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Abstract In this paper, we present a steepest descent method with Armijo’s rule for
multicriteria optimization in the Riemannian context. The sequence generated by the
method is guaranteed to be well defined. Under mild assumptions on the multicriteria
function, we prove that each accumulation point (if any) satisfies first-order necessary
conditions for Pareto optimality. Moreover, assuming quasiconvexity of the multicri-
teria function and nonnegative curvature of the Riemannian manifold, we prove full
convergence of the sequence to a critical Pareto point.

Keywords Steepest descent · Pareto optimality · Vector optimization · Quasi-Fejér
convergence · Quasiconvexity · Riemannian manifolds

1 Introduction

The steepest descent method with Armijo’s rule for real continuously differentiable
optimization problem (see, for instance, Burachik et al. [1]), generates a sequence
such that any accumulation point of it, if any, is critical for the objective function. This
fact was generalized for multicriteria optimization by Fliege and Svaiter [2], namely,
whenever the objective function is a vectorial function. Full convergence for a real
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optimization problem was assured under the assumption that the solution set of the
problem be nonempty and the objective function is a convex function; see Burachik et
al. [1] (or, more generally, a quasiconvex function; see Kiwiel and Murty [3]), which
has been generalized for vector optimization by Graña Drummond and Svaiter [4]
(see also Graña Drummond and Iusem [5]).

Extension of concepts and techniques, as well as methods from Euclidean spaces
to Riemannian manifolds, is natural and, in general, nontrivial; see, for instance, [6].
In the last few years, such extension settings with practical and theoretical purpose
have been the subject of much new research. Recent works dealing with this issue
include [7–30]. The generalization of optimization methods from Euclidean space
to Riemannian manifold have some important advantages. For example, constrained
optimization problems can be seen as unconstrained ones from the Riemannian ge-
ometry viewpoint (the constrained set is a manifold), and in this case, we have an
alternative possibility besides the projection idea for solving the problem. Moreover,
nonconvex problems in the classical context may become convex through the intro-
duction of an appropriate Riemannian metric (see, for example, [12]).

The steepest descent method for continuously differentiable Riemannian problems
has been studied by Udriste [31], Smith [32], and Rapcsák [6], and partial conver-
gence results were obtained. For the convex case, the full convergence using Armijo’s
rule has been generalized by da Cruz Neto et al. [33], in the particular case of the Rie-
mannian manifold has nonnegative curvature. Using the same restrictive assumption
on the manifold, Papa Quiroz et al. [18] generalized the full convergence result for
quasiconvex objective function.

In this paper, following the ideas of Fliege and Svaiter [2], we generalize their
convergence results for multicriteria optimization to the Riemannian context. Besides
this, following the ideas of Graña Drummond and Svaiter [4], we generalize the full
convergence result for multicriteria optimization, where the multicriteria function is
quasiconvex and the Riemannian manifold has nonnegative curvature.

The organization of our paper is as follows. In Sect. 2, some notations and results
of Riemannian geometry, used throughout of the paper, are defined. In Sect. 3, the
multicriteria problem, the first-order optimality condition for it and some basic defi-
nitions are presented. In Sect. 4, the Riemannian steepest descent method for finding
one solution of multicriteria problems is stated and the well-definedness of the se-
quence generated for it is established. In Sect. 5, a partial convergence result for
continuous differentiability multicriteria optimization is presented without any addi-
tional assumption on the objective function. Moreover, assuming that the objective
function be quasiconvex and the Riemannian manifold has nonnegative curvature, a
full convergence result is presented. Finally, in Sect. 6, some examples of complete
Riemannian manifolds with explicit geodesic curves and the steepest descent iteration
of the sequence generated by the proposed method are presented.

2 Preliminaries on Riemannian Geometry

In this section, we introduce some fundamental properties and notations of Rieman-
nian manifolds. These basic facts can be found in any introductory book on Rieman-
nian geometry; see, for example, [34, 35].
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Let M be an n-dimensional connected manifold. We denote by TpM the
n-dimensional tangent space of M at p, and by T M = ⋃

p∈M TpM tangent bun-
dle of M and by X (M) the space of smooth vector fields over M . Suppose that M

be endowed with a Riemannian metric 〈, 〉, with corresponding norm denoted by ‖ ‖,
that is, M is a Riemannian manifold. Recall that the metric can be used to define
the length of piecewise smooth curves γ : [a, b] → M joining p to q , i.e., such that
γ (a) = p and γ (b) = q , by

l(γ ) =
∫ b

a

‖γ ′(t)‖dt,

and, moreover, by minimizing this functional length over the set of all such curves,
we obtain a Riemannian distance d(p,q), which induces the original topology on M .
The metric induces a map f �→ gradf ∈ X (M), which associates to each scalar func-
tion smooth over M its gradient via the rule 〈gradf,X〉 = df (X), X ∈ X (M). Let
∇ be the Levi–Civita connection associated to (M, 〈, 〉). A vector field V along γ is
said to be parallel iff ∇γ ′V = 0. If γ ′ itself is parallel we say that γ is a geodesic.
Because the geodesic equation ∇ γ ′γ ′ = 0 is a second-order nonlinear ordinary dif-
ferential equation, then the geodesic γ = γv(.,p) is determined by its position p and
velocity v at p. It is easy to check that ‖γ ′‖ is constant. We say that γ is normalized
if ‖γ ′‖ = 1. The restriction of a geodesic to a closed bounded interval is called a
geodesic segment. A geodesic segment joining p to q in M is said to be minimal iff
its length is equals to d(p,q), and in this case, the geodesic is called a minimizing
geodesic.

A Riemannian manifold is complete iff geodesics are defined for any values of t .
The Hopf–Rinow theorem asserts that, if this is the case then any pair of points, say
p and q , in M can be joined by a (not necessarily unique) minimal geodesic seg-
ment. Moreover, (M,d) is a complete metric space and bounded and closed subsets
are compact. If p ∈ M , then the exponential map expp : TpM → M is defined by
expp v = γv(1,p).

We denote by R the curvature tensor defined by R(X,Y )Z = ∇X∇Y Z −
∇Y ∇XZ − ∇[X,Y ]Z, with X,Y,Z ∈ X (M), where [X,Y ] = YX − XY . Then the
sectional curvature with respect to X and Y is given by K(X,Y ) = 〈R(X,Y )Y,X〉/
(‖X‖2‖Y‖2 − 〈X,Y 〉2), where ‖X‖2 = 〈X,X〉.

In Sect. 5.2 of this paper, we will be mainly interested in Riemannian manifolds for
which K(X,Y ) ≥ 0 for any X,Y ∈ X (M). Such manifolds are referred to as mani-
folds with nonnegative curvature. A fundamental geometric property of this class of
manifolds is that the distance between points on the geodesics issuing from one point
is, at least locally, bounded from above by the distance between the points on the
respective rays in the tangent space. A global formulation of this general principle is
the law of cosines that we now pass to describe. A geodesic hinge in M is a pair of
normalized geodesic segments γ1 and γ2 such that γ1(0) = γ2(0) and at least one of
them, say γ1, is minimal. From now on l1 = l(γ1), l2 = l(γ2), l3 = d(γ1(l1), γ2(l2)),
and α = �(γ ′

1(0), γ ′
2(0)).
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Theorem 2.1 (Law of cosines) In a complete Riemannian manifold with nonnegative
curvature, with the notation introduced above, we have

l2
3 ≤ l2

1 + l2
2 − 2l1l2 cosα. (1)

Proof See [34] and [35]. �

In this paper, M will denote a complete n-dimensional Riemannian manifold.

3 The Multicriteria Problem

In this section, we present the multicriteria problem, the first-order optimality condi-
tion for it and some basic definitions.

Let I := {1, . . . ,m}, R
m+ = {x ∈ R

m : xi ≥ 0, j ∈ I } and R
m++ = {x ∈ R

m : xj >

0, j ∈ I }. For x, y ∈ R
m+, y � x (or x 
 y) means that y − x ∈ R

m+ and y � x

(or x ≺ y) means that y − x ∈ R
m++.

Given a continuously differentiable vector function F : M → R
m, we consider

the problem of finding a optimum Pareto point of F, i.e., a point p∗ ∈ M such that
there exists no other p ∈ M with F(p) 
 F(p∗) and F(p) �= F(p∗). We denote this
unconstrained problem in the Riemannian context as

min
p∈M

F(p). (2)

Let F be given by F(p) := (f1(p), . . . , fm(p)). We denote the Riemannian Jacobian
of F by

gradF(p) := (
gradf1(p), . . . ,gradfm(p)

)
, p ∈ M,

and the image of the Riemannian Jacobian of F at a point p ∈ M by

Im
(
gradF(p)

)

:= {
gradF(p)v = (〈

gradf1(p), v
〉
, . . . ,

〈
gradfm(p), v

〉) : v ∈ TpM
}
, p ∈ M.

Using the above equality, the first-order optimality condition for the problem (2) is
stated as

p ∈ M, Im
(
gradF(p)

) ∩ (−R
m++

) = ∅. (3)

Remark 3.1 Note that the condition in (3) generalizes to vector optimization the clas-
sical condition gradF(p) = 0 for the scalar case, i.e., m = 1.

In general, (3) is necessary, but not sufficient, for optimality. So, a point p ∈ M

satisfying (3) is called critical Pareto point.
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4 Steepest Descent Methods for Multicriteria Problems

In this section, we state the Riemannian steepest descent methods for solving multi-
criteria problems and establish a well-defined sequence generated for them.

Let p ∈ M be a point which is not critical Pareto point. Then there exists a direc-
tion v ∈ TpM satisfying

gradF(p)v ∈ −R
m++,

that is, gradF(p)v ≺ 0. In this case, v is called a descent direction for F at p.
For each p ∈ M , we consider the following unconstrained optimization problem

in the tangent plane TpM :

min
v∈TpM

{
max
i∈I

〈
gradfi(p), v

〉 + (1/2)‖v‖2
}
, I = {1, . . . ,m}. (4)

Lemma 4.1 The unconstrained optimization problem in (4) has only one solution.
Moreover, the vector v is the solution of the problem in (4) if and only if there exists
αi ≥ 0, i ∈ I (p, v), such that

v = −
∑

i∈I (p,v)

αi gradfi(p),
∑

i∈I (p,v)

αi = 1,

where I (p, v) := {i ∈ I : 〈gradfi(p), v〉 = maxi∈I 〈gradfi(p), v〉}.

Proof Since the function

TpM � v �→ max
i∈I

〈
gradfi(p), v

〉
,

is the maximum of linear functions in the linear space TpM , it is convex. So, it is
easy to see that the function

TpM � v �→ max
i∈I

〈
gradfi(p), v

〉 + (1/2)‖v‖2, (5)

is strongly convex, which implies that the problem in (4) has only one solution in
TpM and the first statement is proved.

From the convexity of the function in (5), it is well known that v is the solution of
the problem in (4) if and only if

0 ∈ ∂
(

max
i∈I

〈
gradfi(p), .

〉 + (1/2)‖.‖2
)
(v),

or equivalently,

−v ∈ ∂
(

max
i∈I

〈
gradfi(p), .

〉)
(v).

Therefore, the second statement follows from the formula for the subdifferential of
the maximum of convex functions (see [36], Vol. I, Corollary VI.4.3.2). �
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Lemma 4.2 If p ∈ M is not a critical Pareto point of F and v is the solution of the
problem in (4), then

max
i∈I

〈
gradfi(p), v

〉 + (1/2)‖v‖2 < 0.

In particular, v is a descent direction.

Proof Since p is not a critical Pareto point, there exists 0 �= v̂ ∈ TpM such that
gradF(p)v̂ ≺ 0. In particular,

β = max
i∈I

〈
gradfi(p), v̂

〉
< 0.

As −β/‖v̂‖2 > 0, letting v̄ = (−β/‖v̂‖2)v̂, we obtain

max
i∈I

〈
gradfi(p), v̄

〉 + (1/2)‖v̄‖2 = − β2

2‖v̂‖2
< 0,

Using v as the solution of the problem in (4), the first part of the lemma follows from
the last inequality. The second part of the lemma is an immediate consequence of the
first one. �

In view of the two previous lemmas and (4), we define the steepest descent direc-
tion function for F as follows.

Definition 4.1 The steepest descent direction function for F is defined as

M � p �→ v(p) := argmin
v∈TpM

{
max
i∈I

〈
gradfi(p), v

〉 + (1/2)‖v‖2
}

∈ TpM.

Remark 4.1 As an immediate consequence of Lemma 4.1, it follows that the steepest
descent direction for vector functions becomes the steepest descent direction when
m = 1. See, for example, [6, 31–33, 37]. When M = R

n, we retrieve the steepest
descent direction proposed in [2].

The steepest descent method with the Armijo rule for solving the unconstrained
optimization problem (2) is as follows.

Method 4.1 (Steepest descent method with Armijo rule)

INITIALIZATION. Take β ∈ (0,1) and p0 ∈ M . Set k = 0.
STOP CRITERION. If pk is a critical Pareto point STOP. Otherwise.
ITERATIVE STEP. Compute the steepest descent direction vk for F at pk , i.e.,

vk := v
(
pk

)
, (6)

and the step-length tk ∈ ]0,1] is as follows:

tk := max
{
2−j : j ∈ N,F

(
exppk

(
2−j vk

)) 
 F
(
pk

) + β2−j gradF
(
pk

)
vk

}
, (7)
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and set

pk+1 := exppk

(
tkv

k
)
, (8)

and GOTO STOP CRITERION.

Remark 4.2 The steepest descent method for vector optimization in Riemannian
manifolds becomes the classical steepest descent method when m = 1, which has
appeared, for example, in [6, 31–33].

Proposition 4.1 The sequence {pk} generated by the steepest descent method with
Armijo rule is well defined.

Proof Assume that pk is not a critical Pareto point. From Definition 4.1 and
Lemma 4.1, vk = v(pk) is well defined. Thus, to prove that the method proposed
is well defined, it is enough to prove that the step-length is well defined. For this, first
note that from Definition 4.1 and Lemma 4.2

gradF
(
pk

)
vk ≺ 0.

Since F : M → R
m is a continuously differentiable vector function, gradF(pk)vk ≺

0 and β ∈ (0,1), we have

lim
t→0+

F(exppk (tvk)) − F(pk)

t
= gradF

(
pk

)
vk ≺ β gradF

(
pk

)
vk ≺ 0.

Therefore, it is straightforward to show that there exists δ ∈ (0,1] such that

F
(
exppk

(
tvk

)) ≺ F
(
pk

) + βt gradF
(
pk

)
vk, t ∈ (0, δ).

As limj→∞ 2−j = 0, last vector inequality implies that the step-length (7) is well
defined. Hence, pk+1 is also well defined and the proposition is concluded. �

5 Convergence Analysis

In this section, following the ideas of [2] we prove a partial convergence result with-
out any additional assumption on F besides the continuous differentiability. In the se-
quel, following [4], assuming quasiconvexity of F and nonnegative curvature for M ,
we extend the full convergence result presented in [33] and [18] to optimization of
vector functions. It can be immediately seen that, if Method 4.1 terminates after a fi-
nite number of iterations, then it terminates at a critical Pareto point. From now on, we
will assume that {pk}, {vk} and {tk} are infinite sequences generated by Method 4.1.

5.1 Partial Convergence Result

In this section, we prove that every accumulation point of {pk} is a critical Pareto
point. Before this, we prove the following preliminary fact that will be useful.
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Lemma 5.1 The steepest descent direction function for F , M � p �→ v(p) ∈ TpM ,
is continuous.

Proof Let {qk} ⊂ M be a sequence which converges to q̄ as k goes to +∞, and
Uq̄ ⊂ M a neighborhood of q̄ such that T Uq̄ ≈ Uq̄ × R

n. Since {qk} converges to q̄

and T Uq̄ ⊂ T M is an open set, we assume that the whole sequence {(qk, v(qk))} is
in T Uq̄ . Define vk := v(qk). Combining Definition 4.1 with Lemma 4.2, it is easy to
see that

∥
∥vk

∥
∥ ≤ 2 max

i∈I

∥
∥gradfj

(
qk

)∥
∥.

As F is continuously differentiable and {qk} is convergent, the above inequality im-
plies that the sequence {vk} is bounded. Let v̄ be an accumulation point of the se-
quence {vk}. From Definition 4.1 and Lemma 4.1 we conclude that there exist αk

i ≥ 0,
i ∈ I (qk, vk), such that

vk = −
∑

i∈I (qk,vk)

αk
i gradfi

(
qk

)
,

∑

i∈I (qk,vk)

αk
i = 1, k = 0,1, . . . , (9)

where I (qk, vk) := {i ∈ I : 〈gradfi(q
k), vk〉 = maxi∈I 〈gradfi(q

k), vk〉}. Using the
above constants and the associated indexes, define the sequence {αk} as

αk := (
αk

1, . . . , αk
m

)
, αk

i = 0, i ∈ I \ I
(
qk, vk

)
, k = 0,1, . . . .

Let ‖.‖1 be the sum norm in R
m. Since

∑
i∈I (qk,vk) α

k
i = 1, we have ‖αk‖1 = 1 for

all k, which implies that the sequence {αk} is bounded. Let ᾱ be an accumulation
point of the sequence {αk}. Let {vks } and {αks } be subsequences of {vk} and {αk},
respectively, such that

lim
s→+∞vks = v̄, lim

s→+∞αks = ᾱ.

Now, as I = {1, . . . ,m}, the cardinality of the set of all subset of I is 2m and
I (qks , vks ) ⊂ I for all s ∈ N, we can assume without loss of generality that

I
(
qk1, vk1

) = I
(
qk2, vk2

) = · · · = Ī . (10)

Hence, we conclude from (9) and last equalities that

vks = −
∑

i∈Ī

α
ks

i gradfi

(
qks

)
,

∑

i∈Ī

α
ks

i = 1, s = 0,1, . . . .

Letting s go to +∞ in the above equalities, we obtain

v̄ =
∑

i∈Ī

ᾱi gradfi(q̄),
∑

i∈Ī

ᾱi = 1. (11)

On the other hand, I (qks , vks ) = {i ∈ I : 〈gradfi(q
ks ), vks 〉 = maxi∈I 〈gradfi(q

ks ),

vks 〉}. So, (10) implies that
〈
gradfi

(
qks

)
, vks

〉 = max
i∈I

〈
gradfi

(
qks

)
, vks

〉
, i ∈ Ī , s = 0,1, . . . .
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By using continuity of gradF and last equality, we have
〈
gradfi(q̄), v̄

〉 = max
i∈I

〈
gradfi(q̄), v̄

〉
, i ∈ Ī .

From the definition of I (q̄, v̄), we obtain Ī ⊂ I (q̄, v̄). Therefore, combining again
Definition 4.1 with Lemma 4.1 and (11), we conclude that v̄ = v(q̄) and the desired
result is proved. �

In next result, we use F as continuously differentiable to assure that the sequence
of the functional values of the sequence {pk}, {F(pk)} is monotonously decreasing
and that their accumulation points are critical Pareto points.

Theorem 5.1 The following statements hold:

(i) {F(pk)} is decreasing;
(ii) Each accumulation point of the sequence {pk} is a critical Pareto point.

Proof The iterative step in Method 4.1 implies that

F
(
pk+1) 
 F

(
pk

) + βtk gradF
(
pk

)
vk, pk+1 = exppk tkv

k, k = 0,1, . . . . (12)

Since {pk} is an infinite sequence, for all k, pk is not a critical Pareto point of F . Thus,
item i follows from the definition of vk together with Definition 4.1, Lemma 4.2 and
the last vector inequality.

Let p̄ ∈ M be an accumulation point of the sequence {pk} and {pks } a subsequence
of {pk} such that lims→+∞ pks = p̄. Since F is continuous and lims→+∞ pks = p̄ we
have lims→+∞ F(pks ) = F(p̄). So, taking into account that {F(pk)} is a decreasing
sequence and has F(p̄) as an accumulation point, it is easy to conclude that the whole
sequence {F(pk)} converges to F(p̄). Using (12), Definition 4.1 and Lemma 4.2, we
conclude that

F
(
pk+1) − F

(
pk

) 
 βtk gradF
(
pk

)
vk 
 0, k = 0,1, . . . .

Since lims→+∞ F(pk) = F(p̄), last inequality implies that

lim
k→+∞βtk gradF

(
pk

)
vk = 0. (13)

As {pks } converges to p̄, we assume that {(pks , vks )} ⊂ T Up̄ , where Up̄ is a neigh-
borhood of p̄ such that T Up̄ ≈ Up̄ × R

n. Moreover, as the sequence {tk} ⊂ ]0,1]
has an accumulation point t̄ ∈ [0,1], we assume without loss of generality that {tks }
converges to t̄ . We have two possibilities to consider:

(a) t̄ > 0;
(b) t̄ = 0.

Assume that item (a) holds. In this case, from (13), continuity of gradF , (6) and
Lemma 5.1, we obtain

gradF(p̄)v(p̄) = 0,
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which implies that

max
i∈I

〈
gradfi(p̄), v(p̄)

〉 = 0. (14)

On the other hand, from Definition 4.1 together with Lemma 4.2,

max
i∈I

〈
gradfi

(
pks

)
, vks

〉 + (1/2)
∥
∥vks

∥
∥2

< 0.

Letting s go to +∞ in the above inequalities and using Lemma 5.1 combined with
the continuity of gradF and equality (14), we conclude that

max
i∈I

〈
gradfi(p̄), v(p̄)

〉 + (1/2)
∥
∥v(p̄)

∥
∥2 = 0.

Hence, it follows from last equality, Definition 4.1 and Lemma 4.2 that p̄ is a critical
Pareto point.

Now, assume that item (b) holds true. Since pks is not critical Pareto point, we
have

max
i∈I

〈
gradfi

(
pks

)
, vks

〉 ≤ max
i∈I

〈
gradfi

(
pks

)
, vks

〉 + (1/2)
∥
∥vks

∥
∥2

< 0,

where the last inequality is a consequence from Definition 4.1 together with
Lemma 4.2. Hence, letting s go to +∞ in the last inequalities, using (6) and
Lemma 5.1, we obtain

max
i∈I

〈
gradfi(p̄), v(p̄)

〉 ≤ max
i∈I

〈
gradfi(p̄), v(p̄)

〉 + (1/2)
∥
∥v(p̄)

∥
∥2 ≤ 0. (15)

Take r ∈ N. Since {tks } converges to t̄ = 0, we conclude that if s is large enough,

tks < 2−r .

From (7) this means that the Armijo condition (12) is not satisfied for t = 2−r , i.e.,

F
(
exppk

(
2−j vks

))
� F

(
pks

) + β2−r gradF
(
pks

)
vks ,

which means that there exists at least one i0 ∈ I such that

fi0

(
exppks

(
2−rvks

))
> fi0

(
pks

) + β2−r
〈
gradfi0

(
pks

)
, vks

〉
.

Letting s go to +∞ in the above inequality, taking into account that gradF and exp
are continuous and using Lemma 5.1, we obtain

fi0

(
expp̄

(
2−rv(p̄)

)) ≥ fi0(p̄) + β2−r
〈
gradfi0(p̄), v(p̄)

〉
.

The last inequality is equivalent to

fi0(expp̄(2−rv(p̄))) − fi0(p̄)

2−r
≥ β

〈
gradfi0(p̄), v(p̄)

〉
,
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which letting r go to +∞ and assuming that 0 < β < 1, yields 〈gradfi0(p̄), v(p̄)〉
≥ 0. Hence,

max
i∈I

〈
gradfi(p̄), v(p̄)

〉 ≥ 0.

Combining the last inequality with (15), we have

max
i∈I

〈
gradfi(p̄), v(p̄)

〉 + (1/2)
∥
∥v(p̄)

∥
∥2 = 0.

Therefore, again from Definition 4.1 and Lemma 4.2 it follows that p̄ is a critical
Pareto point and the proof is concluded. �

Remark 5.1 If the sequence {pk} begins in a bounded level set, for example, if

LF

(
F(p0)

) := {
p ∈ M : F(p) 
 F(p0)

}
,

is a bounded set, then, since F is a continuous function, Hopf–Rinow theorem as-
sures that LF (F (p0)) is a compact set. So, item (i) of Theorem 5.1 implies that
{pk} ⊂ LF (F (p0)), and consequently {pk} is bounded. In particular, {pk} has at least
one accumulation point. Therefore, Theorem 5.1 extends to vector optimization the
results of Theorem 5.1 of [33]. See also the Remark 4.5 of [38].

5.2 Full Convergence

In this section, under the quasiconvexity assumption on F and nonnegative curvature
for M , full convergence of the steepest descent method is obtained.

Definition 5.1 Let H : M → R
m be a vectorial function.

(i) H is called convex on M iff for every p,q ∈ M and every geodesic segment
γ : [0,1] → M joining p to q (i.e., γ (0) = p and γ (1) = q), the following holds:

H
(
γ (t)

) 
 (1 − t)H(p) + tH(q), t ∈ [0,1].
(ii) H is called quasiconvex on M iff for every p,q ∈ M and every geodesic segment

γ : [0,1] → M joining p to q , the following holds:

H
(
γ (t)

) 
 max
{
H(p),H(q)

}
, t ∈ [0,1],

where the maximum is considered coordinate by coordinate.

Remark 5.2 The first definition above is a natural extension of the definition of con-
vexity, while the second is an extension of a characterization of the definition of
quasi-convexity, of the Euclidean space to the Riemannian context. See Definition 6.2
and Corollary 6.6 of [39], pages 29 and 31, respectively. Thus, when m = 1 these
definitions merge to the scalar convexity and quasiconvexity defined in [31], respec-
tively. Moreover, it is immediate from the above definitions that if H is convex then
it is quasiconvex. In the case of H being differentiable, convexity of H implies that
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for every p,q ∈ M and every geodesic segment γ : [0,1] → M such that γ (0) = p

and γ (1) = q ,

gradH(p)γ ′(0) 
 H(q) − H(p).

Proposition 5.1 Let H : M → R
m be a differentiable quasi-convex function. Then,

for every p,q ∈ M and every geodesic segment γ : [0,1] → M joining p to q , it
holds

H(q) 
 H(p) ⇒ gradH(p)γ ′(0) 
 0.

Proof Take p,q ∈ M such that H(q) 
 H(p) and a geodesic segment γ : [0,1] → M

such that γ (0) = p and γ (1) = q . Since H is quasiconvex, we have

H
(
γ (t)

) 
 H(p), t ∈ [0,1].
Using the last inequality, the result is an immediate consequence from the differen-
tiability of H . �

We know that criticality is a necessary, but not sufficient, condition for optimality.
However, under convexity of the vectorial function F , we will prove that criticality
is equivalent to the weak optimality.

Definition 5.2 A point p∗ ∈ M is a weak optimal Pareto point of F iff there is no
p ∈ M with F(p) ≺ F(p∗).

Proposition 5.2 Let H : M → R
m be a continuously differentiable convex function.

Then p ∈ M is a critical Pareto point of H , i.e.,

Im
(
gradH(p)

) ∩ (−R
m++

) = ∅,

iff p is a weak optimal Pareto point of H .

Proof Let us suppose that p is a critical Pareto point of H . Assume by contradiction
that p be not a weak optimal Pareto point of H . Since p is not a weak optimal Pareto
point, there exists p̃ ∈ M such that

H(p̃) ≺ H(p). (16)

Let γ : [0,1] → M be a geodesic segment joining p to p̃ (i.e., γ (0) = p and
γ (1) = p̃). As H is differentiable and convex, the last part of Remark 5.2 and (16)
imply that

gradH(p)γ ′(0) 
 H(p̃) − H(p) ≺ 0.

But this contradicts the fact of p being a critical Pareto point of H , and so the first
part is concluded.

Now, let us suppose that p be a weak optimal Pareto point of H . Assume by
contradiction that p be not critical Pareto point of H . Since p be not critical Pareto
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point, then Im(gradH(p)) ∩ (−R
m++) �= ∅, that is, there exists v ∈ TpM a descent

direction for F at p. Hence, from the differentiability of H , we have

lim
t→0+

H(expp(tv)) − H(p)

t
= gradH(p)v ≺ 0,

which implies that there exists δ > 0 such that

H
(
expp(tv)

) ≺ H(p) + t gradH(p)v, t ∈ (0, δ).

Since v is a descent direction for F at p and t ∈ (0, δ) we have t gradH(p)v ≺ 0. So,
the last vector inequality yields

H
(
expp(tv)

) ≺ H(p), t ∈ (0, δ),

contradicting the fact of p to be a weak optimal Pareto point of H , which concludes
the proof. �

Definition 5.3 A sequence {qk} ⊂ M is quasi-Fejér convergent to a nonempty set U

iff, for all q ∈ U , there exists a sequence {εk} ⊂ R+ such that

+∞∑

k=0

εk < +∞, d2(qk+1, q
) ≤ d2(qk, q

) + εk, k = 0,1, . . . .

In next lemma, we recall the theorem known as quasi-Fejér convergence.

Lemma 5.2 Let U ⊂ M be a nonempty set and {qk} ⊂ M a quasi-Fejér convergent
sequence. Then {qk} is bounded. Moreover, if an accumulation point q̄ of {qk} be-
longs to U , then the whole sequence {qk} converges to q̄ as k goes to +∞.

Proof Analogous to the proof of Theorem 1 in Burachik et al. [1], by replacing the
Euclidean distance by the Riemannian distance d . �

Consider the following set:

U := {
p ∈ M : F(p) 
 F

(
pk

)
, k = 0,1, . . .

}
. (17)

In general, the above set may be an empty set. To guarantee that U is nonempty, an
additional assumption on the sequence {pk} is needed. In the next remark, we give
such a condition.

Remark 5.3 If the sequence {pk} has an accumulation point, then U is nonempty.
Indeed, let p̄ be an accumulation point of the sequence {pk}. Then there exists a
subsequence {pkj } of {pk} which converges to p̄. Since F is continuous {F(pk)} has
F(p̄) as an accumulation point. Hence, using {F(pk)} as a decreasing sequence (see
item (i) of Theorem 5.1) the usual arguments easily show that the whole sequence
{F(pk)} converges to F(p̄) and the following relation holds:

F(p̄) 
 F
(
pk

)
, k = 0,1, . . . ,
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which implies that p̄ ∈ U , i.e., U �= ∅.

In next lemma we present the main result of this section. It is fundamental to the
proof of the global convergence result of the sequence {pk}.

Lemma 5.3 Suppose that F is quasiconvex, M has nonnegative curvature and U ,
defined in (17), is nonempty. Then, for all p̃ ∈ U , the following inequality there holds:

d2(pk+1, p̃
) ≤ d2(pk, p̃

) + t2
k

∥
∥vk

∥
∥2

.

Proof Consider the geodesic hinge (γ1, γ2, α), where γ1 is a normalized minimal
geodesic segment joining pk to p̃; γ2 is the geodesic segment joining pk to pk+1

such that γ ′
2(0) = tkv

k and α = ∠(γ ′
1(0), vk). By the law of cosines (Theorem 2.1),

we have

d2(pk+1, p̃
) ≤ d2(pk, p̃

) + t2
k

∥
∥vk

∥
∥2 − 2d

(
pk,p

)
tk

∥
∥vk

∥
∥ cosα, k = 0,1, . . . .

Thus, taking into account that cos(π − α) = − cosα and 〈−vk, γ ′
1(0)〉 =

‖vk‖ cos(π − α), the above vector inequality becomes

d2(pk+1, p̃
) ≤ d2(pk, p̃

) + t2
k

∥
∥vk

∥
∥2 + 2d

(
pk, p̃

)
tk

〈−vk, γ ′
1(0)

〉
, k = 0,1, . . . .

On the other hand, from (6), Definition 4.1 and Lemma 4.1, there exists αk
i ≥ 0, with

i ∈ Ik := I (pk, vk), such that

vk = −
∑

i∈Ik

αi gradfi

(
pk

)
,

∑

i∈Ik

αk
i = 1, k = 0,1, . . . .

Hence, the last vector inequality yields

d2(pk+1, p̃
) ≤ d2(pk, p̃

) + t2
k

∥
∥vk

∥
∥2 + 2d

(
pk, p̃

)
tk

∑

i∈Ik

αk
i

〈
gradfi

(
pk

)
, γ ′

1(0)
〉
,

k = 0,1, . . . . (18)

Since F is quasiconvex and p̃ ∈ U , from Proposition 5.1 with H = F , p = pk , q = p̃

and γ = γ1, we have

gradF
(
pk

)
γ ′

1(0) 
 0, k = 0,1, . . . ,

or equivalently,

〈
gradfi

(
pk

)
, γ ′

1(0)
〉 ≤ 0, i = 1, . . . ,m, k = 0,1, . . . . (19)

Therefore, by combining (18) with (19), the lemma proceeds. �

Proposition 5.3 If F is quasiconvex, M has nonnegative curvature and U , defined
in (17), is a nonempty set, then the sequence {pk} is quasi-Fejér convergent to U .
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Proof To simplify the notation, the scalar function ϕ : R
m → R is defined as follows:

ϕ(y) = max
i∈I

〈y, ei〉, I = {1, . . . ,m},

where {ei} ⊂ R
m is the canonical base of the space R

m. It is easy to see that the
following properties of the function ϕ hold:

ϕ(x + y) ≤ ϕ(x) + ϕ(y), ϕ(tx) = tϕ(x), x, y ∈ R
m, t ≥ 0. (20)

x 
 y ⇒ ϕ(x) ≤ ϕ(y), x, y ∈ R
m. (21)

From the definition of tk in (7) and pk+1 in (8), we have

F
(
pk+1) 
 F

(
pk

) + βtk gradF
(
pk

)
vk, k = 0,1 . . . .

Hence, using (20), (21), and the last inequality, we obtain

ϕ
(
F

(
pk+1)) ≤ ϕ

(
F

(
pk

)) + βtkϕ
(
gradF

(
pk

)
vk

)
, k = 0,1 . . . . (22)

On the other hand, combining the definition of vk in (6), Definition 4.1, Lemma 4.2,
and the definition of ϕ, we conclude that

ϕ
(
gradF

(
pk

)
vk

) + (1/2)
∥
∥vk

∥
∥2

< 0, k = 0,1 . . . ,

which together with (22) implies that

ϕ
(
F

(
pk+1)) < ϕ

(
F

(
pk

)) − (βtk/2)
∥
∥vk

∥
∥2

, k = 0,1 . . . .

But this tells us that

tk
∥
∥vk

∥
∥2

< 2
[
ϕ
(
F

(
pk

)) − ϕ
(
F

(
pk+1))]/β, k = 0,1 . . . .

As tk ∈ ]0,1], it follows that

t2
k

∥
∥vk

∥
∥2

< 2
[
ϕ
(
F

(
pk

)) − ϕ
(
F

(
pk+1))]/β, k = 0,1 . . . .

Thus, the latter inequality easily implies that

n∑

k=0

t2
k

∥
∥vk

∥
∥2

< 2
[
ϕ
(
F

(
p0)) − ϕ

(
F

(
pn+1))]/β, n > 0.

Take p̄ ∈ U . Then F(p̄) 
 F(pn+1). So, from (21) ϕ(F (p̄)) ≤ ϕ(F (pn+1)) and the
last inequality yields

n∑

k=0

t2
k

∥
∥vk

∥
∥2

< 2
(
ϕ
(
F

(
p0)) − ϕ

(
F(p̄)

))
/β,

which implies that {t2
k ‖vk‖2} is a summable sequence. Therefore, Lemma 5.3 com-

bined with Definition 5.3 achieves the desired result. �
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Theorem 5.2 Suppose that F is quasiconvex, M has nonnegative curvature and U ,
as defined in (17), is a nonempty set. Then, the sequence {pk} converges to a critical
Pareto point of F .

Proof From Proposition 5.3, {pk} is Fejér convergent to U . Thus, Lemma 5.2 guar-
antees that {pk} is bounded and from the Hopf–Rinow theorem, there exists {pks },
subsequence of {pk}, which converges to p̄ ∈ M as s goes to +∞. Since F is continu-
ous and {F(pk)} is a decreasing sequence (see item (i) of Theorem 5.1), we conclude
that F(pk) converges to F(p̄) as k goes to +∞, which implies that

F(p̄) 
 F
(
pk

)
, k = 0,1, . . . ,

i.e., p̄ ∈ U . Hence, from Lemma 5.2, we conclude that the whole sequence {pk}
converges to p̄ as k goes to +∞, and the conclusion of the proof is a consequence of
item (ii) of Theorem 5.1. �

Corollary 5.1 If F is convex, M has nonnegative curvature and U , as defined in
(17), is a nonempty set, then the sequence {pk} converges to a weak optimal Pareto
point of F .

Proof Since F is convex, and in particular quasiconvex (see Remark 5.2), the corol-
lary is a consequence of the previous theorem and Proposition 5.2. �

6 Examples

In this section, we present some examples of complete Riemannian manifolds
with explicit geodesic curves and the steepest descent iteration of the sequence
generated by Method 4.1. We recall that the function F : M → R

m, F(p) :=
(f1(p), . . . , fm(p)), is differentiable. If (M,G) is a Riemannian manifold then
the Riemannian gradient of fi is given by gradfi(p) = G(p)−1f ′

i (p), i ∈ I :=
{1, . . . , n}. Hence, if v(p) is the steepest descent direction for F at p (see Defini-
tion 4.1) then, from Lemma 4.1, there exist constants αi ≥ 0, i ∈ I (p, v), such that

v = −
∑

i∈I (p,v)

αiG(p)−1f ′
i (p),

∑

i∈I (p,v)

αi = 1, (23)

where I (p, v) := {i ∈ I : 〈G(p)−1f ′
i (p), v〉 = maxi∈I 〈G(p)−1f ′

i (p), v〉}.

6.1 A Steepest Descent Method for R
n++

Let M be the positive octant, R
n++, endowed with the Riemannian metric

M � v �→ G(p) = P −2 := diag
(
p−2

1 , . . . , p−2
n

)
,

(metric induced by the Hessian of the logarithmic barrier). Since (M,G) is isometric
to the Euclidean space endowed with the usual metric (see, Da Cruz Neto et al. [12]),
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it follows that M has constant curvature equal to zero. Besides, it is easy to see that
the unique geodesic p = p(t) such that p(0) = p0 = (p0

1, . . . , p
0
n) and that p′(0) =

v0 = (v0
1, . . . , v0

n) is given by p(t) = (p1(t), . . . , pn(t)), where

pj (t) = p0
j e(v0

j /p0
j )t

, j = 1, . . . , n. (24)

So, we conclude that (M,G) is also complete. In this case, from (24) and (23), there
exists αk

i ≥ 0 such that the steepest descent iteration of the sequence generated by
Method 4.1 is given by

pk+1
j = pk

j e(vk
j /pk

j )tk , vk
j = −

∑

i∈I (pk,vk)

αk
i

(
pk

j

)2 ∂fi

∂pj

(
pk

)
,

∑

i∈I (pk,vk)

αk
i = 1, j = 1, . . . , n.

6.2 A Steepest Descent Method for the Hypercube

Let M be the hypercube ]0,1[ × · · · × ]0,1[ endowed with the Riemannian metric

M � v �→ G(p) = P −2(I − P)−2 := diag
(
(p1)

2(1 − p1)
2, . . . , (pn)

2(1 − pn)
2),

(metric induced by the Hessian of the barrier b(p) = ∑n
i=1(2pi − 1)(lnpi −

ln(1 − pi)). The Riemannian manifold (M,G) is complete and the unique geodesic
p = p(t), satisfying p(0) = p0 = (p0

1, . . . , p
0
n) and p′(0) = v0 = (v0

1, . . . , v0
n), is

given by p(t) = (p1(t), . . . , pn(t)),

pj (t) = (1/2)

[

1+ tanh

(

(1/2)
vj

pj (1 − pj )
t +(1/2) ln

(
pj

1 − pj

))]

, j = 1, . . . , n,

(25)
where tanh(z) := (ez − e−z)/(ez + e−z). Moreover, (M,G) has constant curvature
equal to zero, see Theorems 3.1 and 3.2 of [40]. In this case, from (25) and (23),
there exists αk

i ≥ 0 such that the steepest descent iteration of the sequence generated
by Method 4.1 is given by

pk+1
j = (1/2)

[

1 + tanh

(

(1/2)
vk
j

pk
j (1 − pk

j )
tk + (1/2) ln

(
pk

j

1 − pk
j

))]

,

j = 1, . . . , n,

with,

vk
j = −

∑

i∈I (pk,vk)

αk
i

(
pk

j

)2(1 − pk
j

)2 ∂fi

∂pj

(
pk

)
,

∑

i∈I (pk,vk)

αk
i = 1, j = 1, . . . , n.
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6.3 Steepest Descent Method for the Cone of Positive Semidefinite Matrices

Let S
n be the set of the symmetric matrices n×n, S

n+ the cone of the symmetric posi-
tive semidefinite matrices and S

n++ the cone of the symmetric positive definite matri-
ces. Following Rothaus [41], let M = S

n++ be endowed with the Riemannian metric
induced by the Euclidean Hessian of Ψ (X) = − ln detX, i.e., G(X) := Ψ ′′(X). In
this case, the unique geodesic segment connecting any X,Y ∈ M is given by

X(t) = X1/2(X−1/2YX−1/2)t
X1/2, t ∈ [0,1];

see [42]. More precisely, M is a Hadamard manifold (with curvature not identically
zero); see, for example, [43], Theorem 1.2, p. 325. In particular, the unique geodesic
X = X(t) such that X(0) = X and X′(0) = V is given by

X(t) = X1/2etX−1/2V X−1/2
X1/2. (26)

Thus, from (26) and (23), there exists αk
j ≥ 0 such that the steepest descent iteration

of the sequence generated by Method 4.1 is given by

Xk+1 = (
Xk

)1/2etk(X
k)−1/2V k(Xk)−1/2(

Xk
)1/2

,

with

V k = −
∑

i∈I (Xk,V k)

αk
i X

kf ′
i

(
Xk

)
Xk,

∑

i∈I (Xk,V k)

αk
i = 1.

Remark 6.1 Under the assumption of convexity on the vector function F , if (M,G)

is the Riemannian manifold in the first or in the second example, then Corollary 5.1
assures the full convergence of the sequence generated by Method 4.1. This fact does
not necessarily happen if (M,G) is the Riemannian manifold in the last example,
since in this case (M,G) has nonpositive curvature, i.e., K ≤ 0. However, Theo-
rem 5.1 assures at least partial convergence.

7 Final Remarks

We have extended the steepest descent method with Armijo’s rule for multicriteria
optimization to the Riemannian context. Full convergence is obtained under the as-
sumptions of quasiconvexity of the multicriteria function and nonnegative curvature
of the Riemannian manifold. A subject in open is to obtain the same result without a
restrictive assumption on the curvature of the manifold. Following the same structure
of this paper, as a future work we propose the application of the proximal method
(see Bonnel et al. [44]) and Newton method (see Fliege et al. [45]) to multiobjective
optimization, within the Riemannian context.
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