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1. Introduction

The bilevel programming problem is an optimization problem
in which the constraints are implicitly determined by another opti-
mization problem. In other words, it is an hierarchical optimization
problem consisting in two levels. At the upper level, the decision
maker (leader) has to choose first a strategy x to minimize his
objective function F, and the lower level decision maker (follower)
has to select a strategy y that minimizes its own objective function
f parameterized by x. Anticipating the reaction of the follower, the
leader intends to find such values for its variables which together
with the follower’s reaction minimize its objective function.

The bilevel programming problem is very hard to solve due to
its non convexity and the implicity of its feasible set. Even if all
the functions are linear and the feasible sets are polyhedron, this
problem remains non-convex. For this reason, this problem has re-
ceived a large attention especially for the linear case, see for exam-
ple Aboussoror and Mansouri (2005), Campelo et al. (2000). For an
extensive bibliography the reader can refer to Dempe (2003),
Vicente and Calamai (1994).

In this paper, we are concerned with a bilevel programming
problem where the upper level is a scalar optimization problem
and the lower level is a multi-objective optimization problem. This
situation can be interpreted either as there is a follower that has
several objectives or as there are many decision makers in the low-
er level. In this later case, the leader must take into consideration
the reaction of all of these followers. If we make the intersection
of the feasible set of the followers, we will have a multi-objective
optimization problem in the lower level.
ll rights reserved.
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In a mathematical term, the problem is

ðBLPÞ Min
ðx;yÞ2Rn�Rm

x2X;y2MðxÞ

Fðx; yÞ;

where MðxÞ is the set of the efficient or weakly efficient solutions of
the multi-objective optimization problem

ðMOPÞ Min
y2Rm

y2YðxÞ

f ðx; yÞ;

with

F : Rn � Rm ! R; f : Rn � Rm ! Rp; X � Rn; and
YðxÞ � Rm; 8x 2 X:

This kind of problem has been considered in the first time by Bonnel
(2006), the author gave necessary optimality conditions to the
problem (BLP) when the function f is convex, and he has applied
the results to the case when f is linear. This problem has been con-
sidered also by Bonnel and Morgan (2006), the authors have treated
the problem (BLP) in the general case, where the functions f and F
are defined on Hausdorff topological space. They have used an exte-
rior penalty method to solve the problem.

In a multi-objective programming problem, several objective
functions have to be minimized simultaneously. Usually, no single
point will minimize all of the several objective functions given at
once. This is due to the fact that the space Rp; p P 2, can not be or-
dered totally. Therefore, the concept of optimality has to be re-
placed by a weaker concept called efficiency or Pareto-
optimality. For this reason, we have mentioned in the problem
(BLP) that MðxÞ is the set of the efficient solutions or the set of
the weakly efficient solutions of the problem (MOP). In this paper,
we deal with weakly efficient solutions. We will give the definition
of the efficiency in the next section.
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In the last decade, many authors like Benson (1984, 1983),
Benson and Sayin (1994), Bolintineanu (1993), Bolintineanu and
El maghri (1997), Gal (1977), Isermann (1977), Tamara and Miura
(1977), were interested in the linear multi-objective optimization
problem:

ðLMOPÞMax
x2X1

C1x;

with

C1 2Rp�n; X1 ¼fx2Rn=A1x6 b1; x P 0g; A1 2Rm�n and b1 2Rm:

After the characterization of the efficient point, they were inter-
ested in solving the problem of minimization of a function
f1 : Rn ! R over the efficient set E of the problem (LMOP):

ðSÞ Min
x2E

f1ðxÞ:

Note that the efficient set E is not convex in general, and hence (S) is
a global optimization problem.

In this work, we are concerned with the following problem:

ðPÞ Min
x;y

x2X;xP0
y2EðxÞ

Fðx; yÞ;

where EðxÞ is the set of the weakly efficient solution of the problem

MOPðxÞ Min
y2Rm

AxþBy6b
yP0

Cy;

with F is a concave function on Rn � Rm;C 2 Rr�m; A 2 Rp�n;

B 2 Rp�m; b 2 Rp;X is a closed subset of Rn and T denotes the trans-
position. We will approach the problem (P) via an exact penalty
method inspired from Bolintineanu and El maghri (1997), El maghri
(1996). Finally, we will study the all linear case (the function F is
linear) and we will propose an algorithm.

The outline of this paper is as follows: in Section 2, we give
some preliminaries and establish a result on the existence of solu-
tions of the problem (P). In Section 3, we present the penalty meth-
od and our main result. Finally, in Section 4, we study the linear
case and we propose an algorithm illustrated by numerical
examples.
2. Preliminaries and existence of solutions

It is not possible to find an absolute solution that would be opti-
mal for all the objective functions simultaneously, because there is
no natural ordering in the objective-valued space but only a partial
order.

Set X+ = {x 2 X/x P 0} and for all x 2 X+, set

YðxÞ ¼ fy 2 Rm=Axþ By 6 b; y P 0g:
Definition 2.1. Let x 2 X+. A vector ŷ 2 YðxÞ is called:

(i) Efficient solution if there is no vector y 2 Y(x) such that
Cy 6 Cŷ and Cy – Cŷ.

(ii) Weakly efficient solution to the problem MOP(x) if there is
no vector y 2 Y(x) such that Cy < Cŷ.
Remark 2.1. Remark that in the definition of the objective func-
tion of the second level, we have ignored a term of the form ETx,
since for a given x, ETx is a constant in the follower’s problem
MOP(x).
Throughout the paper, we assume that the following assump-
tions are satisfied.

(H1) ðiÞ For any;x 2 Xþ;YðxÞ–;;
ðiiÞ there exists a compact subset Z of Rm; such that

YðxÞ � Z for all x 2 Xþ:

8><
>:

(H2) The set X+ is a polytope.
The following theorem and lemma show that the problem (P)
admits at least one solution.

Lemma 2.1. Under the assumptions (H1) and (H2), EðxÞ–;, and EðxÞ
is closed.

Theorem 2.1. Suppose that the assumptions (H1) and (H2) are satis-
fied. Then, the problem (P) has at least one solution.

Proof. By Lemma 2.1, EðxÞ is a closed subset of the compact set
Y(x), then EðxÞ is compact. The proof follows by using the theorem
of Weierstrass.
3. Penalization of the problem (P)

It is well known that the principle of the penalty method con-
sists in approaching the problem (P) by a sequence of problems
ðPlk
Þ called penalized problems. Under some hypotheses, every

accumulation point of a sequence ðxkÞk2N of solutions of the penal-
ized problems ðPlk

Þ is a solution of the problem (P).
For ðx; yÞ 2 Rn � Rm, let the function h(x, y) be the optimal value

of the maximization problem

PLðx; yÞ Max
u;t
ft : Cuþ te 6 Cy; u 2 YðxÞ; t 2 Rg;

which is equivalent to the following maximization problem

fPLðx; yÞ Max
u2YðxÞ

min
j¼1;...;r

Cjy� Cju;

in the sense that if ðû; t̂Þ solves PL(x, y), then û solves fPLðx; yÞ,
t̂ ¼ hðx; yÞ and h(x, y) is the optimal value of the problem fPLðx; yÞ.
With e ¼ ð1; . . . ;1ÞT 2 Rr and Cj is the jth row of the matrix C. In
the sequel, we give some properties of the marginal function h.

Remark 3.1. Under the assumption (H1) the marginal function h is
well defined. In fact, the function min

j¼1;...;r
Cjy� Cju, is continuous

over the compact set Y(x).

Lemma 3.1. h is a penalty function of the problem (P). In other words,
the following assertions are satisfied.

(i) "x 2 X+, y 2 Y(x): h(x, y) P 0,
(ii) 8x 2 Xþ : EðxÞ ¼ fy 2 YðxÞ=hðx; yÞ ¼ 0g.

Proof

(i) Let x 2 X+, y 2 Y(x). We have CY + 0.e 6 CY, thus (y, 0) is a fea-
sible solution of the problem PL(x, y). Hence h(x, y) P 0.

(ii) Let x 2 X+ and y 2 EðxÞ, thus y 2 Y(x).

Suppose that h(x,y) – 0. According to the assertion (i), we have
h(x, y) > 0. Then there exists a feasible solution (u, t) of the problem
PL(x, y) such that t > 0. Thus, Cu � Cy 6 � te < 0, which contradicts
the fact that y 2 EðxÞ. Inversely, let y 2 Y(x) such that h(x, y) = 0, and
suppose that y R EðxÞ. Then there exists u 2 Y(x) such that
Cu � Cy < 0. Therefore, we can find t > 0 such that
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Cu � Cy 6 � te < 0. This contradicts h(x, y) = 0 (according to the
problem PL(x, y)). Hence y 2 EðxÞ. h

Lemma 3.2. h is a concave function over Rn � Rm.

Proof. Let x; x0 2 Rn and y; y0 2 Rm. According to the definition of h,
there exists (u, u0) 2 Y(x) � Y(x0) such that

Cuþ hðx; yÞe 6 Cy and Cu0 þ hðx0; y0Þe 6 Cy0:

For a 2 [0, 1] we have

Cðauþ ð1� aÞu0Þ þ ðahðx; yÞ þ ð1� aÞhðx0; y0ÞÞe
6 Cðayþ ð1� aÞy0Þ:

It is easy to show that au + (1 � a)u0 2 Y(a x + (1 � a)x0). Then

ðauþ ð1� aÞu0; ðahðx; yÞ þ ð1� aÞhðx0; y0Þ

is a feasible solution of the problem PL(ax + (1 � a)x0, ay + (1 � a)y0).
Hence

hðaxþ ð1� aÞx0;ayþ ð1� aÞy0ÞP ahðx; yÞ þ ð1� aÞhðx0; y0Þ;

i.e. h is a concave function over Rn � Rm. h

For l > 0, let the penalized problem

ðPlÞMin
x;y

x2Xþ
y2YðxÞ

þFðx; yÞ þ lhðx; yÞ:

Remark 3.2. A point ðx; yÞ 2 Rn � Rm is a feasible solution of the
problem (Pl) if and only if y is a feasible solution of the problem of
the lower level MOP(x).

Theorem 3.1. Let l > 0. Under the assumptions (H1) and (H2) the
problem (Pl) has at least one solution.

Proof. According to the Lemma 3.2, F + lh is a concave function.
Then, the penalized problem (Pl) is a concave minimization prob-
lem over a polytope (assumptions (H1) and (H2)). Therefore, it
admits at least one solution which is a vertex of this polytope
(Zwart (1974), Falk and Hoffman (1976)). h

Let ðlkÞk2N be a positive strictly increasing sequence such that
lk% +1, ðxlk

; ylk
Þ the optimal solution of the problem ðPlk

Þ and
denote ðxk; ykÞ ¼ ðxlk

; ylk
Þ.

Theorem 3.2. Under the assumptions (H1) and (H2) we have:

(1) The sequence ðxk; ykÞk2N admits at least an accumulation point,
and every accumulation point is a solution of the problem (P).

(2) The sequences ðFðxk; ykÞÞk2N and ðhðxk; ykÞÞk2N are respectively,
increasing and decreasing. Besides, limkh(xk, yk) = 0.

(3) limkF(xk, yk) = F*, and limklkh(xk, yk) = 0, with F* denoting the
optimal value of the problem (P).
Proof

(1) The sequence (xk, yk) 2 X+ � Y(xk) which is a compact set
(assumptions (H1) and (H2)). Then, it admits at least one
accumulation point. Besides, the sequence ðlkÞk2N is strictly
increasing. Then, by the definition of the (xk, yk) and accord-
ing to the Lemma 3.1, one has for all k 2 N

Fðxk; ykÞ þ lkhðxk; ykÞ 6 Fðxkþ1; ykþ1Þ þ lkhðxkþ1; ykþ1Þ ð3:1Þ
and
Fðxkþ1;ykþ1Þþlkhðxkþ1;ykþ1Þ6 Fðxkþ1;ykþ1Þþlkþ1hðxkþ1;ykþ1Þ:
ð3:2Þ
Denote by (x*,y*) a solution of the problem (P) and F* its opti-
mal value. We also have

Fðxk; ykÞ 6 Fðxk; ykÞ þ lkhðxk; ykÞ
6 Fðx�; y�Þ þ lkhðx�; y�Þ ¼ Fðx�; y�Þ ¼ F�: ð3:3Þ

Let ð�x; �yÞ an accumulation point of the sequence ðxk; ykÞk2N
and let (xk, yk)k2K, K � N, be a subsequence that converges
to ð�x; �yÞ. Then, by the continuity of function F, and by inequal-
ity (3.1), we have

Fð�x; �yÞ 6 F�: ð3:4Þ

Now, let us show that �y 2 Eð�xÞ. In fact, it is easy to see that
�y 2 Yð�xÞ. According to the Lemma 3.1, it is sufficient to verify
that hð�x; �yÞ ¼ 0. By the inequalities (3.1), (3.2) and (3.3), one
deduces that the sequence (F(xk, yk) + lkh(xk, yk))k2K con-
verges. Since the sequence (F(xk, yk))k2K converges, it follows
that the sequence (lkh(xk, yk))k2K also converges. Therefore,
the continuity of the function h, which is a concave function
over Rn � Rm, implies that limkhðxk; ykÞ ¼ hð�x; �yÞ. Suppose
that hð�x; �yÞ–0. Then, limklkh(xk, yk) = +1, which leads to a
contradiction. Hence, h(xk, yk) = 0. Since �y 2 Eð�xÞ and using
the inequality (3.4), it follows that ð�x; �yÞ is a solution of the
problem (P).
(2) By the definition of xk+1, one has
Fðxkþ1; ykþ1Þ þ lkþ1hðxkþ1; ykþ1Þ 6 Fðxk; ykÞ þ lkþ1hðxk; ykÞ:
ð3:5Þ

In the inequality (3.1), it is easy to see that if ðhðxk; ykÞÞk2N is a
decreasing sequence, then ðFðxk; ykÞÞk2N is an increasing se-
quence. Besides, by adding the inequalities (3.1) and (3.5),
we obtain

ðlkþ1 � lkÞðhðxkþ1; ykþ1Þ � hðxk; ykÞÞ 6 0:

Then, the result follows from the fact that the sequence
ðlkÞk2N is strictly increasing. Let us show now that limk

h(xk, yk) = 0. Since the sequence (h(xk, yk))k is bounded from
below by 0 (Lemma 3.2) and is decreasing, then it is conver-
gent. Set �h its limit and let us consider an accumulation point
ð�x; �yÞ of the sequence ðxk; ykÞk2N. By the assertion (1), ð�x; �yÞ is
an optimal solution of the problem (P). Since h is continuous
then, �h ¼ hð�xÞ and also �h ¼ 0.
(3) According to the inequality (3.3), the sequence ðFðxk; ykÞÞk2N
is bounded. Then, by the assertions (1) and (2) it converges
to F*. Using again (3.3), one obtains limklkh(xk, yk) = 0. h

In the sequel, denote Al the set of solutions of the problem (Pl),
and A the set of solutions of the problem (P). Recall that A–;
(Theorem 3.2) and for all l > 0;Al–;. Then, we have the following
lemma.

Lemma 3.3. Under the assumptions (H1) and (H2), the following
assertions are satisfied.

(1) Let ðxl; ylÞ 2Al. If h(xl, yl) = 0, then ðxl; ylÞ 2A.
(2) If there exists l0 > 0, such that A \Al0

–;, then for all l > l0,
we have A ¼Al.
Proof

(1) By the definition of the (xl, yl) and according to the Lemma
3.1, one has yl 2 EðxlÞ, and for all y 2 EðxÞ � YðxÞ :

Fðxl; ylÞ ¼ Fðxl; ylÞ þ lhðxl; ylÞ 6 Fðx; yÞ þ lhðx; yÞ:

Hence the assertion (1) is satisfied.
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(2) Let ðxl0
; yl0
Þ 2A \Al0

, and for all l > l0, let ðxl; ylÞ 2Al.
Then according to the Lemma 3.1 and to the definition
of the (xl, yl) and ðxl0

; yl0
Þ one has F� ¼ Fðxl0

; yl0
Þ ¼

Fðxl0
; yl0
Þ þ l0hðxl0

; yl0
Þ 6 Fðxl; ylÞ þ l0h ðxl; ylÞ 6 Fðxl;

ylÞ þ lhðxl; ylÞ 6 Fðxl0
; yl0
Þþ lhðxl0

; yl0
Þ ¼ F�.

Therefore, (l � l0)h(xl, yl) = 0. Since l – l0, it follows that
h(xl, yl) = 0. Hence ðxl; ylÞ 2A (assertion 1).

Now, let us show the inverse inclusion. Let ðx�; y�Þ 2A, then
x* 2 X+ and y* 2 Y(x*). For l > l0, Let ðxl; ylÞ 2Al. Then,
ðxl; ylÞ 2A. Thus

Fðx�; y�Þ þ lhðx�; y�Þ ¼ Fðx�; y�Þ ¼ Fðxl; ylÞ ¼ Fðxl; ylÞ þ lhðxl; ylÞ;

hence x� 2Al. h

Now, we are in a position to show that the penalty is exact.

Theorem 3.3. Suppose that the assumptions (H1) and (H2) are
satisfied. Then

(1) There exists l* > 0, such that the problems (P) and ðPl� Þ are
equivalent.

(2) Assume that for all x 2 V(X+), YðxÞ–EðxÞ (which is equivalent to
VðYðxÞÞ n EðxÞ–;, where V(X+) and V(Y(x)) denote the sets of
the vertices of X+ and Y(x), respectively). Set

l� ¼ Inffl > 0 : A \Al–;g; m� ¼ Min
x2Xþ

y2YðxÞ

Fðx; yÞ;

M� ¼Max
x2Xþ

y2YðxÞ

Fðx; yÞ and M ¼ Min
x2VðXþÞ
y2YðxÞ

yREðxÞ\VðYðxÞÞ

hðx; yÞ;

then M��m�
M P l�.

Proof

(1) Let (xk, yk) 2 V(X+) � V(Y(x), be a solution of the problem
ðPlk
Þ. Let ðxk; ykÞk2K ; K � N, be a subsequence converging to

ð�x; �yÞ 2A. Since V(X+) is finite, it follows that there exists
k0 2 K, such that for all k P k0; ðxk; ykÞ ¼ ð�x; �yÞ. Hence, there
exists l > 0, such that A \Al–;. Set
l� ¼ Inffl > 0 : A \Al–;g;

and let l > l*. Denote M ¼ fl > 0 : A \Al–;g. Then l is
not a lower bound of the set M. Hence, there exists l0 < l,
such that l0 2M. One gets the result by applying the asser-
tion (2) of the Lemma 3.3.
(2) Let l1 ¼ M��m�
M , M* and m* exist because they are the optimal

values of the continuous function F over a polytope. Besides,
one has for all x 2 V(X+), EðxÞ \ VðYðxÞÞ–; (see e.g. Luc, 1989;
Theorems 2.10 and 2.11, p. 91). Thus, M exists. According to
the Lemma 3.1 and the fact that M* �m* > 0, one has M > 0.
Thus, l1 exists and l1 > 0. Otherwise, let (xl,
yl) 2 V(X+) � V(xl) and l > l1. By the definition of
(xl, yl), for all (x, y) 2 X+ � Y(x), one has
Fðxl; ylÞ þ lhðxl; ylÞ 6 Fðx; yÞ þ lhðx; yÞ:

In particular for ðx�; y�Þ 2 Xþ � Eðx�Þ and by using the asser-
tion (2) of the Lemma 3.1, one also has
�
Fðxl; ylÞ þ lhðxl; ylÞ 6 Fðx�; y�Þ 6 M : ð3:6Þ

Now, suppose that yl R EðxlÞ. Then by the Lemma 3.1, one
has h(xl, yl) > 0. Hence, for all l > l1 the inequality (3.6) im-
plies that
M� �m� P M� � Fðxl; ylÞP lhðxl; ylÞ > l1hðxl; ylÞ:

By dividing by l1, one obtains M > h(xl, yl), which contra-
dicts the definition of M. Hence yl 2 EðxlÞ. The assertion (1)
of Lemma 3.1 and the assertion (2) of Lemma 3.3 imply that
ðxl; ylÞ 2A. Thus, for all l > l1, A \Al–;. Hence
l1 P l*. h
Now, we present an algorithm model based on the mathemati-
cal results above.

Algorithm 3.1.
Initialization:
Define a positive increasing sequence lk% +1 and set k = 0.
Iteration (k) :
Solve the concave program ðPlk

Þ and let (xk, yk) its solution.
If h(xk, yk) = 0, then STOP : (xk, yk) is a solution of the problem

(P).
Else k k + 1, and return to iteration k.

Example 3.1. Let

Fðx; yÞ ¼ x� 4y; C ¼ ð1;2ÞT; Xþ ¼ fx 2 R : 0 6 x 6 3g;

and

YðxÞ ¼ fy 2 Rþ=� x� y 6 �3;�2xþ 4y 6 0;2xþ y 6 12;
� 3xþ 2y 6 �4g:

The problems (P) and PL(x,y) are written as follows:

ðPÞ Min
x;y

x2Xþ
y2EðxÞ

Fðx; yÞ ¼ x� 4y;

where EðxÞ is the set of the weakly efficient solution of the
problem

MOPðxÞ Miny2YðxÞCy ¼ ðy;2yÞT;

PLðx; yÞ Maxu;tft : ðu; tÞ 2Zðx; yÞg;

where Zðx; yÞ ¼ fðu; tÞ 2 Rþ � R=� u 6 x� 3; u 6 2x; u 6 �2xþ
12; 2u 6 3x� 4; uþ t 6 y; 2uþ t 6 2yg. Hence for all x 2 X+, y 2 Y(x),
we have h(x, y) = 2x + 2y � 6, and

ðPlÞ

Min ð2lþ 1Þxþ ð2l� 4Þy� 6l
s:t
�x� y 6 �3;
�2xþ 4y 6 0;
2xþ y 6 12;
�3xþ 2y 6 �4;
x 6 3;
x; y P 0:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

The problem (Pl) is a parameter linear programming problem. De-
note by ðx�l; y�lÞ an optimal solution of the problem (Pl) and F�l its
optimal value. One has the following result
l
 x�l
 y�l
 F�l
 hðx�l; y�lÞ
0.1
 3
 1.5
 �2.7
 3

0.33
 3
 1.5
 �2.02
 3

0.34
 2
 1
 �2
 0

1
 2
 1
 �2
 0

5
 2
 1
 �2
 0
10
 2
 1
 �2
 0
Since for all l P 0.34, one has hðx�l; y�lÞ ¼ 0 then, the point (2, 1)
is a solution of the problem (Pl).
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4. All linear case

In the sequel, we consider that the function F is given by

Fðx; yÞ ¼ dTxþ gTy

with d 2 Rn; g 2 Rm.
The problem (BLP) is written as

ðBLPÞ Min
x;y

x2X;xP0
y2EðxÞ

dTxþ gTy;

where EðxÞ is the set of the weakly efficient solution of the linear
multi objective problem MOP(x).

By using the linearity of the function F, we will transform the
resolution of the problem (BLP) to the resolution of a sequence of
bilinear programming problems.

Now, we give a formulation of the problem (Pl).
The dual problem of PL(x, y) is

DLðx; yÞ

Mink;c ðb� AxÞTcþ kTCy
s:t
BTcþ CTk P 0;
kTe ¼ 1;
k 2 Rr

þ; c 2 Rp
þ:

8>>>>>><
>>>>>>:

Since the problem PL(x, y) has a solution (Lemma 2.1), then from the
theory of linear programming, h(x, y) is the common optimal value
of the problem PL(x, y) and DL(x, y). Then

hðx; yÞ ¼Minðk;cÞ2Dðb� AxÞTcþ kTCy;

where D ¼ fðk; cÞ 2 Rr
þ � Rm

þ=k
Te ¼ 1;CTkþ BTc P 0g.

Replacing h(x, y) by its expression, the problem (Pl) becomes

Min
x;y

x2Xþ
y2YðxÞ

ðdTxþ gTyÞ þ Min
ðk;cÞ2D

lðb� AxÞTcþ lkTCy;

that is also equivalent to

Minx;y;k;c dTxþ gTyþ lðb� AxÞTcþ lkTCy

s:t
x 2 Xþ;

y 2 YðxÞ;
ðk; cÞ 2 D:

8>>>>>><
>>>>>>:

Then, if we use the explicit form of D and Y(x), we obtain the
following parameter bilinear program

ðPlÞ

Minx;y;k;c dTxþ gTyþ lðb� AxÞTcþ lkTCy

s:t

Axþ By 6 b;

CTkþ BTc P 0;

kTe ¼ 1;

k 2 Rr
þ; c 2 Rp

þ;

x 2 Xþ; y 2 Rm
þ :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Now, we present an algorithm, in which one solve at each iter-
ation just a bilinear program without computing the function h.

Algorithm 4.1
Initialization :

Define a positive increasing sequence lk% +1 and set k = 0.
Iteration (k):
Solve the bilinear program ðPlk

Þ and let (xk, yk, kk, ck) its
solution.
If

ðb� AxÞTcþ kTCy ¼ 0; ðCÞ

then STOP : (xk, yk) is a solution of the problem (P).
Else k k + 1, and return to iteration k.

Remark 4.1. The condition ðCÞ is merely the condition h(xk, yk) = 0
(assertion 1) of the Lemma 3.3).

Remark 4.2. Many authors propose algorithms that solve the
bilinear problem ðPlk

Þ. The reader can refer to Gallo and Ulkucco
(1977), Konno (1976).

Example 4.1. We come back to the problem from the Example 4.1.
One has d = 1, g = � 4, A = (�1, � 2, 2, �3)T, B = (�1, 4, 1, 2)T,
C = (1, 2)T, b = (�3, 0, 12, �4)T.

Then (b � Ax)T = (�3 + x, 2x, 12 � 2x, �4 + 3x), and kTCy =
k1y + 2k2y. Denote by fl the objective function of the problem
(Pl), thus

flðx; y; k; cÞ ¼ x� 4y� 3lc1 þ 12lc3 � 4lc4 þ lxðc1 þ 2c2 � 2c3

þ 3c4Þ þ lyðk1 þ 2k2Þ:

Hence, the problem (Pl) can be written as

ðPlÞ

Minx;yk;c f lðx; y; k; cÞ
s:t
k1 þ 2k2 � c1 þ 4c2 þ c3 þ 2c4 P 0;
�x� y 6 �3;
�2xþ 4y 6 0;
2xþ y 6 12;
�3xþ 2y 6 �4;
x 6 3;
k1 þ k2 ¼ 1;
k 2 R2

þ; c 2 R4
þ;

x 2 Rþ; y 2 Rþ:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

Let ðx�l; y�l; k
�
l; c�lÞ be an optimal solution of the problem (Pl), F�l

its optimal value and a ¼ ðb� Ax�lÞ
Tc�l þ kTCy�l. We have the follow-

ing result
l
 x�l
 y�l
 c�l1
 c�l2
 c�l3
 c�l4
 k�l1
 k�l2
 F�l
 a
0.1
 3
 1.5
 0
 0
 0
 0
 1
 0
 �2.85
 1.5

0.4
 3
 1.5
 0
 0
 0
 0
 1
 0
 �2.4
 1.5

0.66
 3
 1.5
 0
 0
 0
 0
 1
 0
 �2.01
 1.5

0.67
 2
 1
 1
 0
 0
 0
 1
 0
 �2
 0

1
 2
 1
 1
 0
 0
 0
 1
 0
 �2
 0

5
 2
 1
 1
 0
 0
 0
 1
 0
 �2
 0
100
 2
 1
 1
 0
 0
 0
 1
 0
 �2
 0
For all l P 0.67, one has ðb� Ax�lÞ
Tc�l þ kTCy�l ¼ 0 then, the

point (2.1) is a solution of the problem (P).
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