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Abstract We consider bilevel optimization from the optimistic point of view. Let
the pair (x, y) denote the variables. The main difficulty in studying such problems lies
in the fact that the lower level contains a global constraint. In fact, a point (x, y) is
feasible if y solves a parametric optimization problem L(x). In this paper we restrict
ourselves to the special case that the variable x is one-dimensional. We describe the
generic structure of the feasible set M . Moreover, we discuss local reductions of the
bilevel problem as well as corresponding optimality criteria. Finally, we point out
typical problems that appear when trying to extend the ideas to higher dimensional
x-dimensions. This will clarify the high intrinsic complexity of the general generic
structure of the feasible set M and corresponding optimality conditions for the bilevel
problem U .

Keywords Bilevel programming · Parametric optimization · Structure of the
feasible set · Local reduction · Optimality criteria
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1 Introduction

We consider bilevel optimization problems as hierarchical problems of two deci-
sion makers, the so-called leader and follower. The follower selects his decision
knowing the choice of the leader, whereas the latter has to anticipate the follower’s
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66 H. Th. Jongen, V. Shikhman

response in his decision. Bilevel programming problems have been studied in the
monographs [2] and [6]. We model the bilevel optimization problem in the so-called
optimistic formulation. To this aim, assume that the follower solves the parametric
optimization problem (lower level problem L)

L(x) : min
y

g(x, y) s.t. h j (x, y) ≥ 0, j ∈ J (1)

and that the leader’s optimization problem (upper level problem U ) is the following

U : min
(x,y)

f (x, y) s.t. y ∈ Argmin L(x). (2)

Above we have x ∈ R
n , y ∈ R

m and the real valued mappings f, g, h j , j ∈ J
belong to C3(Rn × R

m), the space of three times continuously differentiable map-
pings. Argmin L(x) denotes the solution set of the optimization problem L(x). For
simplicity, additional (in)equality constraints in defining U are omitted.

The main goal of this article is to describe the generic structure of the bilevel feasible
set M , where

M := {(x, y) | y ∈ Argmin L(x)}.

The special case with unconstrained one-dimensional lower level (i.e. J = ∅ and
m = 1) is treated in [7]. In the latter paper the classification of 1-dimensional sin-
gularities was heavily used and for the higher dimensional case (i.e. m > 1) it is
conjectured that a similar result will hold.

However, the situation becomes extremely difficult to describe if inequality con-
straints are present in the lower level (i.e. J �= ∅). In particular, kinks and ridges will
appear in the feasible set and such subsets might attract stable solutions of the bilevel
problem. A simple example was presented in [7]. In this paper we restrict ourselves to
the simplest case that the x-dimension is equal to one (i.e. n = 1), but no restrictions
on the y-dimension. Then, the lower level L(x) is a one-dimensional parametric opti-
mization problem and we can exploit the well-known generic (five type) classification
of so-called generalized critical points (cf. [13]) in order to describe the feasible set.
Our main result (Theorems 4.1 and 4.2) states that—generically—the feasible set M
is the union of C2 curves with boundary points and kinks which can be parametrized
by means of the variable x . The appearance of the boundary points and kinks is due
to certain degeneracies of the corresponding local solutions in the lower level as well
as the change from local to global solutions. Outside of the latter points, the feasi-
ble points (x, y(x)) ∈ M correspond to nondegenerate minimizers of the lower level
L(x). Although dim(x) = 1 might seem to be very restrictive, it should be noted
that on typical curves in higher dimensional x-space the one-dimensional features as
described in this paper will reappear on that curves.

The paper is organized as follows. In Sect. 2 we present some typical guiding exam-
ples. In Sect. 3 we recall the 5-Type classification of generalized critical points and
discuss their possible appearance as global minimizers. In the latter case the connec-
tion with the local structure of the feasible set M is pointed out. Section 4 contains the
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On the structure of the feasible set 67

main results of our paper, i.e. the generic and stable structure of the feasible set M as
well as resulting optimality criteria for the bilevel problem U . In order to guarantee the
existence of solutions of the lower level we will assume an appropriate compactness
condition [cf. (24)].

In Sect. 5 we discuss some problems that appear when trying to extend the ideas to
higher x-dimensions. On one hand we show that there are analytical aspects: it will not
be possible to describe the feasible set M at all points. This obstruction comes from
classification of singularities. But, if we focus on a neighborhood of (local) solutions of
the bilevel problem, then certain high order singularities can be avoided. On the other
hand, there appear partitioning problems of combinatorial nature. This will clarify the
high intrinsic complexity of the general generic structure of the feasible set M and
corresponding optimality criteria for the bilevel problem U . An interesting point for
future research would be the discovery of a natural constraint qualification under which
the whole feasible set M might be expected to be a Lipschitz manifold with boundary.

Our notation is standard. The n-dimensional Euclidean space is denoted by R
n .

Given an arbitrary set K ⊂ R
n we denote its topological closure by K . By

span{a1, . . . , at } we denote the vector space over R generated by the finite num-
ber of vectors a1, . . . , at ∈ R

n and dim{span{a1, . . . , at }} stands for its dimension.
Given a differentiable function F : R

n −→ R
n , DF denotes its Jacobian matrix.

Given a differentiable function f : R
n −→ R, D f denotes the row vector of partial

derivatives of first order and DT f stands for the transposed vector.
Let C3(Rn) denote the space of three times continuously differentiable real-valued

functions. Let C3(Rn) be endowed with the strong (or Whitney) C3-topology, denoted
by C3

s (cf. [10,14]). The C3
s -topology is generated by allowing perturbations of the

functions and their derivatives up to third order which are controlled by means of
continuous positive functions. The product space of continuously differentiable func-
tions will be topologized with the corresponding product topology. Note that the space
of continuously differentiable functions endowed with the strong C3

s -topology consti-
tutes a Baire space. We say that a set is C3

s -generic if it contains a countable intersection
of C3

s -open and C3
s -dense subsets. Generic sets in a Baire space are dense as well.

2 Guiding examples

In this section we present several typical examples. They motivate our results on the
structure of the bilevel feasible set M . In all examples the origin 01+m solves the
bilevel problem U . Each example exhibits some kind of degeneracy in the lower level
L(x). Recall that dim(x) = 1 throughout the paper.

Example 2.1

f (x, y) := −x + 2y1 + ϕ(y2, . . . , ym) with ϕ ∈ C3(Rm−1,R),

g(x, y) := (x − y1)
2 +

m∑

j=2

y2
j , J = {1} and h1(x, y) := y1.

The degeneracy in the lower level L(x) is the lack of strict complementarity at the
origin 0m .
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68 H. Th. Jongen, V. Shikhman

The bilevel feasible set M becomes:

M = {(x,max(x, 0), 0, . . . , 0) | x ∈ R}.

This example refers to Type 2 in the classification of Sect. 3. �	
Example 2.2

f (x, y) := x +
m∑

j=1

y j , g(x, y) := −y1,

J = {1}, h1(x, y) := x −
m∑

j=1

y2
j .

The degeneracy in the lower level L(x) is the violation of the so-called Mangasarian–
Fromovitz Constraint Qualification (MFCQ) (see Sect. 3) at the origin 0m . Moreover,
the minimizer 0m is a so-called Fritz–John point, but not a Karush–Kuhn–Tucker
(KKT)-point.

The bilevel feasible set M is a (half-)parabola:

M = {(x,√x, 0, . . . , 0) | x ≥ 0
}
.

This example refers to Type 4 in the classification of Sect. 3. �	
Example 2.3

f (x, y) := x +
m∑

j=1

y j , g(x, y) :=
m∑

j=1

y j , J = {1, . . . ,m,m + 1},

h j (x, y) := y j , j = 1, . . . ,m, hm+1(x, y) = x −
m∑

j=1

y j .

The degeneracy in L(0) is again the violation of the MFCQ at the origin 0m . However,
in contrast to Example 2.2, the minimizer 0m is a KKT-point now.

The bilevel feasible set M becomes:

M = {(x, 0, . . . , 0) | x ≥ 0}.

This example refers to Type 5-1 in the classification of Sect. 3. �	
Example 2.4

f (x, y) := −x + 2
m∑

j=1

y j , g(x, y) :=
m∑

j=1

j y j , J = {1, . . . ,m,m + 1},

h j (x, y) := y j , j = 1, . . . ,m, hm+1(x, y) = −x +
m∑

j=1

y j .
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On the structure of the feasible set 69

The degeneracy in L(0) is the violation of the so-called linear independence constraint
qualification (LICQ) at the origin 0m , whereas MFCQ is satisfied.

The bilevel feasible set M becomes:

M = {(x,max(x, 0), 0, . . . , 0) | x ∈ R}.

This example refers to Type 5-2 in the classification of Sect. 3. �	
Note that the feasible set M exhibits a kink in Examples 2.1, 2.4, whereas it has a

boundary in Examples 2.2, 2.3. Moreover, the minimizer 0m in L(0) is strongly stable
(in the terminology of Kojima [11]) in Examples 2.1, 2.4, but not in Examples 2.2, 2.3.

We note that, despite of degeneracies in the lower level, the structure of the bilevel
feasible set M with its kinks and boundaries remains stable under small C3

s -perturba-
tions of the defining functions.

3 Five types classification and global minimizers

We consider the lower level problem L(·) in a one-dimensional parametric optimiza-
tion setting, i.e. dim(x) = 1:

L(x) : min
y

g(x, y) s.t. h j (x, y) ≥ 0, j ∈ J.

We denote its feasible set by

M(x) := {y ∈ R
m | h j (x, y) ≥ 0, j ∈ J

}

and for ȳ ∈ M(x̄) the active index set by

J0(x̄, ȳ) := { j ∈ J | h j (x̄, ȳ) = 0
}
.

Definition 3.1 (Generalized critical point) A point ȳ ∈ M(x̄) is called a generalized
critical point (g.c. point) for L(x̄) if the set of vectors

{
Dy g(x̄, ȳ), Dyh j (x̄, ȳ), j ∈ J0(x̄, ȳ)

}
(3)

is linearly dependent.

The critical set for L(·) is given by

Σ :=
{
(x, y) ∈ R

1+m | y is g.c. point for L(x)
}
.

In [13] it is shown that generically each point of Σ is one of the Types 1–5. In what
follows, we shortly recall the Types 1–5 and consider the structure ofΣ locally around
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particular g.c. points being local minimizers for L(·). Here, we focus on such parts of
Σ which correspond to (local) minimizers, i.e.

Σmin := {(x, y) ∈ Σ | y is a local minimizer for L(x)}

in a neighborhood of (x̄, ȳ) ∈ Σmin . We refer to [12] for the indication of the latter
issue.

3.1 Points of Type 1

A point (x̄, ȳ) ∈ Σ is of Type 1 if ȳ is a nondegenerate critical point for L(x̄). It
means that the following conditions ND1–ND3 hold.

ND1: Linear independence constraint qualification (LICQ) is satisfied at (x̄, ȳ), i.e.
the set of vectors

{
Dyh j (x̄, ȳ), j ∈ J0(x̄, ȳ)

}
(4)

is linearly independent.
From (3) and (4) we see that there exist (Lagrange multipliers) μ̄ j , j ∈
J0(x̄, ȳ), such that

Dy g(x̄, ȳ) =
∑

j∈J0(x̄,ȳ)

μ̄ j Dyh j (x̄, ȳ). (5)

ND2: μ̄ j �= 0, j ∈ J0(x̄, ȳ),
ND3: D2

yy L(x̄, ȳ)|Tȳ M(x̄) is nonsingular.

Here, the matrix D2
yy L(x̄, ȳ) stands for the Hessian w.r.t. y variables of the Lagrange

function L ,

L(x, y) := g(x, y)−
∑

j∈J0(x̄,ȳ)

μ̄ j h j (x, y). (6)

and Tȳ M(x̄) denotes the tangent space of M(x̄) at ȳ,

Tȳ M(x̄) := {ξ ∈ R
m | Dyh j (x̄, ȳ) · ξ = 0, j ∈ J0(x̄, ȳ)

}
. (7)

Condition ND3 means that the matrix V T D2
yy L(x̄, ȳ)V is nonsingular, where V is

some matrix whose columns form a basis for the tangent space Tȳ M(x̄).
The linear index LI, resp. linear coindex LCI, is defined to be the number of μ̄ j

in (5) which are negative, resp. positive. The quadratic index QI, resp. quadratic co-
index QCI, is defined to be the number of negative, resp. positive eigenvalues of
D2

yy L(x̄, ȳ)|Tȳ M(x̄).
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On the structure of the feasible set 71

Characteristic numbers: LI, LCI, QI, QCI

It is well-known that conditions ND1–ND3 allow us to apply the implicit function
theorem and obtain unique C2-mappings y(x), μ j (x), j ∈ J0(x̄, ȳ) in an open neigh-
borhood of x̄ . It holds: y(x̄) = ȳ and μ j (x̄) = μ̄ j , j ∈ J0(x̄, ȳ), moreover, for x
sufficiently close to x̄ the point y(x) is a nondegenerate critical point for L(x) with
Lagrange multipliers μ j (x), j ∈ J0(x̄, ȳ) having the same indices LI, LCI, QI, QCI
as ȳ. Hence, locally around (x̄, ȳ) we can parametrize the setΣ by means of a unique
C2-map x �→ (x, y(x)). If ȳ is additionally a local minimizer for L(x̄), i.e. LI = QI = 0,
then we get locally around (x̄, ȳ):

Σmin = {(x, y(x)) | x sufficiently close to x̄}.

3.2 Points of Type 2

A point (x̄, ȳ) ∈ Σ is of Type 2 if the following conditions A1–A6 hold:

A1: LICQ is satisfied at (x̄, ȳ)
A2: J0(x̄, ȳ) �= ∅

After renumbering we may assume that J0(x̄, ȳ) = {1, . . . , p}, p ≥ 1. Then, we
have

Dy g(x̄, ȳ) =
p∑

j=1

μ̄ j Dyh j (x̄, ȳ). (8)

A3: In (8) exactly one of the Lagrange multipliers vanishes.
After renumbering we may assume that μ̄p = 0 and μ̄ j �= 0, j = 1, . . . , p − 1.
Let L and Tȳ M(x̄) be defined as in (6) and (7), respectively.

A4: D2
yy L(x̄, ȳ)|Tȳ M(x̄) is nonsingular

We set

T +
ȳ M(x̄) := {ξ ∈ R

m | Dyh j (x̄, ȳ) · ξ = 0, j ∈ J0(x̄, ȳ)\{p}}.

A5: D2
yy L(x̄, ȳ)|T +

ȳ M(x̄) is nonsingular

Let W be a matrix with m rows, whose columns form a basis of the linear space
T +

ȳ M(x̄). Put Φ = (h1, . . . , h p−1)
T and define the m × 1-vectors:

α := −
[(

DyΦ · DT
y Φ
)−1 · DyΦ

]T

· DxΦ,

β = −W ·
(

W T · D2
yy L · W

)−1 · W T
[

D2
yy L · α + Dx DT

y L
]

Note that all partial derivatives are evaluated at (x̄, ȳ). Next, we put

γ := Dx h p(x̄, ȳ)+ Dyh p(x̄, ȳ)(α + β).
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A6: γ �= 0

Let δ1 and δ2 denote the number of negative eigenvalues of D2
yy L(x̄, ȳ)|T +

ȳ M(x̄) and

D2
yy L(x̄, ȳ)|Tȳ M(x̄), respectively, and put δ := δ1 − δ2.

Characteristic numbers: sign(γ ), δ

We proceed with the local analysis of the set Σ in a neighborhood of (x̄, ȳ).

(a) We consider the following associated optimization problem (without the pth
constraint):

L̃(x) : minimize
y∈Rm

g(x, y) s.t. h j (x, y) ≥ 0, j ∈ J\{p}. (9)

It is easy to see that ȳ is a nondegenerate critical point for L̃(x̄) due to A1, A3, A5.
As in Sect. 3.1 we get a unique C2-map x �→ (x, ỹ(x)). The latter curve belongs to
Σ as far as ψ(x) is nonnegative, where

ψ(x) := h p(x, ỹ(x)).

A few calculations show that

d ỹ(x̄)

dx
= α + β and, hence,

dψ(x̄)

dx
= γ. (10)

Consequently, if we walk along the curve x �→ (x, ỹ(x)) as x increases, then at x = x̄
we leave (enter) the feasible set M(x) according to sign(γ ) = −1(+1) (cf. A6).

(b) We consider the following associated optimization problem (with the pth con-
straint as equality):

L̂(x) : minimize
y∈Rm

g(x, y) s.t. h j (x, y) ≥ 0, j ∈ J , h p(x, y) = 0.

(11)

It is easy to see that ȳ is a nondegenerate critical point for L̂(x̄) due to A1, A3,
A4. Using results of Sect. 3.1 we get a unique C2-map x �→ (x, ŷ(x)). Note that
h p(x, ŷ(x)) ≡ 0. Moreover, it can be calculated that

sign(γ ) · sign

(
dμp(x̄)

dx

)
= −1 (resp. + 1) iff δ = 0 (resp. δ = 1).

(12)

Altogether, since the curve x �→ (x, ỹ(x)) traverses the zero set ”h p = 0” at (x̄, ȳ)
transversally (cf. A6), it follows that x �→ (x, ỹ(x)) and x �→ (x, ŷ(x)) intersect at
(x̄, ȳ) under a nonvanishing angle. Obviously, in a neighborhood of (x̄, ȳ) the set Σ
consists of x �→ (x, ŷ(x)) and that part of x �→ (x, ỹ(x)) on which h p is nonnegative.
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Let now additionally assume that ȳ is a local minimizer for L(x̄). Then, μ̄ j > 0,
j ∈ J0(x̄, ȳ)\{p} in A3, and the matrix D2

yy L(x̄, ȳ)|Tȳ M(x̄) is positive definite in A4,
hence, δ2 = 0.

We consider two cases for δ = 0 or δ = 1.
Case δ = 0:
In this case D2

yy L(x̄, ȳ)|T +
ȳ M(x̄) is positive definite in A5. Hence, ȳ is a strongly

stable local minimizer for L(x̄) (see [11] for details on the strong stability). Moreover,
ỹ(x) is a local minimizer for L(x) if h p(x, ỹ(x)) > 0. Otherwise, ŷ(x) is a local min-
imizer for L(x) since the corresponding Lagrange multiplier μp(x) becomes positive
due to (12). Note that the sign of h p(x, ỹ(x)) is corresponding to sign(γ ) as obtained
in (10).

Then, we get locally around (x̄, ȳ):

Σmin =
{
(x, y(x)) | y(x) :=

{
ỹ(x), x ≤ x̄
ŷ(x), x̄ ≤ x

}
if sign(γ ) = −1

and

Σmin =
{
(x, y(x)) | y(x) :=

{
ŷ(x), x ≤ x̄
ỹ(x), x̄ ≤ x

}
if sign(γ ) = +1.

Case δ = 1:
In this case D2

yy L(x̄, ȳ)|T +
ȳ M(x̄) has exactly one negative eigenvalue. Thus, we

obtain that the optimal value of the following optimization problem is negative:

minimize
ξ∈Rm

ξ T · D2
yyg(x̄, ȳ) · ξ s.t. ‖ξ‖ = 1, ξ ∈ T +

ȳ M(x̄),

Dyh p(x̄, ȳ) · ξ ≥ 0.

In view of that, at (x̄, ȳ) we can find a quadratic descent direction ξ for L(x̄). Thus,
ȳ is not a local minimizer for L(x̄) which contradicts to the above assumption. We
conclude that this case does not occur in Σmin .

3.3 Points of Type 3

A point (x̄, ȳ) ∈ Σ is of Type 3 if the following conditions B1–B4 hold:

B1: LICQ is satisfied at (x̄, ȳ)
After renumbering we may assume in case J0(x̄, ȳ) �= ∅ that J0(x̄, ȳ) =
{1, . . . , p}, p ≥ 1. Then, we have

Dy g(x̄, ȳ) =
p∑

j=1

μ̄ j Dyh j (x̄, ȳ). (13)

B2: In (13) we have μ̄ j �= 0, j = 1, . . . , p.
Let L and Tȳ M(x̄) be defined as in (6) and (7), respectively.

B3: Exactly one eigenvalue of D2
yy L(x̄, ȳ)|Tȳ M(x̄) vanishes.
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Let V be a matrix, whose columns form a basis for the tangent space Tȳ M(x̄). Accord-
ing to B3, let w be a nonvanishing vector such that V T · D2

yy L(x̄, ȳ) · Vw = 0, and
put v := V · w. Put Φ = (h1, . . . , h p−1)

T and define

β1 := vT (D3
yyy L · v)v − 3vT D2

yy L ·
((

DyΦ · DT
y Φ
)−1 · DyΦ

)
· (vT D2

yyΦv),

β2 := Dx (Dy L · v)− DT
x Φ ·

((
DyΦ · DT

y Φ
)−1 · DyΦ

)
· D2

yy L · v.

Note that all partial derivatives are evaluated at (x̄, ȳ). Next, we put

β := β1 · β2.

B4: β �= 0

Let α denote the number of negative eigenvalues of D2
yy L(x̄, ȳ)|Tȳ M(x̄).

Characteristic numbers: sign(β), α

It turns out that in a neighborhood of (x̄, ȳ) the setΣ is a one-dimensional C2−man-
ifold. Moreover, the parameter x , viewed as a function on Σ , has a (nondegenerate)
local maximum, resp. local minimizer, at (x̄, ȳ) according to sign(β) = +1, resp.
sign(β) = −1. Consequently, the set Σ can be locally approximated by means of a
parabola. In particular, if we approach the point (x̄, ȳ) alongΣ , the path of local min-
imizers (with QI = α = 0) stops and the local minimizer switches into a saddlepoint
(with QI = α+1 = 1). Moreover, note that at (x̄, ȳ) there exists a unique (tangential)
direction of cubic descent, hence, ȳ can not be a local minimizer for L(x̄). Hence, this
case does not occur in Σmin .

3.4 Points of Type 4

A point (x̄, ȳ) ∈ Σ is of Type 4 if the following conditions C1–C6 hold:

C1: J0(x̄, ȳ) �= ∅
After renumbering we may assume that J0(x̄, ȳ) = {1, . . . , p}, p ≥ 1.

C2: dim
{
span

{
Dyh j (x̄, ȳ), j ∈ J0(x̄, ȳ)

}} = p − 1
C3: p − 1 < m

From C2 we see that there exist μ̄ j , j ∈ J0(x̄, ȳ), not all vanishing such that

p∑

j=1

μ̄ j Dyh j (x̄, ȳ) = 0. (14)

Note that the numbers μ̄ j , j ∈ J0(x̄, ȳ) are unique up to a common multiple.
C4: μ̄ j �= 0, j ∈ J0(x̄, ȳ) and we normalize the μ̄ j ’s by setting μ̄p = 1
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We define furthermore

L(x, y) := h p(x, y)+
p−1∑

j=1

μ̄ j h j (x, y) and

Tȳ M(x̄) := {ξ ∈ R
m | Dyh j (x̄, ȳ) · ξ = 0, j ∈ J0(x̄, ȳ)

}

Let W be a matrix, whose columns form a basis for Tȳ M(x̄). Define

A := Dx L · W T · D2
yy L · W and w := W T · DT

y g,

all partial derivatives being evaluated at (x̄, ȳ).

C5: A is nonsingular
Finally define

α := wT · A−1 · w.

C6: α �= 0

Let β denote the number of positive eigenvalues of A. Let γ be the number of negative
μ̄ j , j ∈ {1, . . . , p − 1} and put δ := Dx L(x̄, ȳ).

Characteristic numbers: sign(α), sign(δ), γ , β

We proceed with the local analysis of the set Σ in a neighborhood of (x̄, ȳ). Con-
ditions C2, C4 and C5 imply that (locally around (x̄, ȳ)) at all points (x, y) ∈ Σ—
apart from (x̄, ȳ)—LICQ holds. Moreover, the active set J0(·) is locally constant
(= J0(x̄, ȳ)) on Σ . Having these facts in mind, we consider the following map Ψ :
R × R

m × R
p−1 × R −→ R

m × R p:

Ψ (x, y, μ, λ) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

λDy g(x, y)+ Dyh p(x, y)+
p−1∑

j=1

μ j Dyh j (x, y)

h j (x, y) = 0, j = 1, . . . , p − 1

λg(x, y)+ h p(x, t)+
p−1∑

j=1

μ j h j (x, y)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that Ψ (x̄, ȳ, μ̄, 0) = 0 and Dx,y,μΨ (x̄, ȳ, μ̄, 0) is nonsingular due to C5 and
C6. Hence, there exists the unique C2-mapping λ �→ (x(λ), y(λ), μ(λ)) such that
Ψ (x(λ), y(λ), μ(λ), λ) ≡ 0 and (x(0), y(0), μ(0)) = (x̄, ȳ, μ̄). Further, it is not hard
to see that locally around (x̄, ȳ)

Σ = {(x(λ), y(λ)) | λ sufficiently close to 0}.
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The Lagrange multipliers corresponding to (x(λ), y(λ)) are

(
−μ j (λ)

λ
, j = 1, . . . , p − 1,−1

λ

)
. (15)

It turns out that in a neighborhood of (x̄, ȳ) the setΣ is a one-dimensional C2−man-
ifold. The parameter x , viewed as a function onΣ , has a (nondegenerate) local maxi-
mum, resp. local minimizer, at (x̄, ȳ) according to sign(α) = +1, resp. sign(α) = −1.
Consequently, the set Σ can be locally approximated by means of a parabola.

Let now additionally assume that ȳ is a local minimizer for L(x̄). Then, μ̄ j > 0,
j = 1, . . . , p − 1 in C4 and, hence,

γ = 0. (16)

Moreover, the matrix W T · D2
yy L · W is negative definite. In particular, we get

β =
{

n − (p − 1) if sign(δ) = −1,
0 if sign(δ) = 1

(17)

We are interested in the local structure of Σmin at (x̄, ȳ). It is clear from (15) that λ
must be nonpositive if following the branch of local minimizers.

We consider two cases with respect to sign(α) and sign(δ)

Case 1: sign(α) = sign(δ)

A few calculations show that

Dλg(x(λ), y(λ))λ=0 = −α · δ.
Hence, Dλg(x(λ), y(λ))λ=0 < 0 and g(x(·), y(·)) is strictly decreasing when passing
λ = 0. Consequently, the possible branch of local minimizers corresponding to λ ≤ 0
can not be one of global minimizers. We omit this case in view of our further interest
in global minimizers in the context of bilevel programming problems.

Case 2: sign(α) �= sign(δ)

In this case we get locally around (x̄, ȳ):

Σmin = {(x(λ), y(λ)) | λ ≤ 0}.
In fact, for sign(α) = 1 and sign(δ) = −1 the linear and quadratic indices of y(λ)
for L(x(λ)), λ < 0 are

LI = γ = 0, Q I = n − p − β + 1 = n − p − (n − p + 1)+ 1 = 0.

For sign(α) = −1 and sign(δ) = 1 the linear and quadratic indices of y(λ) for
L(x(λ)), λ < 0 are

LI = γ = 0, QI = β = 0.

Confer (16) and (17) for the values of γ and β, respectively.
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3.5 Points of Type 5

A point (x̄, ȳ) ∈ Σ is of Type 5 if the following conditions D1–D4 hold:

D1: |J0(x̄, ȳ)| = m + 1
D2: The set of vectors

{
Dh j (x̄, ȳ), j ∈ J0(x̄, ȳ)

}

is linearly independent (derivatives in R
m+1)

After renumbering we may assume that J0(x̄, ȳ) = {1, . . . , p}, p ≥ 2.
From D1, D2 we see that there exist μ j , j ∈ J0(x̄, ȳ), not all vanishing such that

p∑

j=1

μ j Dyh j (x̄, ȳ) = 0. (18)

Note that the numbers μ j , j ∈ J0(x̄, ȳ) are unique up to a common multiple.

D3: μ j �= 0, j ∈ J0(x̄, ȳ)

From D1, D2 it follows that there exist unique numbers β j , y ∈ J0(x̄, ȳ) such that

Dg(x̄, ȳ) =
p∑

j=1

β j Dh j (x̄, ȳ). (19)

Put

Δi j := βi − β j · μi

μ j
for i, j = 1, . . . , p

and let Δ be the p × p matrix with Δi j as its (i, j)th element.

D4: All off-diagonal elements of Δ do not vanish

We set

L(x̄, ȳ) =
p∑

j=1

μ j h j (x̄, ȳ).

From D2 we see that Dx L(x̄, ȳ) �= 0. We define:

γ j := sign
(
μ j · Dx L(x̄, ȳ)

)
for i, j = 1, . . . , p.

By δ j we denote the number of negative entries in the j th column ofΔ, j = 1, . . . , p.

Characteristic numbers: γ j , δ j , j = 1, . . . , p

We proceed with the local analysis of the setΣ in a neighborhood of (x̄, ȳ). Conditions
D1-D3 imply that locally around (x̄, ȳ) at all points (x, y) ∈ Σ\{(x̄, ȳ)} LICQ holds.
Combining (18) and (19) we obtain:
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Dx g(x̄, ȳ) =
p∑

j=1

(
β j − βq · μ j

μq

)
Dx h j (x̄, ȳ), q = 1, . . . , p. (20)

These both facts imply that for all (x, y) ∈ Σ\{(x̄, ȳ)} in a neighborhood of (x̄, ȳ):

‖J0(x, y)‖ = m and J0(x, y) = J0(x̄, ȳ)\{q} (21)

with some q ∈ {1, . . . , p} (in general, depending on (x, y)).

We put

Mq := {(x, y) | h j (x, y) = 0, j ∈ J0(x̄, ȳ)\{q}} and

M+
q := {(x, y) ∈ Mq | hq(x, y) ≥ 0

}
.

From (20) and (21) it is easy to see that locally around (x̄, ȳ)

Σ =
p⋃

q=1

M+
q .

The indices (LI, LCI, QI, QCI) along M+
q \{(x̄, ȳ)} are equal (δq ,m − δq , 0, 0). Let

q ∈ {1, . . . , p} be fixed. Mq is a one-dimensional C3-manifold due to D2. Since the
set of vectors

{
Dyh j (x̄, ȳ), j ∈ J0(x̄, ȳ)\{q}}

is linearly independent, we can parametrize Mq by means of the unique C3-mapping
x �→ (x, yq(x)) with yq(x̄) = ȳ. A short calculation shows that

sign

(
dhq(x, yq(x))

dx x=x̄

)
= γq .

Hence, by increasing x , M+
q emanates from (x̄, ȳ), resp. ends at (x̄, ȳ) according to

γq = +1, resp. γq = −1.
Let now additionally assume that ȳ is a local minimizer for L(x̄). For describing

Σmin we define the so-called Karush–Kuhn–Tucker subset

ΣKKT := cl {(x, y) ∈ Σ | (x, y) is of Type 1 with LI = 0}.

It is shown in [13, Theorem 4.1] that—generically—ΣKKT is a one-dimensional
(piecewise C2-) manifold with boundary. In particular, (x, y) ∈ ΣKKT is a boundary
point iff at (x, y) we have: J0(x, y) �= ∅ and the Mangasarian–Fromovitz Constraint
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Qualification (MFCQ) fails to hold. We recall that MFCQ is said to be satisfied for
(x, y), y ∈ M(x), if there exists a vector ξ ∈ R

m such that

Dyh j (x, y) · ξ > 0 for all j ∈ J0(x, y).

Now we consider two cases with respect to the signs of μ j , j ∈ J0(x̄, ȳ):

Case 1: all μ j , j ∈ J0(x̄, ȳ) have the same sign

Recalling (18) we obtain that MFCQ is not fulfilled at (x̄, ȳ). Hence, (x̄, ȳ) is a bound-
ary point ofΣKKT. Having in mind the formulas for the indices (LI= δq , LCI= m−δq ,
QI=0, QCI=0) along M+

q \{(x̄, ȳ)} we obtain that δq = 0 for some q ∈ {1, . . . , p}.
Moreover, a simple calculation shows

Δi j = −μi

μ j
·Δ j i , i, j = 1, . . . , p. (22)

Since all μ j , j ∈ J0(x̄, ȳ) have the same sign, we get from (22)

sign(Δi j ) = −sign(Δ j i ), i, j = 1, . . . , p.

Hence,

δ j > 0 for all j ∈ {1, . . . , p}\{q}.

Finally, in this case we get locally around (x̄, ȳ):

Σmin = {(x, yq(x)) | x ≥ x̄ (resp. x ≤ x̄) if γq = +1 (resp. γq = −1), δq = 0
}
.

We refer to this case as Type 5-1.

Case 2: μ j , j ∈ J0(x̄, ȳ) have different signs

The separation argument implies MFCQ to be satisfied at (x̄, ȳ). Hence, a local min-
imizer ȳ for L(x̄) is also a KKT-point and (x̄, ȳ) ∈ ΣKKT. Due to MFCQ, (x̄, ȳ) is
not a boundary point of ΣKKT. Thus, there exist q, r ∈ {1, . . . , p}, q �= r such that

δq = 0, γq = −1 and δr = 0, γr = +1.

Moreover, such q, r are unique due to (22), D4 and definition of γ j ’s.
In this case we get locally around (x̄, ȳ):

Σmin =
{
(x, y(x)) | y(x) :=

{
yq(x), x ≤ x̄ (if δq = 0, γq = −1)
yr (x), x ≥ x̄ (if δr = 0, γr = 1)

}
.

We refer to the case as Type 5-2.
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4 Main results

First, we define simplicity of a bilevel programming problem at a feasible point. Recall
again that dim(x) = 1.

Definition 4.1 (Simplicity of bilevel problems) A bilevel programming problem U
(with dim(x) = 1) is called simple at (x̄, ȳ) ∈ M if one of the following cases occurs:
Case I: Argmin L(x̄) = {ȳ} and (x̄, ȳ) is of Type 1, 2, 4, 5-1 or 5-2,
Case II: Argmin L(x̄) = {ȳ1, ȳ2} and (x̄, ȳ1), (x̄, ȳ2) are both of Type 1,

additionally it holds:

α := sign

[
d [g(x, y2(x))− g(x, y1(x))]

dx

∣∣∣∣
x=x̄

]
�= 0, (23)

where y1(x), y2(x) are unique local minimizers for L(x) in a neighborhood of x̄ with
y1(x̄) = ȳ1, y2(x̄) = ȳ2 according to Type 1.

In order to avoid asymptotic effects, let O denote the set of (g, h j , j ∈ J ) ∈
C3(R1+m)× [C3(R1+m)

]|J |
such that

Bg,h(x̄, c) is compact for all (x̄, c) ∈ R × R, (24)

where

Bg,h(x̄, c) := {(x, y) | ‖x − x̄‖ ≤ 1, g(x, y) ≤ c, y ∈ M(x)}.

Note that O is C3
s -open.

Now, we state our main result.

Theorem 4.1 (Simplicity is generic and stable) Let F denote the set of defining func-
tions ( f, g, h j , j ∈ J ) ∈ C3(R1+m)×O such that the corresponding bilevel program-
ming problem U is simple at all its feasible points (x̄, ȳ) ∈ M. Then, F is C3

s -open
and C3

s -dense in C3(R1+m)× O.

Proof It is well-known from the one-dimensional parametric optimization ([13]) that
generically the points ofΣ are of Types 1-5 as defined above. Moreover, for the points
of M ⊂ Σ only Types 1, 2, 4, 5-1 or 5-2 may occur generically (cf. Sect. 3). Further,
the appearance of two different y, z ∈ Argmin L(x) causes one loss of freedom to the
equation

g(x, y) = g(x, z).

From the standard argument by counting the dimension and codimension of the cor-
responding manifold in multi-jet-space and by applying the Multi-Jet-Transversality
Theorem (cf. [14]), we get generically:

|Argmin L(x)| ≤ 2.
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Now, |Argmin L(x)| = 1 corresponds to Case I in Definition 4.1. For the case
|Argmin L(x)| = 2, we obtain the points of Type 1. It comes from the fact that
the appearance of Types 2, 4, 5-1 or 5-2 would cause another loss of freedom due to
their degeneracy. Analogously, (23) in Case II is generically valid.

The proof of the openness-part is standard (cf. [14]). �	
Using the description ofΣmin from Sect. 3, a reducible bilevel programming problem
U can be locally reduced as follows.

Theorem 4.2 (Bilevel feasible set and Reduced Problem) Let the bilevel program-
ming problem U (with dim(x) = 1) be simple at (x̄, ȳ) ∈ M. Then, locally around
(x̄, ȳ), U is equivalent to the following reduced optimization problem:

Reduced − Problem : minimize
(x,y)∈R1×Rm

f (x, y) s.t. (x, y) ∈ Mloc, (25)

where Mloc is given according to the cases in Definition 4.1: Case I, Type 1:

Mloc = {(x, y(x)) | x sufficiently close to x̄},

Case I, Type 2:

Mloc =
{
(x, y(x)) | y(x) :=

{
ỹ(x), x ≤ x̄
ŷ(x), x̄ ≤ x

}
if sign(γ ) = −1

or

Mloc =
{
(x, y(x)) | y(x) :=

{
ŷ(x), x ≤ x̄
ỹ(x), x̄ ≤ x

}
if sign(γ ) = +1,

Case I, Type 4:

Mloc = {(x(λ), y(λ)) | λ ≤ 0},

Case I, Type 5-1:

Mloc = {
(x, yq(x)) | x ≥ x̄ (resp.x ≤ x̄) if γq

= −1 (resp.γq = +1), δq = 0
}
,

Case I, Type 5-2:

Mloc =
{
(x, y(x)) | y(x) :=

{
yq(x), x ≤ x̄ (ifδq =0, γq =−1)
yr (x), x ≥ x̄ (ifδr =0, γr =1)

s

}
,

Case II:

Mloc ={(x, y1(x)) | x ≥ x̄ (resp. x ≤ x̄) if α=+1 (resp. α=−1)}.

We refer to Sect. 3 for details on Types 1, 2, 4. 5-1 and 5-2. �	
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Case I, Type 1 Case I, Type 2 Case I, Type 4

Case I, Type 5-1 Case I, Type 5-2 Case II

Fig. 1 Bilevel feasible set Mloc from Theorem 4.2

In each case one of the possibilities for Mloc is depicted in Fig. 1.
Theorem 4.2 allows to deduce optimality criteria for a reducible bilevel program-

ming problem. In fact, the set Mloc from Reduced-Problem is the feasible set of
either a standard nonlinear optimization problem—NLP—(Cases I, Type 1, 4, 5-1 and
Case II) or a mathematical programming problem with complementarity constraints—
MPCC—(Cases I, Type 2 and 5-2). Hence, we only need to use the corresponding
optimality concepts of a Karush–Kuhn–Tucker point (for NLP) and of a S-stationary
point (for MPCC), cf. [15] for the latter concept.

Theorem 4.3 (First-order optimality for simple bilevel problem) Let a bilevel pro-
gramming problem U (with dim(x) = 1) be simple at its local minimizer (x̄, ȳ) ∈ M.
Then, according to the cases in Theorem 4.2 we obtain: Case I, Type 1:

Dx f (x̄, ȳ)+ Dy f (x̄, ȳ) · Dx y(x̄) = 0,

Case I, Type 2:

[
Dx f (x̄, ȳ)+ Dy f (x̄, ȳ) · Dx ỹ(x̄)

] ≤ 0,[
Dx f (x̄, ȳ)+ Dy f (x̄, ȳ) · Dx ŷ(x̄)

] ≤ 0.

Case I, Type 4:

Dx f (x̄, ȳ) · Dλx(0)+ Dy f (x̄, ȳ) · Dλy(0) ≤ 0,
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Case I, Type 5-1:

Dx f (x̄, ȳ)+ Dy f (x̄, ȳ) · Dx yq(x̄) ≥ 0, ifγq = −1, δq = 0

or

Dx f (x̄, ȳ)+ Dy f (x̄, ȳ) · Dx yq(x̄) ≤ 0, ifγq = +1, δq = 0

Case I, Type 5-2:

[
Dx f (x̄, ȳ)+ Dy f (x̄, ȳ) · Dx yq(x̄)

] ≤ 0,[
Dx f (x̄, ȳ)+ Dy f (x̄, ȳ) · Dx yr (x̄)

] ≤ 0,

Case II:

Dx f (x̄, ȳ)+ Dy f (x̄, ȳ) · Dx y(x̄) ≥ 0, ifα = −1,

or

Dx f (x̄, ȳ)+ Dy f (x̄, ȳ) · Dx y(x̄) ≤ 0, ifα = +1

Note that the derivatives of implicit functions above can be obtained from the defining
equations as discussed in Sect. 3. �	

The following remarks are launched by anonymous referees.

Remark 4.1 The simplicity of bilevel problems (cf. Definition 4.1) means, in partic-
ular, that if the lower level problem does not have a unique optimal solution for the
fixed upper level variable, then the optimal solutions of the lower level problem are
of Type 1. Hence, the question arise, whether it is possible to derive generic optimal-
ity conditions for the bilevel optimization problems using the approach of implicitly
defined lower level solution functions (as done under additional convexity assump-
tions in [5]). Unfortunately, the answer is negative in general. Indeed, as we see from
Cases I, Type 4 and Type 5-1 the optimal solution of the lower level problem can not
be parametrized by x in the whole neighborhood of x̄ (cf. Fig. 1). It is due to the fact
that the solution of the lower level problem for the fixed parameter x̄ is not strongly
stable (cf. Examples 2.2, 2.3). We point out that the assumption of strong stability at
the lower level is rather restrictive, already in case dim(x) = 1. �	
Remark 4.2 It is well-known that optimality conditions for bilevel programming can
be derived in different ways. Here, we mention only the KKT approach and the value
function approach. Due to the KKT approach, the lower level problem is replaced
by its Karush–Kuhn–Tucker system (cf. e.g. [8]). In the value function approach a
nonsmooth optimal value function appears as a constraint instead of the lower level
problem (cf e.g. [17]). Recently a kind of combined approach using both ideas was
introduced in [16]. We point out that the comparison of optimality conditions (derived
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in the literature and from Theorem 4.3) is an interesting and involved issue. The dif-
ficulty comes from the fact the optimality conditions from Theorem 4.3 are given
according to the classification of possible singularities at the lower level. In other
approaches, however, the difficult structure of the lower level problem is tried to be
avoided. �	
Remark 4.3 We mention the difference between the reduction of a simple bilevel pro-
gramming problem as performed in Theorem 4.2 [see (25)] and the notion of constraint
reducibility (cf. [3]). The latter is widely used in the nonlinear programming literature
and refers to the local description of the constraint

G(x) ∈ K with G : R
n −→ R

m and K being a closed convex subset of R
m

as

G(x) ∈ C with G : R
n −→ R

k and C being a closed convex subset of R
k .

Such reduction makes sense if e.g. C becomes a pointed convex closed cone. In the
bilevel setting the constraint we reduce is

y ∈ Argmin L(x).

Hence, we rather perform the analysis of singularity types appeared at the lower level
than apply smooth coordinate transformations as in the case of constraint reducibility.

�	

5 Towards the case x ∈ R
n, n ≥ 2

In the higher dimensional case, i.e. dim(x) ≥ 2, there will appear more complicated
singularities in the description of the feasible set. In particular, we will present stable
examples when more than one Lagrange multiplier vanishes. This will be an extension
of Type 2 (cf. Examples 5.5, 5.6). On the other hand, we will not be able to describe
all generic situations. This obstruction comes from classification in singularity theory.
In fact, in one variable (y) there is already a countable infinite list of local minimizers:
In the unconstrained case the functions y2k , k ≥ 1 and in the constrained case y ≥ 0
the functions yk , k ≥ 1. However, a complete list of local minimizers for functions
of two variables or more is even not known. Therefore, we have to bring the upper
objective function of the bilevel problem into play as well. If we restrict ourselves to
a neighborhood of a (local) solution of the bilevel problem, then the generic situation
becomes easier. For example, the above mentioned singularities y2k (k ≥ 2) as well
as the constrained singularities yk (k ≥ 3), y ≥ 0, can generically be avoided at local
solutions of the bilevel problem. The key idea is explained below in Remark 5.6 and
illustrated in Examples 5.7, 5.8.

Remark 5.4 We note that all singularities appearing for lower dimensional x may
reappear at higher dimensional x in a kind of product structure. In fact, the lower
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dimensional singularity may appear as normal section in the corresponding normal-
tangential stratification (cf. [9]). For example, let x = (x1, x2, . . . , xn) and let the
lower level problem L(x) be:

L(x) : min
y
(y − x1)

2 s.t. y ≥ 0

Then, the feasible set M becomes:

M = {(x1, x2, . . . , xn,max{x1, 0} | x ∈ R
n}

and in this particular case we see that M is diffeomorphic to product
{
(x1,max{x1, 0})

| x1 ∈ R
}× R

n−1. �	
At this point we come to typical examples with several vanishing Lagrange multi-

pliers. Here, we assume that LICQ at the lower level is fulfilled, that the dimensions
of the variables x and y coincide (i.e. n = m), that J0(x̄, ȳ) = m and that x̄ = ȳ = 0.
Taking the constraints h j as new coordinates, we may assume that the lower level fea-
sible set M(0) is just the nonnegative orthant. In this setting, the Lagrange multipliers
of the lower level function g at the origin just become the partial derivatives with
respect to the coordinates y j , j = 1, . . . ,m. Now we suppose that all these partial
derivatives vanish (generalization of Type 2). Then, the Hessian D2

yy g(0, 0) comes
into play and we assume that it is nonsingular. In order that the origin is a (local)
minimizer for L(0), a stable condition becomes that the positive cone of the Hessian
D2

yyg(0, 0) contains the nonnegative orthant with deleted origin. This gives rise to
several combinatorial possibilities, depending on the number of negative eigenvalues
of D2

yy g(0, 0). In the next two examples, we restrict ourselves to two dimensions, i.e.
n = m = 2.

Example 5.5 In this example the Hessian D2
yy g(0, 0) has two (typically distinct) pos-

itive eigenvalues. In particular, D2
yy g(0, 0) is positive definite:

f (x1, x2, y1, y2) = (−x1 + 2y1)+ (−x2 + 2y2)

L(x1, x2) : min
y

g(x1, x2, y1, y2) :=(y1−x1)
2+(y1−x1) · (y2 − x2)+ (y2 − x2)

2

s.t. y1 ≥ 0, y2 ≥ 0.

In order to obtain the feasible set M , we have to consider critical points of L(x1, x2)

for the following four cases I–IV. These cases result from the natural stratification of
the nonnegative orthant in y-space:

I : y1 > 0, y2 > 0 II : y1 = 0, y2 > 0
III : y1 > 0, y2 = 0 IV : y1 = 0, y2 = 0.

It turns out that the feasible set M is piecewise smooth two-dimensional manifold.
Moreover, it can be parametrized via the x-variable by means of a subdivision of the
x-space into four regions according to the above cases I–IV, see Fig. 2.
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Fig. 2 Illustration of
Example 5.5

Fig. 3 Illustration of
Example 5.6

On the regions I–IV the corresponding global minimizer (y1(·), y2(·)) is given by:

(y1(x), y2(x)) =

⎧
⎪⎪⎨

⎪⎪⎩

(x1, x2), if (x1, x2) ∈ I,
(0, x1

2 + x2), if (x1, x2) ∈ II,
( x2

2 + x1, 0), if (x1, x2) ∈ III,
(0, 0), if (x1, x2) ∈ IV.

(26)

In particular, we obtain M = {(x, y(x)) | y(x) as in (26)}. A few calculations show
that the origin (0, 0) solves the corresponding bilevel problem U . �	
Example 5.6 In this example the Hessian D2

yy g(0, 0) has one positive and one negative
eigenvalue:

f (x1, x2, y1, y2) = −3x1 + x2 + 4y1 + 5y2

L(x1, x2) : min
y

g(x1, x2, y1, y2) :=(y1−x1)
2+4(y1−x1) · y2+3

(
y2 + 1

3
x2

)2

s.t. y1 ≥ 0, y2 ≥ 0.

It is easy to see that (y1, y2) = (0, 0) is the global minimizer for L(0, 0). Analogously
to Example 5.5 we subdivide the parameter space (x1, x2) into regions on which the
global minimizer (y1(x), y2(x)) for L(x) is a smooth function. Here, we obtain three
regions II–IV, see Fig. 3. Note that the region corresponding to the case I is empty.

In addition, for the parameters (x1, x2) lying on the halfline

G : x1 = (2 + √
3)x2, x1 ≥ 0

the problem L(x) exhibits two different global minimizers. It is due to the fact that
(y1, y2) = (0, 0) is a saddlepoint of the objective function g(0, y1, y2). Moreover,
(y1, y2) = (0, 0) is not strongly stable for L(0, 0).
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On the regions II–IV and on G the corresponding global minimizers (y1(·), y2(·))
are given by:

(y1(x), y2(x)) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, 2
3 x1 − 1

3 x2), if (x1, x2) ∈ II,
(x1, 0), if (x1, x2) ∈ III,
(0, 0), if (x1, x2) ∈ IV,{
(0, 2

3 x1 − 1
3 x2), (x1, 0)

}
if (x1, x2) ∈ G.

(27)

Here, M = {(x, y(x)) | y(x) as in (27)}. We point out that the bilevel feasible set M
is now a two-dimensional nonsmooth Lipschitz manifold with boundary, but it cannot
be parametrized by the variable x . Again, one calculates that origin (0,0) solves the
corresponding bilevel problem U . �	
Remark 5.5 Let us consider in Examples 5.5, 5.6 a smooth curve around the origin
which traverses the partition of x-space in a transversal way, for example a circle C .
Then, restricted to C , the dimension of x reduces to one and we rediscover a simple
bilevel problem. �	
Remark 5.6 In order to avoid certain higher order singularities in the description of
the feasible set M , we have to focus on a neighborhood of (local) solutions of the
bilevel problem. The key idea is as follows. Suppose that the feasible set M contains
a smooth curve, say C , through the point (x̄, ȳ) ∈ M . Let the point (x̄, ȳ) be a local
solution of the bilevel problem U , i.e. (x̄, ȳ) is a local minimizer for the objective
function f on the set M . Then, (x̄, ȳ) is also a local minimizer for f restricted to the
curve C . If, in addition, (x̄, ȳ) is a nondegenerate local minimizer for f|C , then we may
shift this local minimizer along C by means of a linear perturbation of f . After that
perturbation with resulting f̃ , the point (x̄, ȳ) is not any more a local minimizer for
f̃|C and, hence, it is not any more a local minimizer for f̃|M . Now, if the singularities
in M outside of the point (x̄, ȳ) are of lower order, then in this way we are able to
move away from the higher order singularity. This simple idea was used in particular
in [7]. The key point however is to find a smooth curve through a given point of the
feasible set M . An illustration will be presented in Examples 5.7 and 5.8. In contrast,
note that in Examples 5.5 and 5.6 such a smooth curve through the origin (0, 0) does
not exist. �	
Example 5.7 Consider the one dimensional functions y2k , k = 1, 2, . . . The origin
y = 0 is always the global minimizer. For k = 1 the latter is nondegenerate (Type
1), but for k ≥ 2 it is degenerate. Let k ≥ 2 and x = (x1, x2, . . . , x2k−2). Then the
function g(x, y), with x as parameter,

g(x, y) = y2k + x2k−2 y2k−2 + x2k−3 y2k−3 + · · · + x1 y

is a so-called universal unfolding of the singularity y2k . Moreover, the singularities
with respect to y have a lower codimension (i.e. lower order) outside the origin x = 0
(cf. [1,4]). Consider the unconstrained lower level problem

L(x) : min
y

g(x, y)
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with corresponding bilevel feasible set M . Let the smooth curve C in (x, y)-space be
defined by the equations:

x1 = x2 = · · · = x2k−3 = 0, ky2 + (k − 1)x2k−2 = 0.

It is not difficult to see that, indeed, C contains the origin and belongs to the bilevel
feasible set M . �	
Example 5.8 Consider the one dimensional functions yk , k ≥ 1 under the constraint
y ≥ 0. The origin y = 0 is always the global minimizer. The case k = 1 is non-
degenerate (Type 1), whereas the case k = 2 corresponds to Type 2. Let k ≥ 3 and
x = (x1, x2, . . . , xk−1). Then, analogously to Example 5.7, the function g(x, y),

g(x, y) = yk + xk−1 yk−1 + xk−2 yk−2 + · · · + x1 y, y ≥ 0,

is the universal unfolding of the (constrained) singularity yk , y ≥ 0. Consider the
constrained lower level problem

L(x) : min
y

g(x, y) s.t. y ≥ 0

with corresponding bilevel feasible set M .
In order to find a smooth curve C through the origin and belonging to M , we put

x1 = x2 = · · · = xk−3 = 0.

So, we are left with the reduced lower level problem function

L̃(xk−2, xk−1) : min
y

g̃(xk−2, xk−1, y) s. t. y ≥ 0

with reduced feasible set M̃ , where

g̃(xk−2, xk−1, y) = yk + xk−1 yk−1 + xk−2 yk−2.

Firstly, let xk−1 < 0 and xk−2 > 0 and consider the curve defined by the equation

xk−2 − 1

4
x2

k−1 = 0.

One calculates, that for points on this curve, the lower level L̃ has two different global
minimizers on the set y ≥ 0 (with g̃-value zero), one of them being y = 0. Secondly,
we note that the set {(xk−1, xk−2, 0) | xk−1 ≥ 0, xk−2 ≥ 0} belongs to M̃ . Altogether,
we obtain that the curve C defined by the equations

x1 = x2 = · · · = xk−3 = y = 0, xk−2 − 1

4
x2

k−1 = 0,

belongs to M . �	
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We finally remark that a complete systematic generic description of the feasible
bilevel set M in a neighborhood of local solutions of the bilevel problem U for higher
x-dimensions is a very challenging issue for future research. Another interesting point
for future research would be the discovery of a stable generic constraint qualification
under which the whole feasible set M might be expected to be a Lipschitz manifold
with boundary.
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