to violating the
linear independence constraint qualification and/or the strict complementarity slack-
ness assumption for problem (1.1) at the point (Y, y(f)). If the linear independence
constraint qualification is violated, the resulting necessary optimality conditions for the
MPEC may be very weak if applied to the corresponding bilevel program. Indeed, it is
proved under the assumptions in Dempe [6] that each of the functions y(x) in (1.4)
corresponds to one of the vertices A’ of the Lagrange multiplier set A(Y, y(Y)) in the
lower-level problem defined by

Ax,p) = {A = 0]V, flx, ) + 1 V,g(x,») =0, ATg(x,y) = 0}.

Furthermore, the following condition is necessary for optimality: one has

VX y@E)r+ YV, (X, y(X)y (x5 )
= Vo f (X, y@)r + VX, y(X)Vy'(X)r = 0 (1.5)

whenever i € [[(X) and r € Ty | y(x)=yi(x)(¥) N Tx(x), where Ty/(z) denotes the Bouligand
contingent cone to the set W at z€ W, and where [[(%) is the set of essentially active
selection functions () at X; see, e.g. Scholtes [30].

On the other hand, assume that (X, 7, ) is a stationary point for the MPEC in (1.3).
Then there exists an open neighborhood Z of (X, 7, 1) such that f(x,y) > f(X,7) for all
(x,y,A) € Z feasible to problem (1.3). Restricting A to a neighborhood of %, we thus
restrict the choice of y(x) in (1.4) to a proper subset of {y'(x), ..., »%(x)}. By using then
standard differential calculus, we can formulate a necessary optimality condition for the
MPEC as

Vi f (X, (@) + VX, p(X)Vy (X)r = 0

held for some i € I}(X) and for all 7 € Ty y=yicy(¥) N Tx(X). In this way, there may
exist another 7 € I (x) — corresponding to another multiplier re A(X, y(X)) — such that

Vo (6, p(®)r + V(% y(D) V) (X)r <0

for some r € T, W)=y ;(x)}(f) N Tx(X). Thus, the necessary optimality condition (1.5) for
MPEC (1.3) is satisfied while there is a direction of descent for the bilevel program under
consideration, which causes the MPEC model (1.3) and the necessary optimality
condition (1.5) to be largely unreliable for the study of the original optimistic bilevel
program (1.2).
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Another well-recognized manifestation of this phenomena is the violation of the
classical Mangasarian—Fromovitz constraint qualification for the MPEC problem (1.3)
considered as a nonlinear program with one of its (equality) constraints defined by the
complementarity condition A" g(x, y) =0. Generally speaking, the main difficulty in the
MPEC approach to bilevel programming is an appropriate introduction of new
variables A while reducing a bilevel program to the corresponding MPEC that allows
an adequate treatment.

The second idea involves the application of the normal cone introduced by
Mordukhovich [16] to the graph of the argminimum map W defined in (1.1), i.e.,
computing in fact the coderivative of this set-valued mapping. This idea has been
implemented in the framework of bilevel programming in the papers by Zhang [39] and
by Dutta and Dempe [10]. We also refer the reader to [3,17,19,24,36] and the biblio-
graphies therein for related developments in this direction in more general frameworks
of MPEC problems and the like.

The third idea initiated by Outrata [23] in the framework of bilevel programming/
Stackelberg games (cf. also [31,37]) is to consider the optimal value function

p(x) == i{gf{f(x,y) | g(x,y) < 0} (1.6)

in the lower-level problem (1.1) and to reformulate the optimistic bilevel program
(1.2) as

{minimize F(x,y) subject to (x,y) € X x R™, 17

g(x,y) =0, flx,y) < o(x).

It is easy to see that the nonlinear programming problem (1.7) is unconditionally
equivalent to the optimistic bilevel program (1.2) when we are concerned with the global
minimum; the relationships between local minima in problems (1.2) and (1.7) are more
subtle, they are discussed in more detail in section 3 with further references therein.
However, the price to pay in replacing problem (1.2) by the one in (1.7) is that the
nonlinear program (1.7) is intrinsically nonsmooth (even for infinitely smooth initial data
of the original bilevel program) due to the intrinsic nondifferentiability of the value
function (1.6). It is worth mentioning that the appearance of functions like (1.6), known
also as marginal functions, in problems of optimization and control, was among the
strongest original motivations for the development of nonsmooth analysis.

Formulation (1.7) of the bilevel program (1.2) has been developed by Ye and Zhu
[37]; see more discussions further. Based on this description and certain tools of
nonsmooth analysis, some necessary optimality conditions in bilevel programming have
been recently derived by Babbahadda and Gadhi [1] and Ye [34,35].

In the paper by Babbahadda and Gadhi [1], it is shown that the function ¢ admits
a so-called convexificator provided that the functions f and g;,i=1,...,p, have one.
Then a necessary optimality condition of the corresponding nondifferentiable Fritz
John type is derived for (1.7) by using convexificators. Furthermore, it is proved in [1]
that the obtained Fritz John condition can be written in the normal (i.e. KKT) form
under an appropriate regularity/constraint qualification requirement.

As has been observed by Ye and Zhu [37], the classical Mangasarian—Fromovitz
constraint qualification is violated at every feasible point to problem (1.7). In [34],
Ye introduced new constraint qualifications that can be satisfied at feasible points
to problem (1.7) and derived, imposing those qualification assumptions, KKT-type
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necessary optimality conditions for this problem. The conditions obtained employ,
in particular, the so-called Michel-Penot subdifferential for the optimal value function
@ from (1.6). If the value function ¢ happens to be convex, this subdifferential can be
efficiently estimated by using, e.g. the corresponding results from Gauvin and Dubeau
[11], Shimizu et al. [31], and Tanino and Ogawa [32].

In her recent paper [35], Ye developed another idea to derive KKT-type conditions
for bilevel programs in the framework of the value function formulation (1.7). This idea
is to approximate the inequality f(x, y) — ¢(x) <0 by a function W for which the Clarke-
generalized gradient can be efficiently estimated. Then, after showing that problem (1.7)
is locally equivalent to the nondifferentiable program

{ minimize F(x, y) subject to (x,y) € X x R™, (1.8)

g(x,y) <0, ¥(x,y) <0,

she derived KKT-type necessary optimality conditions for (1.7), assuming that the
auxiliary problem (1.8) satisfies a nonsmooth counterpart of the classical Abadie
constraint qualification; see [35] for more details and discussions.

In this article, we further develop the value function approach to derive new necessary
optimality conditions for bilevel programs in finite-dimensional spaces. In fact, the
results obtained can be extended to infinite-dimensional settings (see Remark 5.3 for
more discussions), but we do not pursue this goal here. The main tools of our analysis
are the basic generalized differential constructions (normals, subgradients, and coderi-
vatives) by Mordukhovich, which satisfy comprehensive calculus rules. In particular,
we employ advanced formulas for evaluating basic subgradients of the value function in
the lower-level problem, which — in conjunction with appropriate constraint
qualifications and a nonsmooth version of the Lagrange multiplier rule applied to
the upper-level problem — play a key role in deriving necessary optimality conditions in
bilevel programming. In this way, we arrive at new optimality conditions or bilevel
programs whose certain significant features never been observed before. In particular,
the resulting conditions obtained below for bilevel programs with smooth initial data in
the parametric lower-level problem do not depend, under appropriate assumptions, on
the partial derivatives with respect to parameters of the lower-level cost function. Other
new features of the optimality conditions derived in the article are discussed in the
subsequent sections.

The rest of the article is organized as follows. In section 2, we present some basic
material on generalized differentiation and related properties widely used in the article.
Section 3 is devoted to bilevel programs with smooth (actually strictly differentiable at
the reference optimal solution) initial data in both lower-level and upper-level problems.
In section 4, we consider in more detail bilevel programs with fully convex (in both
variables) functions, exploring both smooth and nonsmooth settings that happen to be
significantly different. We discuss specifications of the results obtained in the case of
linear programming problems at the lower level. The concluding section 5 concerns
bilevel programs with Lipschitzian initial data. The results derived for such problems by
using the value function approach partly extend the corresponding results derived for
smooth problems in section 3 and for fully convex problems in section 4, while certain
important issues of the smooth and convex results turn out to be crucial for these
underlying structures.

Our notation is basically standard; see the books [7,12,19].
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2. Generalized differentiation and related properties

Advanced methods of modern variational analysis unavoidably relate to the study
of nonsmooth objects (sets, functions, and set-valued mappings) and thus require
appropriate tools of generalized differentiation. In this article, we use the basic/limiting
constructions by Mordukhovich, which enjoy full robust calculus and turn out to be
minimal among any constructions of this type satisfying natural properties employed
in this article. We refer the reader to the books by Mordukhovich [18,19] and
Rockafellar and Wets [29] for more details, additional material, extensive comments,
and bibliographies. Unless otherwise stated, all the spaces under consideration are
finite-dimensional.

We start with generalized normals to nonempty sets. Given Q CR” and X € ,
the (basic, limiting) normal cone to Q at x is defined by

N(X; Q) := lim sup N(x; Q), Q2.1

Q _ _ . <5
where x— X means that x — x with x € Q, where N(x; Q) stands for the prenormal/
Fréechet normal cone to Q at x € Q defined by

]V(x; Q)= iv e R =) 0},

=
lloe — x|l

lim sup 2.2)

s
and where “lim sup” signifies the Kuratowski-Painlevée outer/upper limit for a set-
valued mapping S:[R"=R" as u— x given by

limsup S(u) == {v € R" | Jug — u, Jvy — v with v € S(u) as k — oo}.

The basic normal cone (2.1) is often nonconvex (e.g., for 2 =gph |x| at X = (0,0) € R?),
while the prenormal one (2.2) is always convex being in fact polar/dual to the classical
Bouligand contingent cone to Q at x € Q. For convex sets €2, both cones (2.1) and (2.2)
reduce to the normal cone of convex analysis. Let us mention a convenient
representation of the basic normal cone held for sets 2 locally closed around x € Q:

N(x; Q) = limsup [(x — I(x; Q))],

where “‘cone” stands for the conic hull of the set in question, and where IT(x; ) is the
Euclidean projector of x € R" on the set Q.
Given a set-valued mapping S:[R"=R" and a point (X, y) € gph S from its graph

gph S:={(u,v) e R" x R" | v € S(u)},
define the coderivative of S at (x,y) as a positive homogeneous mapping
D*S(x,y): R" = R" with the values
D*S(x,7)(v) :== {u € R"|(u, —v) € N((%,7); gph S)}, veR". (2.3)
If S is single-valued and strictly differentiable at x with the gradient VS(x), in the now
classical sense that
i S0 = S() — (VSE), u—x) _

s lu—x]

0
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(this is obviously the case when S is continuously differentiable around x), then
D*S(x)(v) = {VS(X)*v} forall veR"; (2.4)

we omit y in the coderivative notation (2.3) for single-valued mappings. Representation
(2.4) shows that the coderivative is a proper extension of the adjoint derivative operator
to nonsmooth and set-valued mappings.

Given a function ¢:R"—R Lipschitz-continuous around X (we do not consider more
general nonsmooth functions in this article), define its (basic, limiting) subdifferential by

dp(%) = lim sup dp(x) (2.5)

X—>X

via the Painlevé—Kuratowski outer limit of the so-called Fréchet/viscosity
subdifferentials

Bo(x) 1= {v € R"| liminf2W — ) = hu=x) 0]
oy = x]
of ¢ at x. The basic subdifferential (2.5) is always nonempty and compact for every
locally Lipschitzian function. It reduces to the classical gradient

Ap(X) = {Ve(¥)} (2.6)

for strictly differentiable functions and to the subdifferential of convex analysis for
convex ones. Note that the basic subdifferential (2.5) can be equivalently defined
geometrically

Ip(x) = {v e R"[ (v, — 1) € N((X, (%)); ¢) }
via the basic normal cone (2.1) to the epigraph of ¢. At the same time, the geometrically
defined coderivative (2.3) of a single-valued locally Lipschitzian mapping S:R" — R"”
can be represented analytically as

D*S(F)(v) = (v, S)(X) £ ¥ for all ve R™,

via the basic subdifferential (2.5) of the Lagrange scalarization (v, S)(x) := (v, S(x)).
In this article, we use the convex hull property

€0 d(—¢)(X) = —co dp(X) 2.7

of the basic subdifferential; this follows from the fact that the convex hull of d¢(x)
agrees with the Clarke-generalized gradient for locally Lipschitzian functions, which
enjoys the classical plus-minus symmetry.

Given a set-valued mapping S:R” = R™ and a point x with S(x) # @, we say that
S is inner semicompact at x if for every sequence x, — x with S(x,)#¢@ there is
a sequence of y, € S(x,) that contains a convergent subsequence as v— oo. It is clear,
in the finite-dimensional setting under consideration, that the inner semicompactness
holds whenever S is uniformly bounded around X, i.e. there exists a neighborhood U of x
and a bounded set C C R" such that

S(x) € C whenever x € U.

We say that S:R" = R is inner semicontinuous at (X, y) € gph S if for any sequence
x, — X there is a sequence y, € S(x,) converging to y as v— oco. For single-valued
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mappings, this clearly reduces to the standard continuity of S at x. In the set-valued
case, the inner semicontinuity at x of an inner semicompact closed-graph mapping S
surely holds when S(x) is a singleton just at the reference point x, which occurs in many
applications; see more discussions in section 3 on the fulfillment of the inner semi-
continuity assumption in the framework of bilevel programming. Note that the inner
semicontinuity of S at (x, y) for every y € S(x) goes back to the standard notion of
lower/inner semicontinuity of S at x widely used in the literature. It is clear that the
inner semicontinuity of S at (x, y) is implied by its following Lipschitz-like behavior
around this point that extends the classical local Lipschitz continuity of set-valued
mappings in the Hausdorff sense.

Recall that S:R" = R satisfies the Aubin/Lipschitz-like property around the point
(¥, ) € gph S if there are neighborhoods U of X, V of y and a constant £ > 0 such that

Sx)NVc Su)+£llx—ul|B forall x,ueU,

where B stands for the closed unit ball of the space in question. This property is known
to be equivalent to metric regularity and linear openness of the inverse mapping S ',
which are of crucial importance for many aspects of nonlinear analysis and
optimization. It is worth mentioning that the coderivative criterion D*S(x,y)(0) = {0}
provides a complete characterization of the Lipschitz-like property of S around (x, y).

3. Bilevel programs with smooth initial data

In this section, we consider the optimistic version of the basic bilevel programming
problem given in the following form:

minimize F(x,y) subject to x € X, y e W(x), (3.1

where F:R" x R” — R is the upper-level objective function, X C R” is the upper level
constraint set, and W:[R" = R™ is the set-valued mapping given by

W(x) = Argmin{f(x, y)|ye K(x)}, 3.2)

which describes the parameterized (by x) set of optimal solutions to the lower-level
problem:

minimize f(x,y) subject to y € K(x) (3.3)

with f/:R"xR” — R and K:R" = R"”. For simplicity, we focus in what follows on
the case when the constraint mapping K(x) in the lower-level problem and the
constraint set x in the upper-level problem are described by functional constraints of
the inequality type:

Kx)={yeR"|g(x,y) <0, i=1,....p}, xeR" (3.4)
X={xeR"|G(x) <0, j=1,....k} (3.5)

via real-valued functions g; and G;. In fact, our methods and results obtained below
hold in more general constraint settings; it is discussed in Remark 3.3 and 5.2 further.

In the introductory section, we discussed the relationship between the above
optimistic version of bilevel programs and other versions and approaches in bilevel
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programming; see also Dempe [7] and Dutta and Dempe [10] for more details.
To proceed further without triviality, we always assume that the constraint sets K(x)
in the lower-level problem are nonempty for all x € X ##. It follows immediately from
the classical Weierstrass theorem that the argminimum sets W(x) in (3.2) are nonempty
whenever the constraint sets K(x) are compact and the lower-level cost function f is
lower semicontinuous in y on K(x). However, from the viewpoint of deriving necessary
optimality conditions — which is the main issue in this article — it does not make sense
to impose any compactness assumptions. Note that, given a local optimal solution,
we automatically presume the nonemptiness of all the (moving) constraint sets at the
points under consideration.

The main attention in this section is paid to deriving necessary optimality conditions
for the optimistic bilevel program described in (3.1)—(3.5), where all the functions
are supposed to be smooth, in the sense that they are strictly differentiable at the
reference points, which always happens when they are continuously differentiable
around these points.

Developing the value function approach to bilevel programming, consider the problem

{minimize F(x,y) subject to x € X, y € K(x), (3.6)

and f(x,y) —@(x) <0,

where K(x) and x are given in (3.4) and (3.5), respectively, and where
o(x) ;= inf {f(x,») |y € K(x)} (3.7)

is the optimal value function in the parametric lower-level problem (3.3). It is clear that
the latter problem is globally equivalent to the original optimistic bilevel program (3.1)
with W(x) given in (3.2), while /ocal optimal solutions to problem (3.1), (3.2) are always
locally optimal to the value function problem (3.6), (3.7). Since the original optimistic
bilevel program we are dealing with is problem (1.2), it is important to clarify how local
optimal solutions for (1.2) are related to those for (3.1). This issue has been addressed in
the paper by Dutta and Dempe [10], where it has been shown that if the argminimum
mapping W is upper semicontinuous in the sense of set-valued analysis, then a local
optimistic solution to (1.2) is also a local optimistic solution to the problem (3.1) under
consideration. It has been later realized in our personal communication with Outrata
[25] that the upper semicontinuity is more than we need. In fact, to keep the required
results of [10], it is sufficient to impose the wuniform boundedness assumption on
the solution/argminimum mapping W around the reference local optimistic solution
to (1.2). The latter assumption is fully in accordance with the inner semicompactness
requirement on W imposed in the present article from the viewpoint of necessary
optimality conditions. This observation allows us to derive necessary conditions for
local optimality in the optimistic bilevel program (3.1), (3.2) by doing it in the
framework of nonlinear programming of the special nonstandard type (3.6), (3.7).

In what follows, we thus concentrate on problem (3.6) involving the value/marginal
function (3.7), where the constraint mapping K(x) and set x are given in the functional
forms (3.4) and (3.5), respectively. Note that in spite of smoothness of all the functions
involving in the original formulation of the bilevel program under consideration,
the nonlinear programming problem (3.4)—(3.7) is nonstandard for at least two reasons.
First, as mentioned in section 1, the value function ¢(x) from (3.7) involved in the
inequality constraints in (3.6) is intrinsically nonsmooth. The second principal obstacle
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is that, due to the specific structure of (3.6), the classical constraint qualification
conditions (like the Mangasarian—Fromovitz and Slater ones) naturally extended to the
nonsmooth case fail to hold for (3.6); see [37,38] for more details. In this setting, Ye and
Zhu [37] suggested a new constraint qualification condition for (3.6), which is
formulated as follows.

Consider the perturbed version of (3.6), linearly parameterized by u € R, in the form:

min F(x, y) subject to f(x,y) —p(x)+u=0, yeK(x), xeX. (3.8)
X,y

Following [37], we say that the unperturbed problem (3.6) is partially calm at its given
feasible point (X, y) if there are a constant A>0 and a neighborhood U of the triple
(%,7,0) e R" x R™ x R, such that for all (x, y, u) € U feasible to (3.8) one has

F(x,y) — F(x,y) + A|u| = 0. 3.9

In [37,38], the reader can find more details and discussions on partial calmness,
its relationships with other constraint qualifications, and efficient conditions ensuring
its validity for important classes of optimization problems.

To derive necessary optimality conditions of the KKT type in the bilevel program-
ming problem (3.1)—(3.5), we also need to impose appropriate regularity assumptions
on the inequality constraints in the lower-level and upper-level problems.

Given a point (x, y) satisfying the lower-level inequality constraints (3.4), we denote

I3, 5) ::{ie{l,...,p}|g,(x,y)=o} (3.10)
and say that (X, y) € R" x R™ is lower-level regular if for any nonnegative A;, one has
|: Z AiV,gi(X, ) = 0:| =>[1; =0 whenever i€ I(%,})]. (3.11)
iel(x. )

Similarly, given x € R" satisfying the upper-level inequality constraints (3.5), we denote
J(F) = [je{l,...,k}|c;_,(>z):0] (3.12)

and say that x is upper-level regular if for any nonnegative A; one has
[ 3 VG = 0]=>[,\, — 0 whenever j € J()E)]. (3.13)

JeJ(X)

One can easily recognize that the regularity conditions (3.11) and (3.13) are dual
versions of the classical Mangasarian—Fromovitz constraint qualification for the
inequality constraints in the lower-level and upper-level problems, respectively. Now we
are ready to establish the following new necessary optimality conditions for smooth
bilevel programs.

Tueorem 3.1 (Necessary conditions in smooth bilevel programming). Let (x,y) be
a local optimal solution to the bilevel program described in (3.1)—(3.5), where all
the functions are strictly differentiable at (X, y) and X, respectively. Assume that the bilevel
program under consideration is partially calm at (x,y) and that (x,y) is lower-level
regular (3.11) while x is upper-level regular (3.13). Furthermore, we suppose that the
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argminimum mapping V in (3.2) is inner semicontinuous at (X, y). Then there are real
numbers A>0, A with i=1,...,p and s=1,...,n+1, w; with i=1,...,p, n, with
s=1,...,n+1, and oy with j=1,... k, such that the following conditions hold:

n+1

P P
VAFED + Y Vi ® ) =2 3 s 3 m Ve ®.9)
i=1 s=1 i=1

k
+) o VG(3) =0, (3.14)
=1
- - - - p - -
V(X 5) + AV A5 5) + Y Vg%, 7) =0, (3.15)
i=1
P
Vo /(%7 + D hiVygi(%5) =0 forall s=1,....n+1. (3.16)
i=1
Ais =0, Aigi(x,y) =0 forall i=1,...,p, s=1,...,n+1, (3.17)
wi >0, wigi(x,y)=0 forall i=1,...,p, (3.18)
n+l
ny >0 forall s=1,....,n+1, Znszl, (3.19)
s=1
;>0 and «;Gi(x)=0 forall j=1,... k. (3.20)

Proof Since (X, y) is a local minimizer to the bilevel program (3.1)—(3.5), it is a local
optimal solution to the single-level mathematical program (3.6) involving the value
function (3.7) and the constraints given by (3.4) and (3.5). The latter problem reads
as follows:

minimize F(x,y) subject to
Sx,y) = p(x) <0,
gi(xsy)foy i=1a~-'sps
GJ(X)SO, jzla""ka

(3.21)

where the value function ¢(x) from (3.7) is represented by

o(x) = inf {f(x,») |g(x,») <0 as i=1,....p}. (3.22)

Observe that the value function (3.7) is locally Lipschitzian around x under the
assumptions made. Indeed, it follows from [18, Corollary 4.39] that the constraint
mapping K(x) in (3.4) is Lipschitz-like around (x, y) under the lower-level regularity of
(x, y) — this follows from the coderivative criterion mentioned in the end of section 2.
Therefore, the result of [20, Theorem 5.2(i)] ensures the Lipschitz continuity of the
value/marginal function (3.7), since the argminimum mapping ¥ from (3.2) in case
(3.4), is assumed to be inner semicontinuous at (x, y), while the cost function fis locally
Lipschitzian around this point.

Applying next [37, Proposition 3.3] to problem (3.21), we conclude that the imposed
partial calmness condition at (X, y) is equivalent to the existence of A >0, such that (x, y)
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solves (locally) the following penalized constrained problem, where the value function ¢
is moved from the constraint to the cost functional:

minimize F(x,y) + A(f(x, ) — ¢(x)) subject to
gi(x,») <0, i=1,...,p, (3.23)
Gj(x)SO, ]II,,k

By the discussion above, (3.27) is a problem of Lipschitzian programming. Applying
the generalized Lagrange multiplier rule from [19, Theorem 5.21(iii)] — in terms of the
basic subdifferential (2.5) — to the local optimal solution (x, y) for (3.23) and taking
into account the subdifferential sum rule from [18, Proposition 1.107(ii)] and the sub-
differential representation (2.6) for strictly differentiable functions, we find nonnegative
multipliers (Ao, L1, ..., fp, 1, - . ., o) 70 satisfying the Lagrangian inclusion

0 € A VF(E, §) + A VAT, ) + (Rodd(—¢)(3), 0)
i o k _ (3.24)
+ Y wVeE D) + Y (VG(9),0)
i=1 j=1

and the complementary slackness conditions in (3.18) and (3.20). It casily follows from
the assumed lower-level regularity of (x, y) and upper-level regularity of x, combined
with sign and complementarity slackness conditions on (y,..., 1y, @y, ..., qx), that
Ao>0 in (3.24). Hence, the latter inclusion is equivalent to the KKT-type condition

0 € VF(X, 3) + AVAX, ) + (L0(—¢)(X),0)
p o K B (3.25)
+ Y wiVEdE ) + Y (e VGH%),0)
i=1 j=1

along with the above sign and complementary slackness conditions for p; and «;.
To proceed, we observe the inclusion

A—@)(F) C —co dp(X) (3.26)

valid due to the symmetry property (2.7), where the sets dp(x) and codp(x) are nonempty
and compact due to the local Lipschitz continuity of ¢ around x. Furthermore, applying
[22, Corollary 4] that holds under the lower-level regularity and the inner semicontinuity
conditions assumed in the theorem, we get the following upper estimate of the basic
subdifferential of the value/marginal function ¢ at x:

p
woc U [vED+ Y AV (3.27)

(Aaendp)EA(X, J) i=1

where the union is taken over the set

P
AGT) =[G, hy) € RIVAE D) + Y 49,85 7) =0,
i=1

Az 0, hg(®9) =0, i=1,..p}. (3.28)
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Picking v € co dp(¥) and using the classical Carathéodory theorem, we find n,€ R and
v,e R" with s=1,...,n+ 1, such that

n+1 n+1

V= Znsvs, ZnS =1, n>0, vy € dp(x) fors=1,...,n+ 1. (3.29)
=1

s= s=1

Applying (3.27) to each v, from (3.29), we thus find A;, such that

P
Mis 2 0, disgi(%5) =0 for i =1,....p; VAEH) + D 1iVygil%,7) =0,
i=1

15

)4
vy = VAR + ) hVagl %5, s=1,...n+1

i=1

Combining all the above via (3.25), we arrive at the necessary optimality conditions
(3.14-3.20) and conclude the proof of the theorem. |

Let us discuss certain characteristic features of the necessary optimality conditions
derived in Theorem 3.1 and some of its natural modifications and extensions.

Remark 3.1 (Independence of optimality conditions on partial derivatives of smooth
lower-level cost functions). Observe that the necessary optimality conditions for bilevel
programs with smooth data obtained in Theorem 3.1 are independent of the partial
derivative of the lower-level cost function f(x, y) with respect to the parameter variable x.
This seems to be a new feature in the study of bilevel programs that has not been
observed before. On the other hand, it does not come as a full surprise. We refer the
reader to the paper by Dempe and Lohse [9], where a similar phenomenon was observed
in somewhat different setting of linear bilevel programming with parameterized lower-
level constraints.

Remark 3.2 (Inner semicontinuity of the argminimum map). A crucial assumption of
Theorem 3.1 is the inner semicontinuity of the solution/argminimum map W (3.2) at the
given optimal pair (X, y) € gph W. Observe that it automatically holds if ¥(x) = {y} is a
singleton, while the solution map W may be multivalued at any point different from Xx.
In the books by Dempe [7], Outrata et al. [26], and their references the reader can find
descriptions and discussions of various settings with local uniqueness of solution maps
to lower-level problems. Let us mention some important conditions that ensure the
inner semicontinuity of solution maps in parametric optimization, which thus can
be applied to the set-valued argminimum map in Theorem 3.1:

(a) Constraint functions (in the lower-level problem) are weakly analytic in the sense of
Klatte and Kummer; see more details and efficient conditions for this in Theorem
4.3.5 of the book [2]. Note that such functions are closely related to the so-called
LFS-functions in the sense of Zlobec [40]. Observe that the weak analyticity
requirement may be far removed from single-valuedness of the argminimum map,
linearity of the lower-level problem, and/or convexity of the optimal value function;
see more examples and discussions in the books [2,40] and the references therein.
It is worth mentioning that the inner semicontinuity of the argminimum map is
generally not related to the convexity of the optimal value function in the lower-level
problem as demonstrated by the following simple example: min{— y | y < x>}, where
W(x)={x"} and ¢(x)= — x°.
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(b) The second-order sufficient condition in the sense of Robinson [27] is satisfied in the
lower-level problem. This holds, in particular, if the lower-level objective is locally
strictly/strongly convex with respect to the decision variable y.

(c) Parametric problems of /inear programming with additive (right-hand side)
perturbations; see more details in the next section.

(d) The solution map W is Lipschitz-like around (x,y); in particular, it is locally
Lipschitzian around x. Many results ensuring Lipschitz-like behavior of solution
maps are established (based on the coderivative criterion and the appropriate
second-order subdifferential of nonsmooth functions) in the book by Mordukhovich
[18, Chapter 4] and the references therein for various optimization and
optimization-related problems (e.g. for variational inequalities). We particularly
refer the reader to the paper by Levy and Mordukhovich [13], where efficient
conditions of this type are derived and discussed for solution maps in parametric
nonlinear programming.

Remark 3.3 (Smooth constraints of the equality type). The necessary optimality
conditions derived above can be easily extended to the case of additional equality
constraints

hi(x,y)=0, i=p+1,....p+q, (3.30)
Hix)=0, j=k+1,....k+1, (3.31)

in (3.4) and (3.5) governed by smooth (i.e. strictly differentiable, as adopted in this
article) functions at the lower and upper levels. This follows directly from the proof
of Theorem 3.1, since the corresponding results used therein are established in fact
for problems with both inequality and equality constraints. The only adjustment to
mention in the formulation of Theorem 3.1 for bilevel programs involving additional
equality constraints is that the lower-level and upper-level regularity should be now
understood in the sense of fulfilling the full counterparts of the Mangasarian—-Fromovitz
constraints qualifications in (3.11) and (3.13) and that, of course, the sign conditions
relate to multipliers corresponding just to inequality constraints. We consider here our
basic bilevel model involving merely inequalities for the following two reasons: first —
for simplicity, and second — to address specific features of comvex problems studied
in the next section, where convexity is appropriate for inequality versus equality
constraints; the latter ones require linearity.

Remark 3.4 (Necessary conditions in smooth bilevel programming with no inner
semicontinuity). The approach used in the proof of Theorem 3.1 and the results
developed in [19,20,22] allow us to derive necessary optimality conditions for the bilevel
program (3.1)—(3.5) with the smooth data with no inner semicontinuity assumption
imposed in the theorem. It should be replaced by the inner semicompactness at x of the
argminimum mapping ¥ from (3.2) with K(-) given in (3.4). The latter assumption
is much more flexible and holds, in particular, when W is uniformly bounded around x
in the finite-dimensional setting under consideration. In addition, we need to assume
that the strict differentiability and upper-level regularity (but not partial calmness)
requirements of the theorem are satisfied at (x, y) for all y € W(x). In this case, the value
function ¢ in (3.7) is locally Lipschitzian around x by [20, Theorem 5.1(ii)] and — from



Optimistic bilevel programming 591

[Theorem 5.38(ii) and Corollary 4.35] — we have the following counterpart of the upper
estimate (3.27):

P
woc U] U [vrEn+ Y avecnl), (3.32)
i=1

YEW(X) (A, Ap)EA(X, )

where the set of multipliers A(X, y) is defined in (3.28) with the replacement of y by
y € ¥(x). Following now the proof of Theorem 3.1 and using the upper estimate (3.32)
instead of (3.27), we find numbers (A, A, i;, 5, @) as in Theorem 3.1 and also vectors
ys € W(x) with s=1,...,n4 1, such that one has conditions (3.15), (3.18)—(3.20) along
with (3.16) and (3.17) where y is replaced by y,, and with the new optimality condition

n+l1 )4
VF(E, 7) 4+ AVE5) = 2 Y 0 Vfl%n) + ) miVigi(X, 7)
s=1 i=1
n+1 P k
=D A V) + Do VGH =0 (3.33)
s=1 i=1 j=1

replacing (3.14). Observe that the new conditions just derived reduce to those in
Theorem 3.1 when W(x) = {y}, while Theorem 3.1 has been proved for ¥ assumed to
be merely inner semicontinuous at (x, y). Thus, the two results obtained are generally
independent. Since the necessary optimality conditions presented in this remark follow
from more general necessary conditions of Theorem 5.1 established for Lipschitzian
bilevel programs in section 5, we do not formulate them as a separate theorem.

Remark 3.5 (Comparison with earlier work). In the case when the lower level optimal
solution is unique, the result of Theorem 3.1 agrees with [37, Theorem 3.1] for optimistic
bilevel programs with C' data. In the general case, under the inner semicontinuity
assumption, the necessary optimality conditions of Theorem 3.1 are different from those
in [37, Theorem 3.1] in several essential points (being more simple and providing
additional information). Moreover — as seems to us — the inner semicompactness
(or uniform boundedness) requirement on W is just missed, while it is needed. If the
inner semicontinuity assumption is replaced by inner semicompactness the necessary
optimality conditions in (3.33) are close to the results in [37, Theorem 3.1]. It is worth
mentioning besides this that the upper-level problem in [37] does not contain functional
constraints as in (3.5) — since it is assumed therein that x € intX.

Remark 3.6 (Partial calmness condition). Probably the most restrictive assumption
of Theorem 3.1 is the partial calmness condition. 1t is actually necessary and sufficient
for the exactness of the Upenalty function approach used in (3.23). If this exact penalty
function approach cannot be used, the KKT-type necessary optimality conditions in
Theorem 3.1 need to be replaced by Fritz John-type conditions containing an additional
multiplier Ao at the upper-level objective function. The results in the papers [34,35]
indicate that this assumption can be replaced by other assumptions in some situations.
The papers by Ye and Zhu [37,38] give a number of sufficient conditions for
partial calmness. One sufficient assumption is that the lower-level problem (1.1) has
a uniform weak sharp minimum. Necessary conditions for weak sharp minima in
optimization problems have been broadly investigated; see e.g. [4,5] and the
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references therein. Sufficient conditions for uniform weak sharp minima can be found
in Ye [33]. Let us particularly mention the following interesting result by Burke and
Ferris [S]: optimal solutions of linear programming problems are weak sharp minima
whenever the problems are solvable; cf. also related developments by Mangasarian and
Meyer [15].

Let us also mention a helpful characterization of partial calmness provided by [37,
Proposition 3.3], which shows that it is sufficient to check whether the reference local
optimal solution (X, y) is a local optimal solution of problem (3.23) for some positive A.
The following example illustrates an efficient procedure of using this characterization
for the partial calmness verification in nonlinear settings.

Example 3.7 (Verification of partial calmness via exact penalization). Let (X, y) be
a local optimal solution to the bilevel program (3.1). We have already employed in the
proof of Theorem 3.1 the following fact from [37, Proposition 3.3]: problem (3.1)
is partially calm at (x, y) if and only if there is 1 >0, such that (x, y) solves the penalized
problem:

minimize F(x,y) + A(f(x,») — ¢(x)) subject to x € X, g(x,») <0,

where ¢ is the optimal value function (3.7) to the lower-level problem. Now we show
that this characterization is a convenient tool for the partial calmness verification.
Consider the fully nonlinear, at both lower and upper levels, bilevel program (3.1) with
(x,7)eR* X=R, and

=1 ¥

(X2 2
Fx.y)i==———+7 “’(x)'—Ar%Tnln{?*?}'

It is easy to see that W(x)= {0} and ¢(x) = x?/2. Furthermore, (X, 7) = (1, 0) is the only
solution to the upper-level problem, and so it is an optimal solution to the bilevel
program under consideration. We have f(x, ) — ¢(x) = »*/2, and hence the correspond-
ing unconstrained penalized problem is as follows:
2 2 2
Gy W
2 2 2

For any A >0, the latter problem is smooth, strictly convex, and has the unique
optimal solution (X, y) = (1, 0). Thus, the initial bilevel program is partially calm at this
point.

On the other hand, it is interesting to observe — again by using [37, Proposition 3.3] —
that replacing the cost function F(x, y) in the above upper-level problem by

(x—1> (-1
;. T

and keeping the same lower-level problem, we arrive at the optimistic bilevel program
(3.1) with the optimal solution (x, y) = (1, 0), which fails to satisfy the partial calmness
condition. Indeed, it is easy to see that the corresponding penalized problem has the
optimal solution

minimize

1
(1’1+—x) £ (1,0) whenever >0.
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The above example shows that partial calmness in bilevel programs may significantly
depend on the structure of upper-level objectives. On the contrary, the next example
describes a rather general class of multidimensional bilevel programs with nonlinear
lower-level problems when partial calmness holds independently of the upper level.

Example 3.8 (Partial calmness in nonlinear bilevel programs via weak sharp minima).
First we consider the following quadratic-constrained optimization problem with
respect to x = (xy, X2, x3) € R*:

X2 X3
minimize 71 +?2 subject to @; < x; <b;, i=1,2,3.

It is shown in [5] that any (definitely not unique) optimal solution to this problem is
a uniform weak sharp minimum whenever either ;>0 or b;<0 for i=1, 2. Therefore,
every bilevel program having this problem at the lower level (where e.g. a;, b; are the
parameters) is uniformly partially calm at its optimal solutions [37], provided that the
above condition remains valid. In fact, this quadratic example generates a fairly broad
class of nonlinear bilevel programs exhibiting the same partial calmness phenomenon.
Indeed, the deep topological result of [12, Theorem 2.4.2] ensures that any sufficiently
smooth constraint optimization problem on R” with nondegenerated critical points can
be equivalently reduced (by a C'-diffeomorphism) to a quadratic optimization problem
with objective function coefficients +1.

4. Bilevel programs with convex and linear structures

In this section, we pay the main attention to bilevel programs with certain convex
structures of either lower-level problems or both lower-level and upper-level ones.
The results obtained are significantly different for smooth and nonsmooth problems —
and not only from the viewpoint of differentiation. They are also generally different
from the optimality conditions for smooth bilevel programs derived in section 3 and
for those governed by Lipschitzian bilevel problems that are considered in section 5. We
discuss remarkable specifications of the major results in the case of linear programming
problems at the lower level.

Let us start with fully convex problems in (3.1)—(3.5) defined generally by nonsmooth
functions that are convex jointly with respect to a// their variables. To proceed, we first
modify lower-level and upper-level regularity requirements formulated in (3.11) and
(3.13) for smooth problems. This can be naturally done by replacing the Mangasarian—
Fromovitz type constraint qualifications for smooth problems as in (3.11) and (3.13)
with their easier Slater counterparts well-recognized in convex programming.

Following this way, we say that the convex bilevel program is lower-level regular if for
each x e R" with K(x)#@ in (3.4) there is y, € R™ such that

gi(x, yy)<0 whenever i=1,...,p. 4.1

Similarly, we say that the bilevel program is upper-level regular if there is X € R" with
W(X) # ¢ satisfying the conditions

Gi(%)<0 forall j=1,. ..k 4.2)
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It is well known that for smooth convex problems the regularity conditions (4.1) and
(4.2) imply those in (3.11) and (3.13), respectively.

Tueorem 4.1 (necessary conditions for fully convex nonsmooth bilevel programs) Let
(X, y) be an optimal solution to the optimistic bilevel program (3.1)—(3.5), where all the
cost and constraint functions are convex with respect to their variables. Assume that the
bilevel program under consideration is partially calm at (x, y), and that it is both lower-
level and upper-level regular. Suppose also that the argminimum map ¥V is inner
semicompact at x, which is automatic when ¥V is uniformly bounded around this point.
Then there exist A>0, (u1,...,u1,) € R’ satisfying (3.18), (ai, ..., o) € R satisfying
(3.20), and also y € W(xX) and (A, ..., A,) € R’ such that the following relationships hold.

p
0 € 0%, 5) + 1(0AE7) = AARD) + D g, 5)
i=1

)4 k
— 1) Midg(® ) + Y G, 43)
i=1 j=1
P
0 € B,F(X, 7) + 20,/ (%, 7) + Y idygi(%, ), (44)
i=1
—_ p _
0€d, /(% 7)+ Y ridyg(X, i) (4.5)
i=1
1>0, AgiX,7)=0 forall i=1,...,p, (4.6)

where 9, d,, and 9,, stand, respectively, for the full and partial subdifferentials of convex
analysis. If, moreover, W is assumed to be inner semicontinuous at (x, y), then we can
put y = y in the relationships (4.3), (4.5), and (4.6).

Proof  Following the proof of Theorem 3.1, we conclude that (X, y) is an optimal
solution to the single-level problem of mathematical programming (3.21) with the
marginal function ¢ defined in (3.22). It is easy to check that the convexity of f'and g;
implies the convexity of ¢. Since the functions f and g; are Lipschitz-continuous
around the reference points (due to their convexity and continuity) and by the lower-
level regularity (4.1), the value function ¢ is locally Lipschitzian around x; this
is a well-known fact that follows, e.g., from an essentially more general result of
[20, Theorem 5.1] combined with [18, Corollary 4.43].

Using the partial calmness condition at (X, y), we conclude as in the proof of
Theorem 3.1 that (X, y) is a local optimal solution to the penalized (by A >0) problem
(3.21), which is Lipschitzian while nonconvex, since the cost function F+ A(f — ¢) therein
is a difference of convex functions. Applying to (3.23) the generalized multiplier rule
from [19, Theorem 3.21(iii)] and then the (basic) subdifferential sum rule for
Lipschitzian functions given in [18, Theorem 2.23(c)], we arrive at the inclusion

0 € AF(X, J) + AoAdf (X, 7) + (Lord(—¢)(X), 0)

)4 k
+ ) g%, 7) + Y a(9GH(%). 0), (4.7)
i=1 j=1
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where all the multipliers Ao, 14;, @; are nonnegative and not equal to zero simultaneously,
with the complementary slackness conditions (3.18) and (3.20) for u; and «;. Observe
that in (4.7) and in what follows we use the same symbol for the basic subdifferential
and the subdifferential of convex analysis, since they agree for convex functions.

As in standard convex programming (actually by definition of the subdifferential in
convex analysis), we easily conclude that the combination of the lower-level and upper-
level regularity conditions of the Slater type in (4.1) and (4.2) with the sign and
complementary slackness conditions from (3.18) and (3.20), imply that 1y #0 in (4.7).
Thus, we arrive at the KKT-type inclusion

0 € 9F(X,y) + A0f (X, ) + (Ad(—¢)(X), 0)
P k
+ Y widgi(%,5) + Y (@0G(%),0). (4.8)
i=1 j=1

Then we wuse the following important relationship between the full and
partial subdifferentials of convex continuous functions ¥(x, y) that holds by e.g. [18,
Corollary 3.44]:

(X, ¥) C 0xP(X, ¥) X 9 P(X, ). (4.9)
Employing (4.9) in the KKT condition (4.8), we get the inclusions (4.4) and

0 € 0, F(X, ) + A f(X, y) + Ad(—p)(X)

P k
+ D midhg(® ) + ) G (4.10)
i =1

i=1 J=

Furthermore, the symmetric property (3.26) and the convexity of the subgradient set
dp(x) — since ¢ is convex — allow us to conclude that

A(—@)(x) C —0p(X). (4.11)

The next step is to efficiently estimate the subdifferential dp(x) of the value function
in the convex setting under consideration. Applying the general result for basic sub-
gradients of marginal functions from [22, Theorem 8] (actually its inner semicompact
counterpart) to our value function ¢ given in (3.22) and using the decomposition
property (4.9), we get

P
woc U U |aEn+ Y maaEnl] (4.12)
i=1

YEWR) (A1 hp)EAE, )

via the union over the argminimum set W(x) from (3.2) and the set of multipliers
(A1,...,Ap) € A(X,y) defined now by

P
AGY) =[G, € R0 € Bftx ) + Y Ayl ),
i=1

A0, dgie) =0, i=1,....p}. (4.13)
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Combining (4.10)—(4.13), we arrive at the necessary optimality conditions (4.3)—(4.6),
in addition to (3.18) and (3.20), and thus complete the proof of the theorem in the case
when W is inner semicompact at X.

Of course, this gives the simplified relationships (4.3), (4.5), and (4.6) with y = y if
Y(x) = {y} is a singleton. However, the above proof (cf. also the proof of Theorem 3.1)
allows us to arrive at the latter conclusion when the argminimum map W is assumed to
be merely inner semicontinuous at the solution pair (x, y). ]

Remark 4.1 (Dependence of optimality conditions on partial subgradients of
nonsmooth lower-level cost functions). Observe that even in the case of W(x)= {y}
(and in the general case of inner semicontinuity of W) with a nonsmooth lower-level cost
function f, we loose in (4.3) the remarkable independence phenomenon of smooth bilevel
programs discussed in Remark 3.1. Indeed, one has

I f(X,7) — (X, y) = {0}

in (4.3) if and only if 9,f(x, y) is a singleton, i.c. f'is strictly differentiable with respect to
the parameter variable x at (X, y).

Remark 4.2 (Subdifferential regularity). As follows from the proof of Theorem 4.1,
the approach developed and the results employed therein allow us to extend the
necessary optimality conditions obtained in (4.3)—(4.6) to more general classes of
functions — with appropriate modifications. Indeed, assuming that the functions
F.f.g, G, and ¢ are subdifferentially/lower regular at the corresponding points (in
the sense that their basic subdifferential agrees with the Fréchet one; see section 2),
we have the two key facts used in the proof of Theorem 4.1: the decomposition
property (4.9) by [18, Corollary 3.44] and the convexity of the basic subdifferential
dp(x). Of course, the lower-level and upper-level regularity assumptions of the Slater
type should be appropriately (subdifferentially) modified in the nonconvex setting;
cf. Section 5. Note that the class of subdifferentially regular functions is much
broader than the collections of convex and smooth ones; it includes, e.g., all
amenable functions; see [18,29] for more details.

Next we consider the optimistic bilevel program in (3.1)—(3.5) with smooth and
Uconvex structures simultaneously. It turns out that in this setting we are able to derive
new results different from the corresponding specifications of both Theorem 3.1 and
Theorem 4.1. The most remarkable feature of the new result is that we derive an
optimality condition in form (4.3) for smooth functions, where we are able to put y = y
without any inner semicontinuity assumption on the argminimum map W as in
Theorem 4.1.

TuaeorEM 4.2 (Necessary conditions for smooth bilevel programs with fully convex
lower-level problems). Let (x,y) be a local optimal solution to the bilevel program
(3.1)~(3.5), where all the functions F, G}, f, g; are continuously differentiable around
(x, y) and x, respectively, where the value function ¢ defined by (3.7) is finite around x,
and where the lower-level functions f'and g; are fully convex. Assume furthermore that
the argminimum map W is inner semicompact at x, that the bilevel program under
consideration is partially calm at (x,y), and that (x,y) is lower-level regular in the
sense of (3.11) while x is upper-level regular in the sense of (3.13). Then there are
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multiplies A >0, (w1, ...,u,) € R’ satisfying (3.18), (a1, ..., o) € R satisfying (3.20),
and (Ay,...,A,) € R” such that we have equality (3.15) and the relationships

V. F(X, 7) + Z A Vigi(X,7) + Za,VG (X) =0, (4.14)
i=1 j=1

V, (% 5) + Z AiVygi(%, ) = 0, (4.15)
i=1

2 >0, Mgd%7) =0 forall i=1,...,p. (4.16)

Proof Recall first a well-known fact of finite-dimensional convex analysis ensuring
that a convex function is locally Lipschitzian around any point from the interior of its
effective domain; see [28, Theorem 10.4]. Since the value function ¢ is convex for the
fully convex lower-level problem under consideration, it is locally Lipschitzian
around x € int(dom¢). Following then the proof of Theorem 3.1 and taking
into account inclusion (4.11) by the convexity of d¢(x), we arrive at the relationships
(3.15) and

p k
VoF(E,§) + AV /(5 5) + Y wiVig(®,7) + > ey VG(X) € M%), (4.17)

i=1 =1

where u; and «; satisfy (3.18) and (3.20), respectively. It remains to employ the following
subdifferential formula for the optimal value function:

P
wo= U {vED+ Y aveE ) (4.18)
i=1

()\l ----- )L/,)GA()E,f)

with the multiplier set A(x,y) computed in (3.28), established by Tanino and
Ogawa [32] (see also [31, Theorem 6.6.7]) under the assumptions made in our
theorem; note that the uniform boundedness requirement on W around x is imposed in
[31,32] while the proof therein works under the inner semicompactness of the
argminimum map. Substituting finally (4.18) into (4.17), we complete the proof
of the theorem. |

Remark (Related results) Observe that quite recently [35, Theorem 4.1], Ye has
derived by a different method necessary optimality conditions in the form of Theorem
4.2 for smooth bilevel programs under the concavity assumption on the function
flx,y) —¢(x) and various types of constraint qualifications. Let us also mention the
related earlier result of [34, Corollary 4.1] for the case of jointly linear cost and
constraint functions in lower-level problems of optimistic bilevel programming.

The results obtained in Theorem 3.1 and Theorem 4.2 can be easily specified for the
case of parametric linear programs at the lower level, provided that parameters enter
additively in constraint and cost functions — in order to keep full convexity. Note that
such problems are always partially calm at solution points; see [37, Proposition 5.1]
in connection with [5, Theorem 3.5]. Observe also that our necessary optimality
conditions for bilevel programs with linear lower-level problems — which are directly
implied by Theorems 3.1 and 4.2 — are different from (significantly simpler than) the
corresponding results presented in [37].
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Let us discuss some specific features of optimality conditions in bilevel programming
with linear lower-level problems.

Example 4.4 (Linear lower-level problems with additive perturbation). Consider the
bilevel program (3.1)—(3.5) with the lower-level problem (3.3) given by

minimize ¢'y subject to Ay < x, (4.19)

where the vector ¢€R” and the matrix 4 €R"*" are fixed. A specific feature of
(4.19) is that the perturbation parameter x enters only the right-hand side of the
constraint system. Of course, the lower-level problem (4.19) is fully convex in (x,y).
Given now an optimal solution (X, y) to the bilevel problem (3.1) with

W(x) := Argmin{cTy | Ay < x} (4.20)
J,‘/

and the set X defined in (3.5), we apply the necessary optimality conditions from
Theorem 4.2 and get the following relationships:

OleG/()z’) = 0

k
=1

)4
VL F(E,5) = ) (i —2B) +
i=1

J

P
VyF(E.7) +he + ) pid =0

=1
c+BTA=0
=0, BI(AF—%=0, u>0, p'(47—x) =0
>0, o G(Xx)=0,

where >0, B=(B1,.... B) R, p=(u1,..., 1) R, a=(cry, ..., oq) € R¥, and where
a' stands for the i-th row of the matrix A4.

Remark 4.5 (Inner semicontinuous solutions maps in linear programming). It is worth
indicating that the argminimum map W in the lower-level linear programming problem
from Example 4.4 happens to be inner/lower semicontinuous at the solution point x by
Bank et al. [2, Theorem 4.3.5]. Note that this phenomenon is /ost for more general
perturbations of linear programs at the lower level, in particular, for argminimum maps
in one of the forms:

U(x) = Argmin{xTy | Ay < b} or W(x) = Argmin{xTy | A(x)y < b},
v y

which do not correspond to fully convex lower-level problems in (3.1-3.5). In such cases,
we need to use necessary optimality conditions of type (3.33) discussed in Remark 3.4.

5. Lipschitzian bilevel programming

In the concluding section of the article, we derive necessary optimality conditions for
the optimistic bilevel program described in (3.1)—(3.5), where all the functions in both
lower-level and upper-level problems are Lipschitz continuous around the local optimal
solution under consideration. The results obtained subsequently partly extend the
corresponding optimality conditions established in sections 3 and 4 for smooth and
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fully convex bilevel programs, while certain important features of the above results are
due to the specifics of smooth and convex problems and do not have any analogs in
the general nonsmooth setting. The main tool of our analysis of Lipschitzian bilevel
programs is the basic subdifferential (2.5) of locally Lipschitz functions, which enjoys
full calculus.

To proceed, we need to formulate appropriate lower-level and upper-level regularity/
qualification conditions. Given a point (X, y) satisfying the lower-level inequality
constraints (3.4) with the index set (X, y) from (3.10), we say that (&, y) € R" x R"
is lower-level regular if the following implication holds in terms of the basic
subdifferential:

{ > hwi=0, k= o}z{xi =0 forall ie I(Sc,)?)] (5.1)

i€l(x, y)

whenever (u;, v;) € dgi(x, ) with some ;€ R" as i € I(x, ).
Similarly, given x € R” satisfying the upper-level inequality constraints (3.5) with the
index set J(x) from (3.12), we say that X is upper-level regular if

[0 € Z A0Gi(x), A > O]=>[Aj =0 whenever j e J(Sc)]. (5.2)

JeJ(X)

Observe that these regularity conditions developed in [18, section 4.3] are basic
nonsmooth counterparts of the classical Mangasarian—Fromovitz constraint qualifica-
tions for the lower-level and upper-level problems, respectively. For problems with
smooth data, they reduce to the lower/upper-level regularity conditions (3.11) and
(3.13) used in section 3.

The next theorem presents two versions of necessary optimality conditions for bilevel
programs with locally Lipschitzian data. The main difference between these mutually
independent versions is in the inner semicontinuity versus inner semicompactness
assumptions on the argminimum map (3.2); see Section 3 for more discussions.

Tueorem 5.1 (Necessary conditions for Lipschitzian bilevel programs). Let (X, y) be
a local optimal solution to the optimistic bilevel program (3.1)—(3.5), which is partially
calm at this point. Suppose that the upper-level functions f and G;, j=1, ..., k, are locally
Lipschitzian around (X,y) and X, respectively, and that X is upper-level regular.
The following assertions hold:

(1) Assume that the argminimum map V is inner semicontinuous at (X, y), that the pair
(x,p) is lower-level regular, and that the lower-level functions f and g, i=1,...,p,
are locally Lipschitzian around (X,y). Then there are 1>0, (ui,...,u,) €R’
satisfying (3.18), (1, ..., ws1) € R satisfying (3.19), (a1, . . ., o) € RY satisfying
(3.20), A, with i=1,....,p and s=1,....,n+1 satisfying (3.17), and
(Urs . sty 1) €RVUTD such that

)4
(s, 0) € X J)+ Y hidgi(%.§) foralls=1,....n+1, (5.3)
i=1
n+1 4 k
(2D n0,0) €0F(E, 7) + A0A% 7) + Y (. 9) + (D 00Gi(2,0).  (5:4)
s=1 i=1

=1
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(1) Assume that the argminimum map V is inner semicompact at X, that for each vector
y € U(X) the pair (X, y) is lower-level regular and the lower-level functions f and g; are
locally Lipschitzian around (X,y). Then there are >0, (i1, .., u,) € R satisfying
(3.18), (1, .. lwp1) R satisfying (3.19), (s ..., o) €RY satisfying (3.20)
as well as y; € W(X), u,e R", and hig with i=1,...,p and s=1,...,n+1, such that

one has
Ais >0, Aigi(X,y) =0 foralli=1,...,pands=1,...,n+1, (5.5
P
(u5,0) € (%, ) + > hisdgi(X.ps) forall s=1,....n+1, (5.6)

i=1
and relationship (5.4) is satisfied.

Proof Consider first case (i) when the argminimum map W is supposed to be inner
semicontinuous at (X, y). Proceeding as in the proof of Theorem 3.1, we come up —
under the partial calmness assumption — to the penalized problem (3.23) for which (x, y)
is a local optimal solution. Employing [18, Corollary 4.43], we conclude that the
constraint mapping K(-) in (3.4) is Lipschitz-like around (X, y) under the assumed
lower-level regularity, and thus the value function ¢ is locally Lipschitzian around x
by [20, Theorem 5.2(i)]. Therefore, (3.23) is a single-level problem of Lipschitzian
programming, and we have — by [19, Theorem 5.21(i1)] and the subdifferential sum rule
from [19, Theorem 2.23] — the following necessary optimality conditions for (X, y)
in (3.23): there are multipliers (Ao, i1, ..., Uy, @1, ..., 0), Not equal to zero simulta-
neously, such that A, >0, that u; and «; satisfy the sign and complementarity slackness
conditions formulated in (3.18) and (3.20), respectively, and that

0 € A0F(X, J) + AAdf (X, ) + (Lord(—¢)(X),0)

p k
+ ) g% ) + Y ap(9G,(%),0) (5.7)
i=1 =1
via the basic subdifferential (2.5) for the Lipschitzian functions in (5.7) with respect to
all their variables. Furthermore, the combination of the lower-level regularity of (x, y)
and the upper-level regularity of x implies that Ao>0 in (5.7), and thus we arrive at

0 € BF(X, ) + Af%, 7) + (A3(—¢)(%), 0)
P k
+ ) idgi%.7) + Y (40G)(%). 0). (5.8)
i=1 =1

Employing now the subdifferential formula for the value function ¢ from [22, Theorem
8], we get — under the inner semicontinuity and the lower-level regularity assumption
made — the following inclusion in the case of locally Lipschitzian functions in the lower-
level problem:

dp(x) C U Hu e R”
)

4
(u,0) € A%, 7)+ Y _ 202X, ),
(Alsees i=1

320, hgl® ) =0, i=1,...p}. (5.9)
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Now taking into account the symmetric property (3.26) and substituting (5.9) into (5.8),
we arrive at relationships (5.3) and (5.4), with the convexification weights 7, satisfying
(3.19), similarly to the proof of Theorem 3.1. This completes the proof of assertion (i).

To prove (ii) under the inner semicompactness assumption on W, we argue in the
same way as above by using [20, Theorem 5.2(ii)] for the justification of the local
Lipschitzian property of the value function ¢ around x and by employing the following
inner semicompact counterpart of [22, Theorem 8] instead of (5.9):

woc J[ U [eer
YEU(E) (1o hp)

Az 0, hgl®) =0, i=1,....p}] (5.10)

Then we can proceed similarly to the above arguments while distributing y over the
argminimum set W(X) in the convex combination; cf. the proof of Theorem 3.1 and also
Remark 3.4. This completes the proof of the theorem. [ |

P
(u,0) € T, ) + Y 2idgi(, p),
i=1

Observe that the proofs of Theorem 3.1, Theorem 3.1, and Theorem 4.1 go in
the same direction, while the specifics of the smooth and fully convex settings in
Theorem 3.1 and Theorem 4.1 allow us to use the decomposition of the full derivative/
subdifferential into the partial ones as — obviously — for smooth functions

and — nontrivially — for fully convex functions in (4.9). Furthermore, other specific
features of smooth and fully convex functions make it possible to establish particular
relationship in the necessary optimality conditions of Theorem 3.1 and Theorem 4.1,
which do not have any analogs in the general nonsmooth setting of Theorem 5.1.

Remark 5.1 (Avoiding convex combinations in necessary optimality conditions).
An underlying feature of the necessary optimality conditions in Theorem 3.1 and
Theorem 5.1 is the presence of convex combinations of gradients and subgradients of
the constraint functions g; in the lower-level problem; in the results of section 4, such
a convexification is not needed due to the automatic convexity. The necessary of this
operation in the proofs of Theorem 3.1 and Theorem 5.1 comes from the inclusion
(3.26) and the classical plus—minus symmetry of the convexified (Clarke) subdifferential
of Lipschitzian functions, which is not the case for the basic subdifferential. On
the other hand, such a convexification is not needed at all, if we directly apply to
f(x,y) —¢(x) in the aforementioned proofs the difference rule

@) — @2)(X) C 3 (X) — dg,(X) (5.11)

for the basic subdifferential recently obtained in [21, Corollary 3.4]. However,
the subdifferential difference rule (5.11) is derived in [21] under the assumption that
the Fréchet subdifferential dp,(x) is nonempty in a neighborhood of the reference point
X, which seems to be a restrictive assumption for the value function ¢ in the setting (3.7)
under consideration. We are going to carefully investigate this issue in our further
research.

Remark 5.2 (Nonsmooth constraints of the equality type). The necessary optimality
conditions obtained in Theorem 5.1 for bilevel programs with inequality constraints can
be extended to the case of additional equality constraints (3.30) and (3.31) governed
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by locally Lipschitzian functions at both the lower and upper levels. Indeed, the results
from [18-20,22] used in the proof of Theorem 5.1 are established therein for both
equality and inequality constraints; so we restrict ourselves to the case of inequality
constraints just for simplicity. To be able to use the aforementioned results in the case
of additional equality constraints (3.30) and (3.31), we need to replace the above
definitions of lower-level and upper-level regularity by the following relationships. For
the lower-level regularity: implication (5.1) holds whenever

(uio i) € dg,(%.7) for ie{l,....p)NIEF) and
(uis Vi) € 8h,()_C,)7) U 8(—/11)()_6,J7) for l:P + 17 Y 4 + q

with u;€ R" as i € I(X, y), where the index set (3.10) is extended now to

17 ={iell,....p} g% ) =0} Ulp+1,....p+aq).
For the upper-level regularity: instead of (5.2) we require that

k+1
[0€ 3 XIGD+ D AOHE) U a—H))(H),

Jjed(®) j=k+1

)»j20,j€J(>2)U{k+l,...,k+l}]
=>[/\_/=0 whenever .]'GJ()_C)U{k+1,...,k+l}],

here J(x) is defined in (3.12); see [18, section 4.3] for more discussions. The corresponding
subdifferential modifications for equality constraints, involving the terms

Ai[é)hi()_c, _)7) @] 3(—/’1,)()?, Jj’)] with A; >0, i = p+ 1,... ,p+4q,

apply to the subdifferential formula of [22, Theorem 8] for the value function
in the lower-level problem with both equality and inequality constraints. This allows
us to proceed accordingly in the proof of Theorem 5.1 for the case of general
constraints.

Remark 5.3 (Infinite-dimensional extensions). The necessary optimality conditions
derived in Theorem 5.1 and their specifications are satisfied with no change for bilevel
programs in infinite dimensions defined on the class of Asplund spaces (for both decision
and parameter variables), which can be equivalently described as Banach spaces whose
separable subspaces have separable duals. This class is sufficiently broad particularly
including every reflexive space; see e.g. [18] for more details and references. The above
observation follows from the fact that a// the results applied in the proof of Theorem 5.1
hold true in the case of Asplund spaces. Note that the assumptions imposed in
Theorem 5.1 ensure not only the fulfillment of the required generalized differential
calculus rules but also the validity of the so-called sequential normal compactness
properties (and calculus rules for them), which are automatic in finite dimensions while
playing a crucial role in infinite-dimensional variational analysis; see [18,19]. It is worth
mentioning that the inner semicompactness assumption — as formulated in section 2 —
stays with no change in the infinite-dimensional version of Theorem 5.1, but it does not
follow anymore from the the uniform boundedness.
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