
Journal of the Operations Research Society of China (2020) 8:199–248
https://doi.org/10.1007/s40305-020-00295-9

A Brief Introduction to Manifold Optimization

Jiang Hu1 · Xin Liu2,3 · Zai-Wen Wen1 · Ya-Xiang Yuan2

Received: 12 June 2019 / Revised: 10 December 2019 / Accepted: 4 February 2020 /
Published online: 4 April 2020
© The Author(s) 2020

Abstract
Manifold optimization is ubiquitous in computational and appliedmathematics, statis-
tics, engineering,machine learning, physics, chemistry, etc.Oneof themain challenges
usually is the non-convexity of the manifold constraints. By utilizing the geometry
of manifold, a large class of constrained optimization problems can be viewed as
unconstrained optimization problems on manifold. From this perspective, intrinsic
structures, optimality conditions and numerical algorithms for manifold optimization
are investigated. Some recent progress on the theoretical results of manifold optimiza-
tion is also presented.
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1 Introduction

Manifold optimization is concerned with the following optimization problem:

min
x∈M

f (x), (1.1)

where M is a Riemannian manifold and f is a real-valued function on M, which
can be non-smooth. If additional constraints other than the manifold constraint are
involved, we can add in f an indicator function of the feasible set of these additional
constraints. Hence, (1.1) covers a general formulation for manifold optimization. In
fact, manifold optimization has been widely used in computational and applied math-
ematics, statistics, machine learning, data science, material science and so on. The
existence of the manifold constraint is one of the main difficulties in algorithmic
design and theoretical analysis.

Notations Let R and C be the sets of real and complex numbers, respectively. For a
matrix X ∈ C

n×p, X̄ , X∗,�X and �X are its complex conjugate, complex conjugate
transpose, real and imaginary parts, respectively. Let S

n be the set of all n-by-n real
symmetric matrices. For a matrix M ∈ C

n×n , diag(M) is a vector in C
n formulated

by the diagonal elements of M . For a vector c ∈ C
n , Diag(c) is an n-by-n diagonal

matrix with the elements of c on the diagonal. For a differentiable function f on M,
let grad f (x) and Hess f (x) be its Riemannian gradient and Hessian at x , respectively.
If f can be extended to the ambient Euclidean space, we denote its Euclidean gradient
and Hessian by ∇ f (x) and ∇2 f (x), respectively.

This paper is organized as follows. In Sect. 2, various kinds of applications of
manifold optimization are presented. We review geometry on manifolds, optimality
conditions as well as state-of-the-art algorithms for manifold optimization in Sect. 3.
For some selected practical applications in Sect. 2, a few theoretical results based on
manifold optimization are introduced in Sect. 4.

2 Applications of Manifold Optimization

In this section, we introduce applications of manifold optimization in p-harmonic
flow, the maxcut problem, low-rank nearest correlation matrix estimation, phase
retrieval, Bose–Einstein condensates, cryo-electron microscopy (cryo-EM), linear
eigenvalue problem, nonlinear eigenvalue problem from electronic structure calcu-
lations, combinatorial optimization, deep learning, etc.

2.1 P-Harmonic Flow

P-harmonic flow is used in the color image recovery and medical image analysis. For
instance, in medical image analysis, the human brain is often mapped to a unit sphere
via a conformal mapping, see Fig. 1. By establishing a conformal mapping between
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Fig. 1 Conformal mapping between the human brain and the unit sphere [1]

an irregular surface and the unit sphere, we can handle the complicated surface with
the simple parameterizations of the unit sphere. Here, we focus on the conformal
mapping between genus-0 surfaces. From [2], a diffeomorphic map between two
genus-0 surfaces N1 and N2 is conformal if and only if it is a local minimizer of the
corresponding harmonic energy. Hence, one effective way to compute the conformal
mapping between two genus-0 surfaces is tominimize the harmonic energy of themap.
Before introducing the harmonic energy minimization model and the diffeomorphic
mapping, we review some related concepts on manifold. Let φN1(x

1, x2) : R
2 →

N1 ⊂ R
3, φN2(x

1, x2) : R
2 → N2 ⊂ R

3 be the local coordinates on N1 and N2,
respectively. The first fundamental form on N1 is g = ∑

i j gi jdx
idx j , where gi j =

∂φN1
∂xi

· ∂φN1
∂x j , i, j = 1, 2. The first fundamental form on N2 is h = ∑

i j hi jdx
idx j ,

where hi j = ∂φN2
∂xi

· ∂φN2
∂x j , i, j = 1, 2. Given a smooth map f : N1 → N2, whose

local coordinate representation is f (x1, x2) = ( f1(x1, x2), f2(x1, x2)), the density
of the harmonic energy of f is

e( f ) = ‖d f ‖2 =
∑

i, j=1,2
gi j 〈 f∗∂xi , f∗∂x j 〉h,

where (gi j ) is the inverse of (gi j ) and the inner product between f∗∂xi and f∗∂x j is
defined as:

〈
f∗∂xi , f∗∂x j

〉
h =

〈
2∑

m=1

∂ fm
∂xi

∂ym ,

2∑

n=1

∂ fn
∂x j

∂yn

〉

h

=
2∑

m,n=1
hmn

∂ fm
∂xi

∂ fn
∂x j

.

This also defines anewRiemannianmetric onN1, f ∗(h)( �v1, �v2) := 〈 f∗( �v1), f∗( �v2)〉h ,
which is called the pullback metric induced by f and h. Denote by S(N1,N2) the set
of smooth maps betweenN1 andN2. Then, the harmonic flow minimization problem
solves
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min
f ∈S(N1,N2)

E( f ) = 1

2

∫

N1

e( f )dN1,

whereE( f ) is called the harmonic energy of f . Stationary points ofE are the harmonic
maps from N1 to N2. In particular, if N2 = R

2, the conformal map f = ( f1, f2)
is two harmonic functions defined on N1. If we consider a p-harmonic map from
n-dimensional manifold M to n-dimensional sphere Sp(n) := {x ∈ R

n+1 | ‖x‖2 =
1} ⊂ R

n+1, the p-harmonic energy minimization problem can be written as

min
�F(x)=( f1(x),··· , fn+1(x))

Ep( �F) = 1

p

∫

M

(
n+1∑

k=1
‖grad fk‖2

)p/2

dM

s.t. �F(x) ∈ Sn, ∀x ∈M,

where grad fk denotes the Riemannian gradient of fk on manifold M.

2.2 TheMaxcut Problem

Given a graph G = (V , E) with a set of n vertexes V (|V | = n) and a set of
edges E . Denote by the weight matrix W = (wi j ). The maxcut problem is to split
V into two non-empty sets (S, V \S) such that the total weights of edges in the cut
are maximized. For each vertex i = 1, · · · , n, we define xi = 1 if i ∈ S and −1
otherwise. The maxcut problem can be written as

max
x∈Rn

1

2

∑

i< j

wi j (1− xi x j ) s.t. x2i = 1, i = 1, · · · , n. (2.1)

It is NP-hard. By relaxing the rank-1 constraint xx� to a positive semidefinitematrix X
and further neglecting the rank-1 constraint on X , we obtain the following semidefinite
program (SDP)

max
X�0 tr(CX) s.t. Xii = 1, i = 1, · · · , n, (2.2)

where C is the graph Laplacian matrix divided by 4, i.e., C = − 1
4 (Diag(We) − W )

with an n-dimensional vector e of all ones. If we decompose X = V�V with V :=
[V1, · · · , Vn] ∈ R

p×n , a non-convex relaxation of (2.1) is

max
V=[V1,··· ,Vn ]

tr(CV�V ) s.t. ‖Vi‖2 = 1, i = 1, · · · , n. (2.3)

It is an optimization problem over multiple spheres.

2.3 Low-Rank Nearest Correlation Estimation

Given a symmetric matrix C ∈ S
n and a nonnegative symmetric weight matrix

H ∈ S
n , this problem is to find a correlation matrix X of low rank such that the
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distance weighted by H between X and C is minimized:

min
X�0

1

2
‖H � (X − C)‖2F s.t. Xii = 1, i = 1, · · · , n, rank (X) � p. (2.4)

Algorithms for solving (2.4) can be found in [3,4]. Similar to the maxcut problem, we
decompose the low-rank matrix X with X = V�V , in which V = [V1, · · · , Vn] ∈
R

p×n . Therefore, problem (2.4) is converted to a quartic polynomial optimization
problem over multiple spheres:

min
V∈Rp×n

1

2
‖H � (V�V − C)‖2F s.t. ‖Vi‖2 = 1, i = 1, · · · , n.

2.4 Phase Retrieval

Given some modules of a complex signal x ∈ C
n under linear measurements, a

classic model for phase retrieval is to solve

find x ∈ C
n

s.t. |Ax | = b,
(2.5)

where A ∈ C
m×n and b ∈ R

m . This problem plays an important role in X-ray, crys-
tallography imaging, diffraction imaging and microscopy. Problem (2.5) is equivalent
to the following problem, which minimizes the phase variable y and signal variable x
simultaneously:

min
x∈Cn ,y∈Cm

‖Ax − y‖22
s.t. |y| = b.

In [5], the problem above is rewritten as

min
x∈Cn ,u∈Cm

1

2
‖Ax − Diag{b}u‖22

s.t. |ui | = 1, i = 1, · · · ,m.

(2.6)

For a fixed phase u, the signal x can be represented by x = A†Diag{b}u. Hence,
problem (2.6) is converted to

min
u∈Cm

u∗Mu

s.t. |ui | = 1, i = 1, · · · ,m,
(2.7)

where M = Diag{b}(I − AA†)Diag{b} is positive definite. It can be regarded as a
generalization of the maxcut problem to complex spheres.

123



204 J. Hu et al.

If we denote X = uu∗, (2.7) can also be modeled as the following SDP problem
[6]

min tr(MX) s.t. X � 0, rank (X) = 1,

which can be further relaxed as

min tr(MX) s.t. rank (X) = 1,

whose constraint is a fixed-rank manifold.

2.5 Bose–Einstein Condensates

In Bose–Einstein condensates (BEC), the total energy functional is defined as

E(ψ) =
∫

Rd

[
1

2
|∇ψ(w)|2 + V (w)|ψ(w)|2 + β

2
|ψ(w)|4 −�ψ̄(w)Lz(w)

]

dw,

where w ∈ R
d is the spatial coordinate vector, ψ̄ is the complex conjugate of ψ ,

Lz = −i(x∂ − y∂x), V (w) is an external trapping potential, and β,� are given
constants. The ground state of BEC is defined as the minimizer of the following
optimization problem

min
φ∈S E(φ),

where the spherical constraint S is

S =
{

φ : E(φ) �∞,

∫

Rd
|φ(w)|2dw = 1

}

.

The Euler–Lagrange equation of this problem is to find (μ ∈ R, φ(w)) such that

μφ(w) = −1

2
∇2φ(w)+ V (w)φ(w)+ β|φ(w)|2φ(w)−�Lzφ(w), ξ ∈ R

d ,

and
∫

Rd
|φ(w)|2dw = 1.

Utilizing some proper discretization, such as finite difference, sine pseudospectral and
Fourier pseudospectral methods, we obtain a discretized BEC problem

min
x∈CM

f (x) := 1

2
x∗Ax + β

2

M∑

j=1
|x j |4 s.t. ‖x‖2 = 1,
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where M ∈ N, β are given constants and A ∈ C
M×M is Hermitian. Consider the case

that x and A are real. Since x�x = 1, multiplying the quadratic term of the objective
function by x�x , we obtain the following equivalent problem

min
x∈RM

f (x) = 1

2
x�Axx�x + β

2

M∑

i=1
|xi |4 s.t. ‖x‖2 = 1.

The problem above can be also regarded as the best rank-1 tensor approximation of a
fourth-order tensor F [7], with

Fπ(i, j,k,l) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

akl/4, i = j = k �= l,
akl/12, i = j, i �= k, i �= l, k �= l,
(aii + akk)/12, i = j �= k = l,
aii/2+ β/4, i = j = k = l,
0, otherwise.

For the complex case, we can obtain a best rank-1 complex tensor approximation
problem by a similar fashion. Therefore, BEC is a polynomial optimization problem
over single sphere.

2.6 Cryo-EM

The cryo-EM problem is to reconstruct a three-dimensional object from a series of
two-dimensional projected images {Pi } of the object. A classic model formulates it
into an optimization problem over multiple orthogonality constraints [8] to compute
the N corresponding directions {R̃i } of {Pi }, see Fig. 2. Each R̃i ∈ R

3×3 is a three-
dimensional rotation, i.e., R̃�i R̃i = I3 and det(R̃i ) = 1. Let c̃i j = (xi j , yi j , 0) be the
common line of Pi and Pj (viewed in Pi ). If the data are exact, it follows from the
Fourier projection-slice theorem [8], the common lines coincide, i.e.,

R̃i c̃i j = R̃ j c̃ j i .

Since the third column of R̃3
i can be represented by the first two columns R̃1

i and R̃2
i as

R̃3
i = ±R̃1

i × R̃2
i , the rotations {R̃i } can be compressed as a 3-by-2 matrix. Therefore,

the corresponding optimization problem is

min
Ri

N∑

i=1
ρ(Rici j , R jc ji ) s.t. R�i Ri = I2, Ri ∈ R

3×2, (2.8)

where ρ is a function to measure the distance between two vectors, Ri are the first
two columns of R̃i , and ci j are the first two entries of c̃i j . In [8], the distance function
is set as ρ(u, v) = ‖u − v‖22. An eigenvector relaxation and SDP relaxation are also
presented in [8].
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Fig. 2 Recover the 3-D structure from 2-D projections [8]

2.7 Linear Eigenvalue Problem

Linear eigenvalue decomposition and singular value decomposition are the special
cases of optimization with orthogonality constraints. Linear eigenvalue problem can
be written as

min
X∈Rn×p

tr(X�AX) s.t. X�X = I , (2.9)

where A ∈ S
n is given. Applications from low-rank matrix optimization, data min-

ing, principal component analysis and high-dimensionality reduction techniques often
need to deal with large-scale dense matrices or matrices with some special structures.
Although modern computers are developing rapidly, most of the current eigenvalue
and singular value decomposition softwares are limited by the traditional design and
implementation. In particular, the efficiency may not be significantly improved when
working with thousands of CPU cores. From the perspective of optimization, a series
of fast algorithms for solving (2.9) were proposed in [9–12], whose essential parts
can be divided into two steps, updating a subspace to approximate the eigenvec-
tor space better and extracting eigenvectors by the Rayleigh–Ritz (RR) process. The
main numerical algebraic technique for updating subspaces is usually based on the
Krylov subspace, which constructs a series of orthogonal bases sequentially. In [11],
the authors proposed an equivalent unconstrained penalty function model

min
X∈Rn×p

fμ(X) := 1

2
tr(X�AX)+ μ

4
‖X�X − I‖2F ,
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where μ is a parameter. By choosing an appropriate finite large μ, the authors estab-
lished its equivalence with (2.9). When μ is chosen properly, the number of saddle
points of this model is less than that of (2.9). More importantly, the model allows
one to design an algorithm that uses only matrix–matrix multiplication. A Gauss–
Newton algorithm for calculating low-rank decomposition is developed in [9]. When
the matrix to be decomposed is of low rank, this algorithm can be more effective
while its complexity is similar to the gradient method but with Q linear convergence.
Because the bottleneck of many current iterative algorithms is the RR procedure of
the eigenvalue decomposition of smaller dense matrices, the authors of [12] proposed
a unified augmented subspace algorithmic framework. Each step iteratively solves a
linear eigenvalue problem:

Y = argmin
X∈Rn×p

{tr(X�AX) : X�X = I , X ∈ S},

where S := span{X , AX , A2X , · · · , Ak X} with a small k (which can be far less than
p). By combiningwith the polynomial acceleration technique and deflation in classical
eigenvalue calculations, it needs only one RR procedure theoretically to reach a high
accuracy.

When the problem dimension reaches the magnitude of O(1042), the scale of data
storage far exceeds the extent that traditional algorithms can handle. In [13], the authors
consider to use a low-rank tensor format to express data matrices and eigenvectors.
Let N = n1n2 · · · nd with positive integer n1, · · · , nd . A vector u ∈ R

N can be
reshaped as a tensor u ∈ R

n1×n2×···×nd , whose entries ui1i2···id are aligned in reverse
lexicographical order, 1 � iμ � nμ,μ = 1, 2, · · · , d. A tensor u can be written as
the TT format if its entries can be represented by

ui1i2···id = U1(i1)U2(i2) · · ·Ud(id),

where Uμ(iμ) ∈ R
rμ−1×rμ, iμ = 1, 2, · · · , nμ and fixed dimensions rμ, μ =

0, 1, · · · , d with r0 = rd = 1. In fact, the components rμ, μ = 1, · · · , d − 1 are
often equal to a value r (r is then called the TT-rank). Hence, a vector u of dimension
O(nd) can be stored with O(dnr2) entries if the corresponding tensor u has a TT
format. A graphical representation of u can be seen in Fig. 3. The eigenvalue problem
can be solved based on the subspace algorithm. By utilizing the alternating direction
method with suitable truncations, the performance of the algorithm can be further
improved.

The online singular value/eigenvalue decomposition appears in principal compo-
nent analysis (PCA). The traditional PCA first reads the data and then performs
eigenvalue decompositions on the sample covariance matrices. If the data are updated,
the principal component vectors need be investigated again based on the new data.
Unlike traditional PCA, the online PCA reads the samples one by one and updates the
principal component vector in an iterative way, which is essentially a random itera-
tive algorithm of the maximal trace optimization problem. As the sample grows, the
online PCA algorithm leads to more accurate main components. An online PCA is
proposed and analyzed in [14]. It is proved that the convergence rate is O(1/n) with
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Fig. 3 Graphical representation of a TT tensor of order d with cores Uμ, μ = 1, 2, · · · , d. The first row
is u, and the second row are its entries ui1i2···id

high probability. A linear convergent VR-PCA algorithm is investigated in [15]. In
[16], the scheme in [14] is further proved that under the assumption of sub-Gaussian’s
stochastic model, the convergence speed of the algorithm can reach theminimal bound
of the information, and the convergence speed is near-global.

2.8 Nonlinear Eigenvalue Problem

The nonlinear eigenvalue problems from electronic structure calculations are
another important source of problems with orthogonality constraints, such as the
Kohn–Sham (KS) andHartree–Fock (HF) energyminimization problems. By properly
discretizing, the KS energy functional can be expressed as

Eks(X) := 1

4
tr(X∗LX)+ 1

2
tr(X∗VionX)

+1

2

∑

l

∑

i

ζl |x∗i wl |2 + 1

4
ρ�L†ρ + 1

2
e�εxc(ρ),

where X ∈ C
n×p satisfies X∗X = Ip, n is the spatial degrees of freedom, p is the total

number of electron pairs, ρ = diag(XX∗) is the charge density and μxc(ρ) := ∂εxc(ρ)
∂ρ

and e is a vector in R
n with elements all of ones. More specifically, L is a finite-

dimensional representation of the Laplacian operator, Vion is a constant example, wl

represents a discrete reference projection function, ζl is a constant of ±1, and εxc is
used to characterize exchange-correlation energy. With the KS energy functional, the
KS energy minimization problem is defined as

min
X∈Cn×p

Eks(X) s.t. X∗X = Ip.
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Compared to the KS density functional theory, the HF theory can provide a more
accuratemodel. Specifically, it introduces a Fock exchange operator, which is a fourth-
order tensor by some discretization, V(·) : C

n×n → C
n×n . The corresponding Fock

energy can be expressed as

Ef := 1

4

〈
V(XX∗)X , X

〉 = 1

4

〈
V(XX∗), XX∗

〉
.

The HF energy minimization problem is then

min
X∈Cn×p

Ehf(X) := Eks(X)+ Ef(X) s.t. X∗X = Ip. (2.10)

The first-order optimality conditions of KS and HF energy minimization prob-
lems correspond to two different nonlinear eigenvalue problems. Taking KS energy
minimization as an example, the first-order optimality condition is

Hks(ρ)X = X�, X∗X = Ip, (2.11)

where Hks(ρ) := 1
2 L + Vion +∑

l ζlwlw
∗
l + diag((�L†)ρ)+ diag(μxc(ρ)∗e) and �

is a diagonal matrix. The equation (2.11) is also called the KS equation. The nonlinear
eigenvalue problem aims to find some orthogonal eigenvectors satisfying (2.11), while
the optimization problemwith orthogonality constraints minimizes the objective func-
tion under the same constraints. These two problems are connected by the optimality
condition and both describe the steady state of the physical system.

The most widely used algorithm for solving the KS equation is the so-called self-
consistent field (SCF) iteration, which is to solve the following linear eigenvalue
problems repeatedly

Hks(ρk)Xk+1 = Xk+1�k+1, X∗k+1Xk+1 = Ip, (2.12)

where ρk = diag(Xk X∗k ). In practice, to accelerate the convergence, we often replace
the charge density ρk by a linear combination of the previously existing m charge
densities

ρmix =
m−1∑

j=0
α jρk− j .

In the above expression, α = (α0, α1, · · · , αm−1) is the solution to the following
minimization problem:

min
α�e=1

‖Rα‖2,

where R = (�ρk,�ρk−1, · · · ,�ρk−m+1), �ρ j = ρ j − ρ j−1 and e is an m-
dimensional vector of all entries ones. After obtaining ρmix, we replace Hks(ρk) in
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(2.12) with Hks(ρmix) and execute the iteration (2.12). This technique is called charge
mixing. For more details, one can refer to [17–19].

Since SCF may not converge, many researchers have recently developed optimiza-
tion algorithms for the electronic structure calculation that can guarantee convergence.
In [20], the Riemannian gradient method is directly extended to solve the KS total
energy minimization problem. The algorithm complexity is mainly from the calcula-
tion of the total energy and its gradient calculation, and the projection on the Stiefel
manifold. Its complexity at each step is much lower than the linear eigenvalue prob-
lem, and it is easy to be parallelized. Extensive numerical experiments based on the
software packages Octopus and RealSPACES show that the algorithm is often more
efficient than SCF. In fact, the iteration (2.12) of SCF can be understood as an approx-
imate Newton algorithm in the sense that the complicated part of the Hessian of the
total energy is not considered:

min
X∈Cn×p

q(X) := 1

2
tr(X∗Hks(ρk)X) s.t. X∗X = Ip.

Since q(X) is only a local approximation model of Eks(X), there is no guarantee that
the above model ensures a sufficient decrease of Eks(X).

An explicit expression of the complicated part of the Hessian matrix is derived
in [21]. Although this part is not suitable for an explicit storage, its operation with a
vector is simple and feasible. Hence, the full Hessianmatrix can be used to improve the
reliability ofNewton’smethod.By adding regularization terms, the global convergence
is also guaranteed. A few other related works include [22–26].

The ensemble-based density functional theory is especially important when the
spectrum of the Hamiltonian matrix has no significant gaps. The KS energy minimiza-
tion model is modified by allowing the charge density to contain more wave functions.
Specifically, denote by the single-particle wave functions ψi (r), i = 1, · · · , p′ with
p′ � p. Then, the new charge density is defined as ρ(r) = ∑p′

i=1 fi |ψi (r)|2, where
the fraction occupation 0 � fi � 1 is to ensure that the total charge density of the total

orbit is p, i.e.,
∑p′

i=1 fi = p. To calculate the fractional occupancy, the energy func-
tional in the ensemble model introduces a temperature T associated with an entropy

αR( f ), where α := κBT , κB is the Boltzmann constant, R( f ) =∑p′
i=1 s( fi ),

s(t) =
{
t ln t + (1− t) ln(1− t), 0 < t < 1,

0, otherwise.

This method is often referred as the KS energy minimization model with temperature
or the ensemble KS energy minimization model (EDFT). Similar to the KS energy
minimization model, by using the appropriate discretization, the wave function can
be represented with X = [x1, · · · , xp′ ] ∈ C

n×p′ . The discretized charge density in
EDFT can be written as

ρ(X , f ) := diag(Xdiag( f )X∗).
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Obviously, ρ(X , f ) is real. The corresponding discretized energy functional is

M(X , f ) = tr(diag( f )X∗AX)+ 1

2
ρ�L†ρ + e�εxc(ρ)+ αR( f ).

The discretized EDFT model is

min
X∈Cn×p′ , f ∈Rp

M(X , f )

s.t. X∗X = Ip′ ,

e� f = p, 0 � f � 1.

(2.13)

Although SCF can be generalized to this model, its convergence is still not guaranteed.
An equivalent simple model with only one-ball constraint is proposed in [27]. It is
solved by a proximal gradient method where the terms other than the entropy function
term are linearized. An explicit solution of the subproblem is then derived, and the
convergence of the algorithm is established.

2.9 ApproximationModels for Integer Programming

Many optimization problems arising from data analysis are NP-hard integer pro-
grammings. Spherical constraints and orthogonal constraints are often used to obtain
approximate solutions with high quality. Consider optimization problem over the per-
mutation matrices:

min
X∈�n

f (X),

where f (X) : Rn×n → R
n is differentiable, and �n is a collection of n-order permu-

tation matrices

�n := {X ∈ R
n×n : Xe = X�e = e, Xi j ∈ {0, 1}}.

This constraint is equivalent to

�n := {X ∈ R
n×n : X�X = In, X � 0}.

It is proved in [28] that it is equivalent to an L p-regularized optimization problem
over the doubly stochastic matrices, which is much simpler than the original problem.
An estimation of the lower bound of the nonzero elements at the stationary points is
presented. Combining with the cutting plane method, a novel gradient-type algorithm
with negative proximal terms is also proposed.

Given k communities S1, S2, · · · , Sk and the set of partition matrix Pk
n , where the

partition matrix X ∈ Pk
n means Xi j = 1, i, j ∈ St , t ∈ {1, · · · , k} and Xi j = 0

otherwise. Let A be the adjacencymatrix of the network, di =∑
j Ai j , i ∈ {1, · · · , n}

and λ = 1/‖d‖2. Define the matrix C := −(A − λdd�). The community detection
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problem in social networks is to find a partition matrix to maximize the modularity
function under the stochastic block model:

min
X

〈C, X〉 s.t. X ∈ Pk
n . (2.14)

An SDP relaxation of (2.14) is

min
X

〈C, X〉
s.t. Xii = 1, i = 1, · · · , n,

0 � Xi j � 1,∀i, j,
X � 0.

A sparse and low-rank completely positive relaxation technique is further investigated
in [29] to transform the model into an optimization problem over multiple nonnegative
spheres:

min
U∈Rn×k

〈
C,UU�

〉

s.t. ‖ui‖2 = 1, i = 1, · · · , n,

‖ui‖0 � p, i = 1, · · · , n,

U � 0,

(2.15)

where ui is the i th row of U , 1 � p � r is usually taken as a small number so that
U can be stored for large-scale data sets. The equivalence to the original problem
is proved theoretically, and an efficient row-by-row-type block coordinate descent
method is proposed. In order to quickly solve network problems whose dimension is
more than 10 million, an asynchronous parallel algorithm is further developed.

2.10 Deep Learning

Batch normalization is a very popular technique in deep neural networks. It avoids
internal covariance translation by normalizing the input of each neuron. The space
formed by its corresponding coefficient matrix can be regarded as a Riemannian man-
ifold. For a deep neural network, batch normalization usually involves input processing
before the nonlinear activation function. Define x and w as the outputs of the previ-
ous layer and the parameter vector for the current neuron, the batch normalization of
z := w�x can be written as

BN(z) = z − E(z)

Var(z)
= w�(x − E(x))

√
w�Rxxw

= u�(x − E(x))
√
u�Rxxu

,

where u := w/‖w‖, E(z) is the expectation of random variable z and Rxx are the
covariance matrices of x . From the definition, we have BN(w�x) = BN(u�x) and

∂BN(w�x)
∂x

= ∂BN(u�x)
∂x

,
∂BN(z)

∂w
= 1

w

∂BN(z)

∂u
.
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Therefore, the use of the batch standardization ensures that themodel does not explode
with large learning rates and that the gradient is invariant to linear scaling during
propagation.

Since BN(cw�x) = BN(w�x) holds for any constant c , the optimization problem
for deep neural networks using batch normalization can be written as

min
X∈M

L(X), M = Sn1−1 × · · · Snm−1 × R
l ,

where L(X) is the loss function, Sn−1 is a sphere in R
n (can also be viewed as a

Grassmann manifold), n1, · · · , nm are the dimensions of the weight vectors, m is the
number of weight vectors, and l is the number of remaining parameters to be decided,
including deviations and other weight parameters. For more information, we refer to
[30].

2.11 Sparse PCA

In the traditional PCA, the obtained principle eigenvectors are usually not sparse,
which leads to high computational cost for computing the principle components. Spare
PCA [31] wants to find principle eigenvectors with few nonzero elements. The math-
ematical formulation is

min
X∈Rn×p

− tr(X�A�AX)+ ρ‖X‖1
s.t. X�X = Ip,

(2.16)

where ‖X‖1 = ∑
i j |Xi j | and ρ > 0 is a trade-off parameter. When ρ = 0, this

reduces to the traditional PCA problem. For ρ > 0, the term ‖X‖1 plays a role to
promote sparsity. Problem (2.16) is a non-smooth optimization problem on the Stiefel
manifold.

2.12 Low-RankMatrix Completion

The low-rank matrix completion problem has important applications in computer
vision, pattern recognitions, statistics, etc. It can be formulated as

min
X

rank (X)

s.t. Xi j = Ai j , (i, j) ∈ �,
(2.17)

where X is the matrix that we want to recover (some of its entries are known) and � is
the index set of observed entries. Due to the difficulty of the rank, a popular approach
is to relax it into a convex model using the nuclear norm. The equivalence between
this convex problem and the non-convex problem (2.17) is ensured under certain
conditions. Another way is to use a low-rank decomposition on X and then solve the
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corresponding unconstrained optimization problem [32]. If the rank of the ground-
truth matrix A is known, an alternative model for a fixed-rank matrix completion
is

min
X∈Rn×p

‖P�(X − A)‖2F s.t. rank(X) = r , (2.18)

where P� is a projection with P�(X)i j = Xi j , (i, j) ∈ � and 0 otherwise, and r =
rank (A). The set Fr(m, n, r) := {X ∈ R

m×n : rank (X) = r} is a matrix manifold,
called fixed-rank manifold. The related geometry is analyzed in [33]. Consequently,
problem (2.18) can be solved by optimization algorithms on manifold. Problem (2.18)
can deal with Gaussian noise properly. For data sets with a few outliers, the robust
low-rank matrix completion problem (with the prior knowledge r ) considers:

min
X∈Rn×p

‖P�(X − A)‖1 s.t. rank(X) = r , (2.19)

where ‖X‖1 =∑
i, j |Xi j |. Problem (2.19) is a non-smooth optimization problem on

the fixed-rank matrix manifold. For some related algorithms for (2.18) and (2.19), the
readers can refer to [34,35].

2.13 Sparse Blind Deconvolution

Blind deconvolution is to recover a convolution kernel a0 ∈ R
k and signal x0 ∈ R

m

from their convolution

y = a0 � x0,

where y ∈ R
m and � represents some kind of convolution. Since there are infinitely

many pairs (a0, x0) satisfying this condition, this problem is often ill conditioned. To
overcome this issue, some regularization terms and extra constraints are necessary.
The sphere-constrained sparse blind deconvolution reformulates the problem as

min
a,x

‖y − a � x‖22 + μ‖x‖1 s.t. ‖a‖2 = 1,

where μ is a parameter to control the sparsity of the signal x . This is a non-smooth
optimization problem on the product manifold of a sphere and R

m . Some related
background and the corresponding algorithms can be found in [36].

2.14 Nonnegative PCA

Since the principle eigenvectors obtained by the traditional PCAmay not be sparse,
one can enforce the sparsity by adding nonnegativity constraints. The problem is
formulated as

min
X∈Rn×p

tr(X�AA�X) s.t. X�X = Ip, X � 0, (2.20)
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where A = [a1, · · · , ak] ∈ R
n×k are given data points. Under the constraints, the vari-

able X has at most one nonzero element in each row. This actually helps to guarantee
the sparsity of the principle eigenvectors. Problem (2.20) is an optimization problem
with manifold and nonnegative constraints. Some related information can be found in
[37,38].

2.15 K-Means Clustering

K -means clustering is a fundamental problem in data mining. Given n data points
(x1, x2, · · · , xn) where each data point is a d-dimensional vector, k-means is to par-
tition them into k clusters S := {S1, S2, · · · , Sk} such that the within-cluster sum of
squares is minimized. Each data point belongs to the cluster with the nearest mean.
The mathematical form is

min
S

k∑

i=1

∑

x∈Si
‖x − ci‖2, (2.21)

where ci = 1
card(Si )

∑
x∈Si x is the center of i th cluster and card(Si ) is the cardinality

of Si . Equivalently, problem (2.21) can be written as [39–41]:

min
Y∈Rn×k

tr(Y�DY )

s.t. YY�1 = 1,

Y�Y = Ik, Y � 0,

(2.22)

where Di j := ‖xi − x j‖2 is the squared Euclidean distance matrix. Problem (2.22)
is a minimization over the Stiefel manifold with linear constraints and nonnegative
constraints.

3 Algorithms for Manifold Optimization

In this section, we introduce a few state-of-the-art algorithms for optimization prob-
lems onRiemannianmanifold. Let us start from the concepts ofmanifold optimization.

3.1 Preliminaries on RiemannianManifold

A d-dimensional manifold M is a Hausdorff and second-countable topological
space, which is homeomorphic to the d-dimensional Euclidean space locally via a
family of charts. When the transition maps of intersecting charts are smooth, the
manifold M is called a smooth manifold. Intuitively, the tangent space TxM at a
point x of a manifold M is the set of the tangent vectors of all the curves at x .
Mathematically, a tangent vector ξx to M at x is a mapping such that there exists a
curve γ on M with γ (0) = x , satisfying

ξxu := γ̇ (0)u � d(u(γ (t)))

dt

∣
∣
∣
∣
t=0

, ∀ u ∈ �x (M),
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where �x (M) is the set of all real-valued functions f defined in a neighborhood of x
inM. Then, the tangent space TxM toM is defined as the set of all tangent vectors to
M at x . If M is equipped with a smoothly varied inner product gx (·, ·) := 〈·, ·〉x on
the tangent space, then (M, g) is a Riemannian manifold. In practice, different Rie-
mannian metrics may be investigated to design efficient algorithms. The Riemannian
gradient grad f (x) of a function f at x is an unique vector in TxM satisfying

〈grad f (x), ξ 〉x = Df (x)[ξ ], ∀ξ ∈ TxM, (3.1)

where Df (x)[ξ ] is the derivative of f (γ (t)) at t = 0, γ (t) is any curve on themanifold
that satisfies γ (0) = x and γ̇ (0) = ξ . TheRiemannianHessianHess f (x) is amapping
from the tangent space TxM to the tangent space TxM:

Hess f (x)[ξ ] := ∇̃ξgrad f (x), (3.2)

where ∇̃ is the Riemannian connection [42]. For a function f defined on a submanifold
Mwith the Euclidean metric on its tangent space, if it can be extended to the ambient
Euclidean space R

n×p, we have its Riemannian gradient grad f and Riemannian
Hessian Hess f :

grad f (x) = PTxM(∇ f (x)),

Hess f (x)[u] = PTxM(Dgrad f (x)[u]), u ∈ TxM,
(3.3)

where D is the Euclidean derivative and PTxM(u) := argminz∈TxM ‖x− z‖2 denotes
the projection operator to TxM. WhenM is a quotient manifold whose total space is
a submanifold of an Euclidean space, the tangent space in the expression (3.3) should
be replaced by its horizontal space. According to (3.1) and (3.2), different Riemannian
metrics will lead to different expressions of Riemannian gradient and Hessian. More
detailed information on the related backgrounds can be found in [42].

We next briefly introduce some typical manifolds, where the Euclidean metric on
the tangent space is considered.

• Sphere [42] Sp(n − 1). Let x(t) with x(0) = x be a curve on sphere, i.e.,
x(t)�x(t) = 1 for all t . Taking the derivatives with respect to t , we have

ẋ(t)�x(t)+ x(t)� ẋ(t) = 0.

At t = 0, we have ẋ(0)x + x� ẋ(0) = 0. Hence, the tangent space is

TxSp(n − 1) = {z∈ R
n : z�x = 0}.

The projection operator is defined as

PTxSp(n−1)(z) = (I − xx�)z.
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For a function defined on Sp(n−1)with respect to the Euclideanmetric gx (u, v) =
u�v, u, v ∈ TxSp(n − 1), its Riemannian gradient and Hessian at x can be
represented by

grad f (x) = PTxSp(n−1)(∇ f (x)),

Hess f (x)[u] = PTxSp(n−1)(∇2 f (x)[u] − ux�∇ f (x)), u ∈ TxSp(n − 1).

• Stiefel manifold [42] St(n, p) := {X ∈ R
n×p : X�X = Ip}. By a similar

calculation as the spherical case, we have its tangent space:

TXSt(n, p) = {Z∈ R
n×p : Z�X + X�Z = 0}.

The projection operator onto TXSt(n, p) is

PTXSt(n,p)(Z) = Z − Xsym(X�Z),

where sym(Z) := (Z+Z�)/2.Given a function definedonSt(n, p)with respect to
the Euclidean metric gX (U , V ) = tr(U�V ), U , V ∈ TXSt(n, p), its Riemannian
gradient and Hessian at X can be represented by

grad f (X) = PTXSt(n,p)(∇ f (X)),

Hess f (X)[U ] = PTXSt(n,p)(∇2 f (X)[U ] −Usym(X�∇ f (X))), U ∈ TXSt(n, p).

• Oblique manifold [43] Ob(n, p) := {X ∈ R
n×p | diag(X�X) = e}. Its tangent

space is

TXOb(n, p) = {Z∈ R
n×p : diag(X�Z) = 0}.

The projection operator onto TXOb(n, p) is

PTXOb(n,p) = Z − XDiag(diag(X�Z)).

Given a function defined on Ob(n, p) with respect to the Euclidean metric, its
Riemannian gradient and Hessian at X can be represented by

grad f (X) = PTXOb(n,p)(∇ f (X)),

Hess f (X)[U ] = PTXOb(n,p)(∇2 f (X)[U ] −UDiag(diag(X�∇ f (X)))),

with U ∈ TXOb(n, p).
• Grassmann manifold [42] Grass(n, p) := {span(X) : X ∈ R

n×p, X�X = Ip}.
It denotes the set of all p-dimensional subspaces of R

n . This manifold is different
fromothermanifoldsmentioned above. It is a quotientmanifold since each element
is an equivalent class of n × p matrices. From the definition of Grass(p, n), the
equivalence relation ∼ is defined as

X ∼ Y ⇔ ∃Q ∈ R
p×p with Q�Q = QQ� = I s.t. Y = XQ.
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Its element is of the form

[X ] := {Y ∈ R
n×p : Y�Y = I ,Y ∼ X}.

Then, Grass(n, p) is a quotient manifold of St(n, p), i.e., St(n, p)/ ∼. Due to this
equivalence, a tangent vector ξ of TXGrass(n, p) may have many different repre-
sentations in its equivalence class. To find the unique representation, a horizontal
space [42, Section 3.5.8] is introduced. For a given X ∈ R

n×p with X�X = Ip,
the horizontal space is

HXGrass(n, p) = {Z∈ R
n×p : Z�X = 0}.

Here, a function of the horizontal space is similar to the tangent space when
computing the Riemannian gradient and Hessian. We have the projection onto the
horizontal space

PHXGrass(n,p)(Z) = Z − XX�Z .

Given a function defined on Grass(n, p) with respect to the Euclidean metric
gX = tr(U�V ), U , V ∈ HXGrass(n, p), its Riemannian gradient and Hessian at
X can be represented by

grad f (X) = PHXGrass(n,p)(∇ f (X)),

Hess f (X)[U ] = PHXGrass(n,p)(∇2 f (X)[U ] −UX�∇ f (X)), U ∈ TXGrass(n, p).

• Fixed-rank manifold [33] Fr(n, p, r) := {X ∈ R
n×p : rank (X) = r} is a set of

all n × p matrices of rank r . Using the singular value decomposition (SVD), this
manifold can be represented equivalently by

Fr(n, p, r) = {U�V� : U ∈ St(n, r), V ∈ St(p, r), � = diag(σi )},

where σ1 � · · · � σr > 0. Its tangent space at X = U�V� is

TXFr(n, p, r) =
{

[U ,U⊥]
(

R
r×r

R
r×(p−r)

R
(n−r)×r 0(n−r)×(p−r)

)

[V , V⊥]�
}

= {UMV� +UpV
� +UV�p : M ∈ R

r×r ,
Up ∈ R

n×r ,U�p U = 0, Vp ∈ R
p×r , V�p V = 0},

(3.4)

where U⊥ and V⊥ are the orthogonal complements of U and V , respectively. The
projection operator onto the tangent space is

PTXFr(n,p,r)(Z) = PU Z PV + P⊥U Z PV + PU Z P⊥V ,
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where PU = UU� and P⊥U = I − PU . Comparing the representation with (3.4),
we have

M(Z; X) := U�ZV , Up(Z; X) = P⊥U ZV , Vp(Z; X) = P⊥V Z�U .

Given a function defined on Fr(n, p, r) with respect to the Euclidean metric
gX (U , V ) = tr(U�V ), its Riemannian gradient and Hessian at X = U�V�
can be represented by

grad f (X) = PTXFr(n,p,r)(∇ f (X)),

Hess f (X)[H ] = U M̂V� + ÛpV
� +UV̂�p , H ∈ TXFr(n, p, r),

where

M̂ = M(∇2 f (X)[H ]; X),

Ûp = Up(∇2 f (X)[H ]; X)+ P⊥U ∇ f (X)Vp(H ; X)/�,

V̂p = Vp(∇2 f (X)[H ]; X)+ P⊥V ∇ f (X)Up(H ; X)/�.

• The set of symmetric positive definite matrices [44], i.e., SPD(n) = {X ∈ R
n×n :

X� = X , X � 0} is a manifold. Its tangent space at X is

TXSPD(n) = {Z∈ R
n×n : Z� = Z}.

We have the projection onto TXSPD(n):

PTXSPD(n)(Z) = (Z� + Z)/2.

Given a function defined on SPD(n, p) with respect to the Euclidean metric
gX (U , V ) = tr(U�V ), U , V ∈ TXSPD(n), its Riemannian gradient and Hes-
sian at X can be represented by

grad f (X) = PTXSPD(n)(∇ f (X)),

Hess f (X)[U ] = PTXSPD(n)(∇2 f (X)[U ]), U ∈ TXSPD(n).

• The set of rank-r symmetric positive semidefinite matrices [45,46], i.e.,
FrPSD(n, r) = {X ∈ R

n×n : X = X�, X � 0, rank (X) = r}. This mani-
fold can be reformulated as

FrPSD(n, r) = {YY� : Y ∈ R
n×r , rank (Y ) = k},

which is a quotient manifold. The horizontal space at Y is

TYHFrPSD(n,r) = {Z ∈ R
n×r : Z�Y = Y�Z}.
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We have the projection operator onto TYHFrPSD(n,r)

PTYHFrPSD(n,r) (Z) = Z − Y�,

where the skew-symmetricmatrix� is the unique solutionof theSylvester equation
�(Y�Y ) + (Y�Y )� = Y�Z − Z�Y . Given a function f with respect to the
Euclidean metric gY (U , V ) = tr(U�V ), U , V ∈ TYHFrPSD(n,r), its Riemannian
gradient and Hessian can be represented by

grad f (Y ) = ∇ f (Y ),

Hess f (X)[U ] = PTYHFrPSD(n,r) (∇2 f (Y )[U ]), U ∈ TYHFrPSD(n,r).

3.2 Optimality Conditions

We next present the optimality conditions for manifold optimization problem in the
following form

min
x∈M

f (x)

s.t. ci (x) = 0, i ∈ E := {1, · · · , �},
ci (x) � 0, i ∈ I := {�+ 1, · · · ,m},

(3.5)

where E and I denote the index sets of equality constraints and inequality constraints,
respectively, and ci : M → R, i ∈ E ∪ I are smooth functions on M. We mainly
adopt the notions in [47]. By keeping the manifold constraint, the Lagrangian function
of (3.5) is

L(x, λ) = f (x)−
∑

i∈E∪I
λi ci (x), x ∈M,

where λi , i ∈ E ∪ I are the Lagrangian multipliers. Here, we notice that the domain
of L is on the manifold M. Let A(x) := E ∪ {i ∈ I : ci (x) = 0}. Then the linear
independence constraint qualifications (LICQ) for problem (3.5) holds at x if and only
if

gradci (x), i ∈ A(x) is linear independent on TxM.

Then, the first-order necessary conditions can be described as follows:

Theorem 3.1 (First-order necessary optimality conditions (KKT conditions)) Suppose
that x∗ is a local minimum of (3.5) and that the LICQ holds at x∗, then there exist
Lagrangian multipliers λ∗i , i ∈ E ∪ I such that the following KKT conditions hold:

grad f (x∗)+
∑

i∈E∪I
λ∗i gradci (x∗) = 0,

ci (x
∗) = 0, ∀i ∈ E,

ci (x
∗) � 0, λ∗i � 0, λ∗i ci (x∗) = 0, ∀i ∈ I.

(3.6)
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Let x∗ and λ∗i , i ∈ E∪I be one of the solution of the KKT conditions (3.6). Similar
to the case without the manifold constraint, we define a critical cone C(x∗, λ∗) as

w ∈ C(x∗, λ∗)⇔

⎧
⎪⎪⎨

⎪⎪⎩

w ∈ Tx∗M,

〈grad ci (x∗), w〉 = 0, ∀i ∈ E,

〈grad ci (x∗), w〉 = 0, ∀i ∈ A(x∗) ∩ I with λ∗i > 0,
〈grad ci (x∗), w〉 � 0, ∀i ∈ A(x∗) ∩ I with λ∗i = 0.

Then, we have the following second-order necessary and sufficient conditions.

Theorem 3.2 (Second-order optimality conditions)

• Second-order necessary conditions:
Suppose that x∗ is a local minimum of (3.5) and the LICQ holds at x∗. Let λ∗ be
the multipliers such that the KKT conditions (3.6) hold. Then, we have

〈
HessL(x∗, λ∗)[w], w〉

� 0, ∀w ∈ C(x∗, λ∗),

whereHessL(x∗, λ∗) is the Riemannian Hessian ofLwith respect to x at (x∗, λ∗).
• Second-order sufficient conditions:
Suppose that x∗ and λ∗ satisfy the KKT conditions (3.6). If we further have

〈
HessL(x∗, λ∗)[w], w〉

> 0, ∀w ∈ C(x∗, λ∗), w �= 0,

then x∗ is a strict local minimum of (3.6).

Suppose that we have only themanifold constraint, i.e., E∪I is empty. For a smooth
function f on the manifold M, the optimality conditions take a similar form to the
Euclidean unconstrained case. Specifically, if x∗ is a first-order stationary point, then
it holds that

grad f (x∗) = 0.

If x∗ is a second-order stationary point, then

grad f (x∗) = 0, Hess f (x∗) � 0.

If x∗ satisfies

grad f (x∗) = 0, Hess f (x∗) � 0,

then x∗ is a strict local minimum. For more details, we refer the reader to [47].
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3.3 First-Order-Type Algorithms

From the perspective of Euclidean constrained optimization problems, there are
many standard algorithms which can solve this optimization problem on manifold.
However, since the intrinsic structure of manifolds is not considered, these algorithms
may not be effective in practice. By doing curvilinear search along the geodesic, a
globally convergent gradient descent method is proposed in [48]. For Riemannian
conjugate gradient (CG) methods [49], the parallel translation is used to construct the
conjugate directions. Due to the difficulty of calculating geodesics (exponential maps)
and parallel translations, computable retraction and vector transport operators are pro-
posed to approximate the exponential map and the parallel translation [42]. Therefore,
more general Riemannian gradient descent methods and CG methods together with
convergence analysis are obtained in [42]. These algorithms have been successfully
applied to various applications [33,50]. Numerical experiments exhibit the advantage
of using geometry of the manifold. A proximal Riemannian gradient method is pro-
posed in [51]. Specifically, the objective function is linearized using the first-order
Taylor expansion on manifold and a proximal term is added. The original problem
is then transformed into a series of projection problems on the manifold. For gen-
eral manifolds, the existence and uniqueness of the projection operator cannot be
guaranteed. But when the given manifold satisfies certain differentiable properties,
the projection operator is always locally well defined and is also a specific retrac-
tion operator [52]. Therefore, in this case, the proximal Riemannian gradient method
coincides with the Riemannian gradient method. By generalizing the adaptive gra-
dient method in [53], an adaptive gradient method on manifold is also presented in
[51]. In particular, optimization over Stiefel manifold is an important special case
of Riemannian optimization. Various efficient retraction operators, vector transport
operators and Riemannian metric have been investigated to construct more practical
gradient descent and CG methods [54–56]. The extrapolation technique is adopted to
accelerate gradient-type methods on Stiefel manifold in [57]. Non-retraction-based
first-order methods are also developed in [25].

We next present a brief introduction of first-order algorithms for manifold opti-
mization. Let us start with the retraction operator R. It is a smooth mapping from the
tangent bundle T M := ∪x∈MTxM toM and satisfies

• Rx (0x ) = x , 0x is the zero element in the tangent space TxM,
• DRx (0x )[ξ ] = ξ, ∀ξ ∈ TxM,

where Rx is the retraction operator R at x . Thewell-posedness of the retraction operator
is shown in Section 4.1.3 of [42]. The retraction operator provides an efficient way to
pull the points from the tangent space back onto the manifold. Let ξk ∈ TxM be a
descent direction, i.e., 〈grad f (xk), ξk〉xk < 0. Another important concept onmanifold
is the vector transport operator T . It is a smooth mapping from the product of tangent
bundles TM

⊕
TM to the tangent bundle TM and satisfies the following properties.

• There exists a retraction R associated with T , i.e.,

Tηx ξx ∈ TRx (ηx )M.

123



A Brief Introduction to Manifold Optimization 223

• T0x ξx = ξx for all x ∈M and ξx ∈ TxM.
• Tηx (aξx + bζx ) = aTηx ξx + bTηx ζx .

The vector transport is a generalization of the parallel translation [42, Section 5.4].
The general feasible algorithm framework on the manifold can be expressed as

xk+1 = Rxk (tkξk), (3.7)

where tk is a well-chosen step size. Similar to the line search method in Euclidean
space, the step size tk can be obtained by the curvilinear search on the manifold. Here,
we take the Armijo search as an example. Given ρ, δ ∈ (0, 1), the monotone and
non-monotone search try to find the smallest nonnegative integer h such that

f (Rxk (tkξk)) � f (xk)+ ρtk 〈grad f (xk), ξk〉xk , (3.8)

f (Rxk (tkξk)) � Ck + ρtk 〈grad f (xk), ξk〉xk , (3.9)

respectively, where tk = γkδ
h and γk is an initial step size. The reference value

Ck+1 is a convex combination of Ck and f (xk+1) and is calculated via Ck+1 =
(�QkCk + f (xk+1))/Qk+1, where � ∈ [0, 1], C0 = f (x0), Qk+1 = �Qk + 1 and
Q0 = 1. From the Euclidean optimization, we know that the Barzilai–Borwein (BB)
step size often accelerates the convergence. The BB step size can be generalized to
Riemannian manifold [51] as

γ
(1)
k = 〈sk−1, sk−1〉xk

| 〈sk−1, vk−1〉xk |
or γ

(2)
k = | 〈sk−1, vk−1〉xk |〈vk−1, vk−1〉xk

, (3.10)

where

sk−1 = −tk−1 · Txk−1→xk (grad f (xk−1)), vk−1 = grad f (xk)+ t−1k−1 · sk−1,
and Txk−1→xk : Txk−1M �→ TxkM denotes an appropriate vector transport mapping
connecting xk−1 and xk ; see [42,58].WhenM is a submanifold of an Euclidean space,
the Euclidean differences sk−1 = xk − xk−1 and vk−1 = grad f (xk) − grad f (xk−1)
are an alternative choice if the Euclidean inner product is used in (3.10). This choice
is often attractive since the vector transport is not needed [51,54]. We note that the
differences between first- and second-order algorithms are mainly due to their specific
ways of acquiring ξk .

In practice, the computational cost and convergence behavior of different retraction
operators differ a lot. Similarly, the vector transport plays an important role in CG
methods and quasi-Newton methods (we will introduce them later). There are many
studies on the retraction operators and vector transports. Here, we take the Stiefel
manifold St(n, p) as an example to introduce several different retraction operators at
the current point X for a given step size τ and descent direction −D.

• Exponential map [59]

Rgeo
X (−τD) = [

X , Q
]
exp

(

τ

[−X�D −R�
R 0

])[
Ip
0

]

,
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where QR = −(In − XX�)D is the QR decomposition of−(In − XX�)D. This
scheme needs to calculate an exponent of a 2p-by-2p matrix and a QR decompo-
sition of an n-by-p matrix. From [59], an explicit form of parallel translation is
unknown.

• Cayley transform [21]

Rwy
X (−τD) = X − τU

(
I2p + τ

2
V�U

)−1
V�X , (3.11)

where U = [PX D, X ], V = [X , −PX D] ∈ R
n×(2p) with PX := (I − 1

2 XX�).
When p < n/2, this scheme is much cheaper than the exponential map. The
associated vector transport is [56]

T wy
ηX (ξX ) =

(

I − 1

2
WηX

)−1 (
I + 1

2
WηX

)

ξX , WηX = PXηX X − XηX PX ,

• Polar decomposition [42]

Rpd
X (−τD) = (X − τD)(Ip + τ 2D�D)−1/2.

The computational cost is lower than the Cayley transform, but the Cayley trans-
formmay give a better approximation to the exponential map [60]. The associated
vector transport is then defined as [61]

T pd
ηX ξX = Y�+ (I − YY�)ξX (Y�(X + ηX ))−1,

where Y = RXηX and vec(�) = (Y�(X + ηX ))⊕ (Y�(X + ηX ))−1vec(Y�ξX −
ξ�X Y ) and⊕ is the Kronecker sum, i.e., A⊕ B = A⊗ I + I ⊗ B with Kronecker
product ⊗. It claims in [52] that the total number of iterations is affected by the
choice of retractions. Therefore, algorithms with the polar decomposition may
require more iterations than those with Cayley transform to solve the optimization
problems [60].

• QR decomposition

Rqr
X (−τD) = qr(X − τD).

It can be seen as an approximation of the polar decomposition. Themain cost is the
QR decomposition of an n-by-p matrix. The associated vector transport is defined
as [42, Example 8.1.5]

T qr
ηX ξX = Yρskew(Y�ξX (Y�(X + ηX ))−1)+ (I − YY�)ξX (Y�(X + ηX ))−1,
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where Y = RX (ηX ) and ρskew(A) is defined as

ρskew(A) =

⎧
⎪⎨

⎪⎩

Ai j , if i > j,

0, if i = j,

−A ji , if i < j .

Recently, these retractions are also used to design the neural network structure and
solve deep learning tasks [62,63].

The vector transport above requires an associated retraction. Removing the depen-
dence of the retraction, a new class of vector transports is introduced in [64].
Specifically, a jointly smooth operator L(x, y) : TxM → TyM is defined. In addi-
tion, L(x, x) is required to be an identity for all x . For a d-dimensional submanifold
M of n-dimensional Euclidean space, two popular vector transports are defined by
the projection [42, Section 8.1.3]

Lpj(x, y)ξx = PTyM(ξx ),

and by parallelization [64]

Lpl(x, y)ξx = By B
†
x ξx ,

where B : V → R
n×d : z → Bz is a smooth tangent basis field defined on an open

neighborhood V of M and B†
z is the pseudo-inverse of Bz . With the tangent basis

Bz , we can also represent the vector transport mentioned above intrinsically, which
sometimes reduces computational cost significantly [65].

To better understand Riemannian first-order algorithms, we present a Riemannian
gradient method [51] in Algorithm 1. One can easily see that the difference to the
Euclidean case is an extra retraction step.

Algorithm 1: Riemannian gradient method

Step 1 Input x0 ∈M. Set k = 0, γmin ∈ [0, 1], γmax � 1, C0 = f (x0), Q0 = 1.
Step 2 while ‖grad f (xk)‖ �= 0 do
Step 3 Compute ηk = −grad f (xk).
Step 4 Calculate γk according to (3.10) and set

γk = max(γmin,min(γk, γmax)). Then, compute Ck, Qk and find a
step size tk satisfying (3.9).

Step 5 Set xk+1 ← Rxk (tkηk).
Step 6 Set k ← k + 1.

The convergence of Algorithm 1 [66, Theorem 1] is given as follows. Although the
submanifold is considered in [66], the following theorem also holds for the quotient
manifold.

Theorem 3.3 Let {xk}be a sequence generated byAlgorithm1using the non-monotone
line search (3.9). Suppose that f is continuously differentiable on the manifold M.
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Then, every accumulation point x∗ of the sequence {xk} is a stationary point of problem
(1.1), i.e., it holds grad f (x∗) = 0.

Proof At first, by using 〈grad f (xk), ηk〉xk = −‖grad f (xk)‖2xk < 0 and applying [67,
Lemma 1.1], we have f (xk) � Ck and xk ∈ {x ∈M : f (x) � f (x0)} for all k ∈ N.
Next, due to

lim
t↓0

( f ◦ Rxk )(tηk)− f (xk)

t
− ρ 〈grad f (xk), ηk〉xk

= ∇ f (Rxk (0))
�DRxk (0)ηk + ρ‖grad f (xk)‖2xk = −(1− ρ)‖grad f (xk)‖2xk < 0,

there always exists a positive step size tk ∈ (0, γk] satisfying the monotone and non-
monotone Armijo conditions (3.8) and (3.9), respectively. Now, let x∗ ∈ M be an
arbitrary accumulation point of {xk} and let {xk}K be a corresponding subsequence
that converges to x∗. By the definition of Ck+1 and (3.8), we have

Ck+1 = �QkCk + f (xk+1)
Qk+1

<
(�Qk + 1)Ck

Qk+1
= Ck .

Hence, {Ck} is monotonically decreasing and converges to some limit C̄ ∈ R∪{−∞}.
Using f (xk)→ f (x∗) for K $ k →∞, we can infer C̄ ∈ R and thus, we obtain

∞ > C0 − C̄ =
∞∑

k=0
Ck − Ck+1 �

∞∑

k=0

ρtk‖grad f (xk)‖2xk
Qk+1

.

Due to Qk+1 = 1 + �Qk = 1 + � + �2Qk−1 = · · · = ∑k
i=0 �i < (1 − �)−1, this

implies {tk‖grad f (xk)‖2xk } → 0. Let us now assume ‖grad f (x∗)‖ �= 0. In this case,
we have {tk}K → 0 and consequently, by the construction of Algorithm 1, the step
size δ−1tk does not satisfy (3.9), i.e., it holds

−ρ(δ−1tk)‖grad f (xk)‖2xk < f (Rxk (δ
−1tkηk))− Ck � f (Rxk (δ

−1tkηk))− f (xk)

(3.12)

for all k ∈ K sufficiently large. Since the sequence {ηk}K is bounded, the rest of the
proof is now identical to the proof of [42, Theorem 4.3.1]. In particular, applying the
mean value theorem in (3.12) and using the continuity of the Riemannian metric, we
can easily derive a contradiction. We refer to [42] for more details.

3.4 Second-Order-Type Algorithms

A gradient-type algorithm usually is fast in the early iterations, but it often slows
down or even stagnates when the generated iterations are close to an optimal solu-
tion. When a high accuracy is required, second-order-type algorithms may have its
advantage.

By utilizing the exact Riemannian Hessian and different retraction operators, Rie-
mannianNewtonmethods, trust-regionmethods, adaptive regularizedNewtonmethod
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have been proposed in [42,51,68,69]. When the second-order information is not avail-
able, the quasi-Newton-type method becomes necessary. As in the Riemannian CG
method, we need the vector transport operator to compare different tangent vectors
from different tangent spaces. In addition, extra restrictions on the vector transport and
the retraction are required for better convergence property or even convergence [61,
64,70–74]. Non-vector-transport-based quasi-Newtonmethod is also explored in [75].

3.4.1 Riemannian Trust-Region Method

One of the popular second-order algorithms is a Riemannian trust-region (RTR)
algorithm [42,69]. At the kth iteration xk , by utilizing the Taylor expansion on mani-
fold, RTR constructs the following subproblem on the Tangent space:

min
ξ∈TxkM

mk(ξ) := 〈grad f (xk), ξ 〉xk +
1

2
〈Hess f (xk)[ξ ], ξ 〉xk s.t. ‖ξ‖xk � �k,

(3.13)
where �k is the trust-region radius. In [76], extensive methods for solving (3.13) are
summarized. Among them, the Steihaug CG method, also named as truncated CG
method, is most popular due to its good properties and relatively cheap computational
cost. By solving this trust-region subproblem, we obtain a direction ξk ∈ TxkM
satisfying the so-called Cauchy decrease. Then, a trial point is computed as zk =
Rxk (ξk), where the step size is chosen as 1. To determine the acceptance of zk , we
compute the ratio between the actual reduction and the predicted reduction

ρk := f (xk)− f (Rxk (ξk))

mk(0)− mk(ξk)
. (3.14)

When ρk is greater than some given parameter 0 < η1 < 1, zk is accepted. Otherwise,
zk is rejected. To avoid the algorithm stagnating at some feasible point and promote
the efficiency as well, the trust-region radius is also updated based on ρk . The full
algorithm is presented in Algorithm 2.

Algorithm 2: Riemannian trust-region method

Step 1 Input: Initial guess x0 ∈M and parameters
�̄ > 0, �0 ∈ (0, �̄), ρ′ ∈ [0, 1

4 ).
Step 2 Output: Sequences of iterates {xk} and related information.
Step 3 for k = 0, 1, 2, · · · do
Step 4 Use the truncated CG method to obtain ξk by solving (3.13).
Step 5 Compute the ratio ρk in (3.14).
Step 6 if ρk < 1

4 then �k+1 = 1
4�k else if ρk > 3

4 and ‖ξk‖ = �k then
�k+1 = min(2�k, �̄) else �k+1 = �k if ρk > ρ′ then
xk+1 = Rxk (ξk) else xk+1 = xk .

For the global convergence, the following assumptions are necessary for second-
order-type algorithms on manifold.
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Assumption 3.4 (a). The function f is continuous differentiable and bounded from
below on the level set {x ∈M : f (x) � f (x0)}.

(b). There exists a constant βHess > 0 such that

‖Hess f (xk)‖ � βHess, ∀k = 0, 1, 2, · · · .

Algorithm 2 also requires a Lipschitz-type continuous property on the objective func-
tion f [42, Definition 7.4.1].

Assumption 3.5 There exists two constants βRL > 0 and δRL > 0 such that for all
x ∈M and ξ ∈ TxM with ‖ξ‖ = 1,

∣
∣
∣
∣
d

dt
f ◦ Rx (tξ) |t=τ − d

dt
f ◦ Rx (tξ) |t=0

∣
∣
∣
∣ � τβRL, ∀τ � δRL.

Then, the global convergence to a stationary point [42, Theorem 7.4.2] is presented
as follows:

Theorem 3.6 Let {xk} be a sequence generated by Algorithm 2. Suppose that Assump-
tions 3.4 and 3.5 hold, then

lim inf
k→∞ ‖grad f (xk)‖ = 0.

By further assuming the Lipschitz continuous property of the Riemannian gradient
[42, Definition 7.4.3] and some isometric property of the retraction operator R [42,
Equation (7.25)], the convergenceof thewhole sequence is proved [42,Theorem7.4.4].
The locally superlinear convergence rate of RTR and its related assumptions can be
found in [42, Section 7.4.2].

3.4.2 Adaptive Regularized Newton Method

From the perspective of Euclidean approximation, an adaptive regularized New-
ton algorithm (ARNT) is proposed for specific and general Riemannian submanifold
optimization problems [21,51,77]. In the subproblem, the objective function is con-
structed by the second-order Taylor expansion in the Euclidean space and an extra
regularization term, while the manifold constraint is kept. Specifically, the mathemat-
ical formulation is

min
x∈M

m̂k(x) := 〈∇ f (x), x − xk〉 + 1

2
〈Hk[x − xk], x − xk〉 + σk

2
‖x − xk‖2,

(3.15)
where Hk is the Euclidean Hessian or its approximation. From the definition of Rie-
mannian gradient and Hessian, we have

grad m̂k(xk) = grad f (xk),

Hess m̂k(xk)[U ] = PTxkM(Hk[U ])+Wxk (U ,P⊥TxkM(∇ f (xk)))+ σkU ,
(3.16)
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where U ∈ TxkM, P⊥TxkM := I − PTxkM is the projection onto the normal space and

the Weingarten mapWx (·, v) with v ∈ T⊥xkM is a symmetric linear operator which is
related to the second fundamental form ofM. To solve (3.15), a modified CGmethod
is proposed in [51] to solve the Riemannian Newton equation at xk ,

grad m̂k(xk)+ Hess m̂k(xk)[ξk] = 0.

Since Hess m̂k(xk) may not be positive definite, CG may be terminated if a direction
with negative curvature, says dk , is encountered. Different from the truncated CG
method used in RTR, a linear combination of sk (the output of the truncated CG
method) and the negative curvature direction dk is used to construct a descent direction

ξk =
{
sk + τkdk, if dk �= 0,

sk, if dk = 0,
with τk :=

〈
dk, grad m̂k(xk)

〉
xk〈

dk,Hess m̂k(xk)[dk]
〉
xk

. (3.17)

A detailed description on the modified CG method is presented in Algorithm 3. Then,
Armijo search along ξk is adopted to obtain a trial point zk . After obtaining zk , we
compute the following ratio between the actual reduction and the predicted reduction,

ρ̂k = f (zk)− f (xk)

m̂k(zk)
. (3.18)

Algorithm 3: A modified CG method for solving subproblem (3.15)

Step 1 Set T > 0, θ > 1, ε � 0, η0 = 0, r0 = gradmk(xk), p0 = −r0, and
i = 0.

Step 2 while i � n − 1 do
Step 3 Compute πi =

〈
pi ,Hess m̂k(xk)[pi ]

〉
xk
.

Step 4 if πi / 〈pi , pi 〉xk � ε then
Step 5 if i = 0 then set sk = −p0, dk = 0 else set sk = ηi ,
Step 6 if πi / 〈pi , pi 〉xk � −ε then dk = pi , set σest = |πi | / 〈pi , pi 〉xk

else dk = 0 break
Step 7 Set αi = 〈ri , ri 〉xk / πi , ηi+1 = ηi + αi pi , and

ri+1 = ri + αiHess m̂k(xk)[pi ].
Step 8 if ‖ri+1‖xk � min{‖r0‖θxk , T } then
Step 9 choose sk = ηi+1, dk = 0; break;
Step 10 Set βi+1 = 〈ri+1, ri+1〉xk / 〈ri , ri 〉xk and pi+1 = −ri+1 + βi+1 pi .
Step 11 i ← i + 1.
Step 12 Update ξk according to (3.17).

If ρ̂k � η1 > 0, then the iteration is successful and we set xk+1 = zk ; otherwise, the
iteration is not successful and we set xk+1 = xk , i.e.,

xk+1 =
{
zk, if ρ̂k � η1,

xk, otherwise.
(3.19)
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The regularization parameter σk+1 is updated as follows:

σk+1 ∈

⎧
⎪⎨

⎪⎩

(0, γ0σk], if ρ̂k � η2,

[γ0σk, γ1σk], if η1 � ρ̂k < η2,

[γ1σk, γ2σk], otherwise,

(3.20)

where 0 < η1 � η2 < 1 and 0 < γ0 < 1 < γ1 � γ2. These parameters determine how
aggressively the regularization parameter is adjusted when an iteration is successful or
unsuccessful. Putting these features together, we obtain Algorithm 4, which is dubbed
as ARNT.

Algorithm 4: An Adaptive Regularized Newton Method

Step 1 Choose a feasible initial point x0 ∈M and an initial regularization
parameter σ0 > 0. Choose 0 < η1 � η2 < 1, 0 < γ0 < 1 < γ1 � γ2.
Set k := 0.

Step 2 while stopping conditions not met do
Step 3 Compute a new trial point zk by doing Armijo search along ξk

obatined by Algorithm 3.
Step 4 Compute the ratio ρ̂k via (3.18).
Step 5 Update xk+1 from the trial point zk based on (3.19).
Step 6 Update σk according to (3.20).
Step 7 k ← k + 1.

Wenext present the convergence property ofAlgorithm4with the inexact Euclidean
Hessian starting from a few assumptions.

Assumption 3.7 Let {xk} be generated by Algorithm 4 with the inexact Euclidean
Hessian Hk .

(A.1) The gradient ∇ f is Lipschitz continuous on the convex hull of the manifold
M – denoted by conv(M), i.e., there exists L f > 0 such that

‖∇ f (x)−∇ f (y)‖ � L f ‖x − y‖, ∀ x, y ∈ conv(M).

(A.2) There exists κg > 0 such that ‖∇ f (xk)‖ � κg for all k ∈ N.

(A.3) There exists κH > 0 such that ‖Hk‖ � κH for all k ∈ N.
(A.4) Suppose there exists � > 0, � � 1 such that � and �

�‖ξ‖2 � ‖ξ‖2xk � �‖ξ‖2, ξ ∈ TxkM,

for all k ∈ N.

We note that the assumptions (A.2) and (A.4) hold if f is continuous differentiable
and the level set {x ∈M : f (x) � f (x0)} is compact.

The global convergence to an stationary point can be obtained.

Theorem 3.8 Suppose that Assumptions 3.4 and 3.7 hold. Then, either

grad f (x�) = 0 for some � � 0 or lim inf
k→∞ ‖grad f (xk)‖xk = 0.
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For the local convergence rate, we make the following assumptions.

Assumption 3.9 Let {xk} be generated by Algorithm 4.

(B.1) There exists βR, δR > 0 such that

∥
∥
∥
∥
D

dt

d

dt
Rx (tξ)

∥
∥
∥
∥
x

� βR,

for all x ∈M, all ξ ∈ TxM with ‖ξ‖x = 1 and all t < δR .
(B.2) The sequence {xk} converges to x∗.
(B.3) The Euclidean Hessian ∇2 f is continuous on conv(M).
(B.4) The Riemannian Hessian Hess f is positive definite at x∗ and the constant ε in

Algorithm 3 is set to zero.
(B.5) Hk is a good approximation of the Euclidean Hessian ∇2 f , i.e., it holds

‖Hk −∇2 f (xk)‖ → 0, whenever ‖grad f (xk)‖xk → 0.

Then, we have the following results on the local convergence rate.

Theorem 3.10 Suppose that the conditions (B.1)–(B.5) in Assumption 3.9 are satisfied.
Then, the sequence {xk} converges q-superlinearly to x∗.

The detailed convergence analysis can be found in [51].

3.4.3 Quasi-Newton-Type Methods

When the Riemannian Hessian Hess f (x) is computationally expensive or even
not available, quasi-Newton-type methods turn out to be an attractive approach. In the
literature [61,64,70–74], extensive variants of quasi-Newton methods are proposed.
Here, we take the Riemannian Broyden–Fletcher–Goldfarb–Shanno (BFGS) as an
example to show the general idea of quasi-Newton methods on Riemannian manifold.
Similar to the quasi-Newton method in the Euclidean space, an approximation Bk+1
should satisfy the following secant equation

Bk+1sk = yk,

where sk = TSαk ξk
αkξk and yk = β−1k grad f (xk+1)−TSαk ξk

grad f (xk)with parameter
βk . Here, αk and ξk is the step size and the direction used in the kth iteration. TS is an
isometric vector transport operator by the differentiated retraction R, i.e.,

〈
TSξx

ux , TSξx
vx

〉
Rx (ξx )

= 〈ux , vx 〉x .

Additionally, TS should satisfy the following locking condition,

TSξk
ξk = βkTRξk

ξk, βk = ‖ξk‖xk
‖TRξk

ξk‖Rxk (ξk )

,
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where TRξk
ξk = d

dt Rxk (tξk) |t=1. Then, the scheme of the Riemannian BFGS is

Bk+1 = B̂k − B̂ksk(B̂ksk)�

(B̂ksk)�sk
+ yk y

�
k

y�
ksk

, (3.21)

where a� : TxM→ R : v → 〈a, v〉x and B̂k = TSαk ξk
αkξk ◦ Bk ◦

(
TSαk ξk

αkξk

)−1
is

from Txk+1M to Txk+1M. With this choice of βk and the isometric property of TS , we
can guarantee the positive definiteness ofBk+1. After obtaining the new approximation
Bk+1, the Riemannian BFGS method solves the following linear system

Bk+1ξk+1 = −grad f (xk+1)

to get ξk+1. The detailed algorithm is presented in Algorithm 5. The choice of βk = 1
can also guarantee the convergence but with more strict assumptions. One can refer to
[64] for the convergence analysis. Since the computation of differentiated retraction
may be costly, authors in [74] investigate another way to preserve the positive defi-
niteness of the BFGS scheme. Meanwhile, the Wolfe search is replaced by the Armijo
search. As a result, the differentiated retraction can be avoided and the convergence
analysis is presented as well.

Algorithm 5: Riemannian BFGS method

Step 1 Input: Initial guess x0 ∈M, isometric vector transport TS associated
with the retraction R, initial Riemannian Hessian approximation
B0 : Tx0M→ Tx0M, which is symmetric positive definite, Wolfe
condition parameters 0 < c1 < 1

2 < c2 < 1.
Step 2 for k = 0, 1, 2, · · · do
Step 3 Solve Bkξk = −grad f (xk) to get ξk .
Step 4 Obtain xk+1 by doing a Wolfe search along ξk , i.e., finding αk > 0

such that the following two conidtions are satisfied

f (Rxk (αkξk)) � f (xk)+ c1αk 〈grad f (xk), ξk〉xk ,

d

dt
f (Rxk (tξk)) |t=αk � c2

d

dt
f (Rxk (tξk)) |t=0 .

Step 5 Set xk = Rxk (αkξk).
Step 6 Update Bk+1 by (3.21).

The aforementioned quasi-Newton methods rely on the vector transport operator.
When the vector transport operation is computationally costly, these methods may be
less competitive. Noticing the structure of the Riemannian Hessian Hess f (xk), i.e.,

Hess f (xk)[U ] = PTxkM(∇2 f (xk)[U ])+Wxk (U ,P⊥TxkM(∇ f (xk))), U ∈ TxkM,

where the second termWxk (U ,P⊥TxkM(∇ f (xk))) is often much cheaper than the first

term PTxkM(∇2 f (xk)[U ]). Similar to the quasi-Newton methods in unconstrained
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nonlinear least square problems [78] [79, Chapter 7], we can focus on the construction
of an approximation of the Euclidean Hessian ∇2 f (xk) and use exact formulations
of remaining parts. Furthermore, if the Euclidean Hessian itself consists of cheap and
expensive parts, i.e.,

∇2 f (xk) = Hc(xk)+He(xk), (3.22)

where the computational cost of He(xk) is much more expensive than Hc(xk), an
approximation of ∇2 f (xk) is constructed as

Hk = Hc(xk)+ Ck, (3.23)

where Ck is an approximation of He(xk) obtained by a quasi-Newton method in the
ambient Euclidean space. If an objective function f is not equipped with the structure
(3.22), Hk is a quasi-Newton approximation of ∇2 f (xk). In the construction of the
quasi-Newton approximation, a Nyström approximation technique [75, Section 2.3] is
explored, which turns to be a better choice than the BB-type initialization [76, Chap-
ter 6]. Since the quasi-Newton approximation is constructed in the ambient Euclidean
space, the vector transport is not necessary. Then, subproblem (3.15) is constructed
with Hk . From the expression of the Riemannian Hessian Hess m̂k in (3.16), we see
that subproblem (3.15) gives us a way to approximate the Riemannian Hessian when
an approximation Hk to the Euclidean Hessian is available. The same procedures of
ARNT can be utilized for (3.15) with the approximate Euclidean Hessian Hk . An
adaptive structured quasi-Newton method given in [75] is presented in Algorithm 6.

Algorithm 6: A structured quasi-Newton method

Step 1 Input an initial guess X0 ∈M. Choose τ0 > 0, 0 < η1 � η2 < 1,
1 < γ1 � γ2. Set k = 0.

Step 2 while stopping conditions not met do
Step 3 Check the structure of ∇2 f (xk) to see if it can be written in a form

as (3.22).
Step 4 Construct an approximation Hk by utilizing a quasi-Newton method.
Step 5 Construct and solve the subproblem (3.15) (by using the modified

CG method or the Riemannian gradient-type method) to obtain a
new trial point zk .

Step 6 Compute the ratio ρk via (3.14).
Step 7 Update xk+1 from the trial point zk based on (3.19).
Step 8 Update τk according to (3.20).
Step 9 k ← k + 1.

To explain the differences between the two quasi-Newton algorithmsmore straight-
forwardly, we take the HF total energy minimization problem (2.10) as an example.
From the calculation in [75], we have the Euclidean gradients

∇Eks(X) = Hks(X)X , ∇Ehf(X) = Hhf(X)X ,

where Hks(X) := 1
2 L + Vion +∑

l ζlwlw
∗
l + Diag((�L†)ρ)+ Diag(μxc(ρ)∗e) and

Hhf(X) = Hks(X)+ V(XX∗). The Euclidean Hessian of Eks and Ef along a matrix
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U ∈ C
n×p are

∇2Eks(X)[U ] = Hks(X)U + Diag

(
(�L† + ∂2εxc

∂ρ2 e
)
(X̄ �U + X � Ū )e

)

X ,

∇2Ef(X)[U ] = V(XX∗)U + V(XU∗ +UX∗)X .

Since ∇2Ef(X) is significantly more expensive than ∇2Eks(X), we only need to
approximate∇2Ef(X). The differences Xk− Xk−1,∇Ef(Xk)−∇Ef(Xk−1) are com-
puted. Then, a quasi-Newton approximationCk of∇2Ef is obtained without requiring
vector transport. By adding the exact formulation of ∇2Eks(Xk), we have an approx-
imation Hk , i.e.,

Hk = ∇2Eks + Ck .

A Nyström approximation for Ck is also investigated. Note that the spectrum of
∇2Eks(X) dominates the spectrum of ∇2Ef(X). The structured approximation Hk

is more reliable than a direct quasi-Newton approximate to ∇2Ehf(X) because the
spectrum of ∇2Eks is inherited from the exact form. The remaining procedure is to
solve subproblem (3.15) to update Xk .

3.5 Stochastic Algorithms

For problems arising from machine learning, the objective function f is often a
summation of a finite number of functions fi , i = 1, · · · ,m, namely,

f (x) =
m∑

i=1
fi (x).

For unconstrained situations, there are many efficient algorithms, such as Adam, Ada-
grad, RMSProp, Adelta and SVRG. One can refer to [80]. For the case with manifold
constraints, combining with retraction operators and vector transport operator, these
algorithms can be well generalized. However, in the implementation, due to the con-
siderations of the computational costs of different parts, they may have different
versions. Riemannian stochastic gradient method is first developed in [81]. Later,
a class of first-order methods and their accelerations are investigated for geodesically
convex optimization in [82,83].With the help of parallel translation or vector transport,
Riemannian SVRG methods are generalized in [84,85]. In consideration of the com-
putational cost of the vector transport, non-vector transport-based Riemannian SVRG
is proposed in [86]. Since an intrinsic coordinate system is absent, the coordinate-
wise update on manifold should be further investigated. A compromised approach for
Riemannian adaptive optimization methods on product manifolds is presented in [87].

Here, the SVRG algorithm [86] is taken as an example. At the current point Xs,k , we
first calculate the full gradient G(Xs,k), then randomly sample a subscript from 1 tom
and use this to construct a stochastic gradient with reduced variance as G(Xs,k, ξs,k) =
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∇ f (Xs,0) + (∇ fis,k (X
s,k) − ∇ fis,k (X

s,0)
)
, finally move along this direction with a

given step size to next iteration point

Xs,k+1 = Xs,k − τsξs,k .

For Riemannian SVRG [86], after obtaining the stochastic gradient with reduced
Euclidean variance, it first projects this gradient to the tangent space

ξs,k = PTXs,kM(G(Xs,k))

for a submanifold M. We note that the tangent space should be replaced by the
horizontal space whenM is a quotient manifold. Then, the following retraction step

Xs,k+1 = RXs,k (−τsξs,k)

is executed to get the next feasible point. The detailed version is outlined in Algo-
rithm 7.

Algorithm 7: Riemannian SVRG [86]

Step 1 for s = 0, · · · , S − 1 do
Step 2 Calculate the full gradient ∇ f (Xs,0) and sets the step size τs > 0.
Step 3 for k = 0, · · · , K − 1 do
Step 4 Randomly substitute samples to get the subscript

is,k ⊆ {1, · · · ,m}. Calculate a random Euclidean gradient
G(Xs,k)

G(Xs,k, ξs,k) = ∇ f (Xs,0)+ (∇ fis,k (X
s,k)−∇ fis,k (X

s,0)
)
.

Calculate a random Riemann gradient

ξs,k = PTXs,kM(G(Xs,k)).

Update Xs,k+1 in the following format

Xs,k+1 = RXs,k (−τsξs,k).

Step 5 Take Xs+1,0 ← Xs,K .

3.6 Algorithms for Riemannian Non-smooth Optimization

As shown in Sects. 2.11 to 2.15, many practical problems are with non-smooth
objective function and manifold constraints, i.e.,

min
x∈M

f (x) := g(x)+ h(x),
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where g is smooth and h is non-smooth. Riemannian subgradient methods [88,89] are
firstly investigated to solve this kind of problems, and their convergence analysis is
exhibited in [90] with the help of Kurdyka–Łojasiewicz (KŁ) inequalities. For locally
Lipschitz functions on Riemannian manifolds, a gradient sampling method and a
non-smooth Riemannian trust-region method are proposed in [91,92]. Proximal point
methods on manifold are presented in [93,94], where the inner subproblem is solved
inexactly by subgradient-type methods. The corresponding complexity analysis is
given in [95,96]. Different from the constructions of the subproblem in [93,94], a more
tractable subproblem without manifold constraints is investigated in [97] for convex
h(x) and the Stiefel manifold. By utilizing the semi-smooth Newton method [98], the
proposed proximal gradient method on manifold enjoys a faster convergence. Later,
the proximal gradient method on the Stiefel manifold [97] and its accelerated version
are extended to the generic manifold [99]. The accelerated proximal gradient methods
are applied to solve sparse PCA and sparse canonical correlation analysis problems
[100,101]. Another class of methods is based on operator-splitting techniques. Some
variants of the alternating direction method of multipliers (ADMM) are studied in
[102–107].

We briefly introduce the proximal gradient method on the Stiefel manifold [97]
here. Assume that the convex function h is Lipschitz continuous. At each iteration xk ,
the following subproblem is constructed

min
d

〈grad g(xk), d〉 + 1

2t
‖d‖2F + h(xk + d) s.t. d ∈ TxkM, (3.24)

where t > 0 is a step size and M denotes the Stiefel manifold. Given a retraction R,
problem (3.24) can be seen as a first-order approximation of f (Rxk (d)) near the zero
element 0xk on TxkM. From the Lipschitz continuous property of h and the definition
of R, we have

|h(Rxk (d))− h(xk + d)| � Lh‖Rxk (d)− (xk + d)‖F = O(‖d‖2F ),

where Lh is the Lipschitz constant of h. Therefore, we conclude

f (Rxk (d)) = 〈grad g(xk), d〉 + h(xk + d)+ O(‖d‖2F ), d → 0.

Then, the next step is to solve (3.24). Since (3.24) is convex andwith linear constraints,
the KKT conditions are sufficient and necessary for the global optimality. Specifically,
we have

d(λ) = proxth(b(λ))− xk, b(λ) = xk − t(grad f (xk)−A∗k(λ)), Ak(d(λ)) = 0,

where d ∈ TxkM is represented by Ak(d) = 0 with a linear operator Ak , A∗k is
the adjoint operator of Ak . Define E(λ) := Ak(d(λ)), it is proved in [97] that E is
monotone and then the semi-smooth Newton method in [98] is utilized to solve the
nonlinear equation E(λ) = 0 to obtain a direction dk . Combining with a curvilinear
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search along dk with Rxk , the decrease on f is guaranteed and the global convergence
is established.

3.7 Complexity Analysis

The complexity analysis of the Riemannian gradient method and the Riemannian
trust-region method has been studied in [108]. Similar to the Euclidean uncon-
strained optimization, the Riemannian gradient method (using a fixed step size or
Armijo curvilinear search) converges to ‖grad f (x)‖x � ε up to O(1/ε2) steps.
Under mild assumptions, a modified Riemannian trust-region method converges to
‖grad f (x)‖x � ε, Hess f (x) � −√ε I at most O(max{1/ε1.5, 1/ε2.5}) iterations.
For objective functions with multi-block convex but non-smooth terms, an ADMM
of complexity of O(1/ε4) is proposed in [105]. For the cubic regularization meth-
ods on the Riemannian manifold, recent studies [109,110] show a convergence to
‖grad f (x)‖x � ε, Hess f (x) � −√ε I with complexity of O(1/ε1.5).

4 Analysis for Manifold Optimization

4.1 Geodesic Convexity

For a convex function in the Euclidean space, any local minimum is also a global
minimum.An interesting extension is the geodesic convexity of functions. Specifically,
a function defined onmanifold is said to be geodesically convex if it is convex along any
geodesic. Similarly, a local minimum of a geodesically convex function on manifold
is also a global minimum. Naturally, a question is how to distinguish the geodesically
convex function.

Definition 4.1 Given a Riemannian manifold (M, g), a set K ⊂M is called g-fully
geodesic, if for any p, q ∈ K, any geodesic γpq is located entirely in K.

For example, revise the set {P ∈ S
n++ | det(P) = c} with a positive constant c is not

convex in R
n×n , but is a fully geodesic set [111] of Riemannian manifolds (Sn++, g),

where the Riemannian metric g at P is gP(U , V ) := tr(P−1U P−1V ). Now we
present the definition of the g-geodesically convex function.

Definition 4.2 Given a Riemannian manifold (M, g) and a g-fully geodesic set K ⊂
M, a function f : K → R is g-geodesically convex if for any p, q ∈ K and any
geodesic γpq : [0, 1] → K connecting p, q, it holds:

f (γpq(t)) � (1− t) f (p)+ t f (q), ∀t ∈ [0, 1].

A g-fully geodesically convex function may not be convex. For example, f (x) :=
(log x)2, x ∈ R+ is not convex in the Euclidean space, but is convex with respect to
the manifold (R+, g), where gx (u, v) := ux−1v.

Therefore, for a specific function, it is of significant importance to define a proper
Riemannian metric to recognize the geodesic convexity. A natural problem is, given
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a manifold M and a smooth function f :M→ R, whether there is a metric g such
that f is geodesic convex with respective to g? It is generally not easy to prove the
existence of such ametric. From the definition of the geodesic convexity, we know that
if a function has a non-global local minimum, then this function is not geodesically
convex for any metric. For more information on geodesic convexity, we refer to [111].

4.2 Convergence of Self-Consistent Field Iterations

In [112,113], several classical theoretical problems fromKSDFT are studied. Under
certain conditions, the equivalence between KS energy minimization problems and
KS equations are established. In addition, a lower bound of nonzero elements of the
charge density is also analyzed. By treating the KS equation as a fixed point equation
with respect to a potential function, the Jacobian matrix is explicitly derived using the
spectral operator theory and the theoretical properties of the SCFmethod are analyzed.
It is proved that the second-order derivatives of the exchange-correlation energy are
uniformly bounded if the Hamiltonian has a sufficiently large eigenvalue gap. More-
over, SCF converges from any initial point and enjoys a local linear convergence rate.
Related results can be found in [22–24,56,114,115].

Specifically, consider the real case of KS equation (2.11), we define the potential
function

V := V(ρ) = L†ρ + μxc(ρ)�e (4.1)

and

H(V ) := 1

2
L +

∑

l

ζlwlw
�
l + Vion + Diag(V ). (4.2)

Then, we have Hks(ρ) = H(V ). From (2.11), X are the eigenvectors corresponding
to the p-smallest eigenvalues of H(V ), which is dependent on V . Then, a fixed point
mapping for V can be written as

V = V(Fφ(V )), (4.3)

where Fφ(V ) = diag(X(V )X(V )�). Therefore, each iteration of SCF is to update Vk
as

Vk+1 = V(Fφ(Vk)). (4.4)

For SCF with a simple charge-mixing strategy, the update scheme can be written as

Vk+1 = Vk − α(Vk − V(Fφ(Vk))), (4.5)

where α is an appropriate step size. Under some mild assumptions, SCF converges
with a local linear convergence rate.

Theorem 4.3 Suppose that λp+1(H(V )) − λp(H(V )) > δ, ∀V , the second-order
derivatives of εxc are upper bounded and there is a constant θ such that ‖L† +
∂μxc(ρ)

∂ρ
e‖2 � θ, ∀ρ ∈ R

n. Let b1 := 1 − θ
δ

> 0, {Vk} be a sequence generated by
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(4.5) with a step size of α satisfying

0 < α <
2

2− b1
.

Then, {Vk} converges to a solution of the KS equation (2.11), and its convergence rate
is not worse than |1− α| + α(1− b1).

4.3 Pursuing Global Optimality

In the Euclidean space, a common way to escape the local minimum is to add white
noise to the gradient flow, which leads to a stochastic differential equation

dX(t) = −∇ f (X(t))dt + σ(t)dB(t),

where B(t) is the standard n-by-p Brownian motion. A generalized noisy gradient
flow on the Stiefel manifold is investigated in [116]

dX(t) = −grad f (X(t))dt + σ(t) ◦ dBM(t),

where BM(t) is the Brownian motion on the manifoldM := St(n, p). The construc-
tion of a Brownian motion is then given in an extrinsic form. Theoretically, it can
converge to the global minima by assuming second-order continuity.

4.4 Community Detection

For community detection problems, a commonly used model is called the degree-
correlated stochastic block model (DCSBM). It assumes that there are no overlaps
between nodes in different communities. Specifically, the hypothesis node set [n] =
{1, · · · , n} contains k communities, {C∗1 , · · · ,C∗k } satisfying

C∗a ∩ C∗b = ∅,∀a �= b and ∪ka=1 C∗a = [n].

In DCSBM, the network is a random graph, which can be represented by a matrix
with all elements 0 to 1 represented by B ∈ S

k . Let A ∈ {0, 1}n×n be the adjacency
matrix of this network and Aii = 0,∀i ∈ [n]. Then, for i ∈ C∗a , j ∈ C∗b , i �= j ,

Ai j =
{
1, with probability Babθiθ j ,

0, with probability 1− Babθiθ j ,

where the heterogeneity of nodes is characterized by the vector θ . More specifically,
larger θi corresponds to i with more edges connecting other nodes. For DCSBM, the
aforementioned relaxation model (2.15) is proposed in [29]. By solving (2.15), an
approximation of the global optimal solution can be obtained with high probability.
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Theorem 4.4 Define Ga = ∑
i∈C∗a θi , Ha = ∑k

b=1 BabGb, fi = Haθi . Let U∗ and
�∗ be global optimal solutions for (2.15) and (2.14), respectively, and define � =
U∗(U∗)�−�∗(�∗)�. Suppose thatmax1�a<b�k

Bab+δ
HaHb

< λ < min1�a�k
Baa−δ

H2
a

for

some δ > 0. Then, with high probability, we have

‖�‖1,θ � C0

δ

(

1+
(

max
1�a�k

Baa

H2
a
‖ f ‖1

))

(
√
n‖ f ‖1 + n),

where the constant C0 > 0 is independent with problem scale and parameter selec-
tions.

4.5 TheMaxcut Problem

Consider the SDP relaxation (2.2) and the non-convex relaxation problem with
low-rank constraints (2.3). If p �

√
2n, the composition of a solution V∗ of (2.3),

i.e., V�∗ V∗, is always an optimal solution of SDP (2.2) [117–119]. If p �
√
2n, for

almost all matricesC , problem (2.3) has a unique local minimum and this minimum is
also a global minimum of the original problem (2.1) [120]. The relationship between
solutions of the two problems (2.2) and (2.3) is presented in [121]. Define SDP(C) =
max{〈C, X〉 : X � 0, Xii = 1, i ∈ [n]}. A point V ∈ Ob(p, n) is called an ε-
approximate concave point of (2.3), if

〈U ,Hess f (V )[U ]〉 � ε‖U‖2V , ∀U ∈ TVOb(p, n),

where f (V ) = 〈
C, V�V

〉
. The following theorem [121, Theorem 1] tells the approx-

imation quality of an ε-approximate concave point of (2.3).

Theorem 4.5 For any ε-approximate concave point V of (2.3), we have

tr(CV�V ) � SDP(C)− 1

p − 1
(SDP(C)+ SDP(−C))− n

2
ε. (4.6)

Another problem with similar applications is the Z2 synchronization problem
[122]. Specifically, given noisy observations Yi j = zi z j + σWi j , where Wi j ∼
N (0, 1) for i > j,Wi j = Wji for i < j and Wii = 0, we want to estimate the
unknown labels zi ∈ {±1}. It can be seen as a special case of the maxcut problem
with p = 2. The following results are presented in [122].

Theorem 4.6 If σ < 1
8

√
n, then, with a high probability, all second-order stable points

Q of problem (2.3) (p = 2) have the following non-trivial relationship with the true
label z, i.e., for each such σ , there is ε such that

1

n
‖Q�z‖2 � ε.
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4.6 Burer–Monteiro Factorizations of Smooth Semidefinite Programs

Consider the following SDP

min
X∈Sn tr(CX) s.t. A(X) = b, X � 0, (4.7)

whereC ∈ S
n is a costmatrix,A : Sn → R

m is a linear operator andA(X) = b leads to
m equality constraints on X , i.e., tr(Ai X) = bi with Ai ∈ S

n, b ∈ R
m, i = 1, · · · ,m.

Define C as the constraint set

C = {X ∈ S
n : A(X) = b, X � 0}.

If C is compact, it is proved in [117,118] that (4.7) has a global minimum of rank r
with r(r+1)

2 � m. This allows to use the Burer–Monteiro factorizations [119] (i.e.,

let X = YY� with Y ∈ R
n×p,

p(p+1)
2 � m) to solve the following non-convex

optimization problem

min
Y∈Rn×p

tr(CYY�) s.t. A(YY�) = b. (4.8)

Here, we define the constraint set

M =Mp :={Y ∈ R
n×p : A(YY�) = b}. (4.9)

Since M is non-convex, there may exist many non-global local minima of (4.8). It
is claimed in [123] that each local minimum of (4.8) maps to a global minimum of
(4.7) if p(p+1)

2 > m. By utilizing the optimality theory of manifold optimization, any
second-order stationary point can be mapped to a global minimum of (4.7) under mild
assumptions [124]. Note that (4.9) is generally not a manifold. When the dimension
of the space spanned by {A1Y , · · · , AmY }, denoted by rank A, is fixed for all Y ,Mp

defines a Riemannian manifold. Hence, we need the following assumptions.

Assumption 4.7 For a given p such that Mp is not empty, assume at least one of the
following conditions are satisfied.

(SDP.1) {A1Y , · · · , AmY } are linearly independent in R
n×p for all Y ∈ Mp

(SDP.2) {A1Y , · · · , AmY } span a subspace of constant dimension in R
n×p for all Y

in an open neighborhood of Mp ∈ R
n×p.

By comparing the optimality conditions of (4.8) and the KKT conditions of (4.7), the
following equivalence between (4.7) and (4.8) is established in [124, Theorem 1.4].

Theorem 4.8 Let p satisfy p(p+1)
2 > rank A. Suppose that Assumption 4.7 holds. For

almost any cost matrix C ∈ S
n, if Y ∈Mp satisfies first- and second-order necessary

optimality conditions for (4.8), then Y is globally optimal and X = YY� is globally
optimal for (4.7).
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4.7 Little Grothendieck Problemwith Orthogonality Constraints

Given a positive semidefinite matrix C ∈ R
dn×dn , the little Grothendieck problem

with orthogonality constraints can be expressed as

max
O1,··· ,Od∈Od

n∑

i=1

n∑

j=1
tr

(
C�i j Oi O

�
j

)
, (4.10)

where Ci j represents the (i, j)th d × d block of C ,Od is a group of d × d orthogonal
matrices (i.e., O ∈ Od if and only if O�O = OO� = I .) A SDP relaxation of (4.10)
is as follows: [125]

max
G∈Rdn×dn

Gii=Id×d , G�0
tr(CG). (4.11)

For the original problem (4.10), a randomized approximation algorithm is presented
in [125]. Specifically, it consists of the following two procedures.

• Let G be a solution to problem (4.11). Denote by the Cholesky decomposition
G = LL�. Let Xi be a d × (nd) matrix such that L = (X�1 , X�2 , · · · , X�n )�.

• Let R ∈ R
(nd)×d be a real-valued Gaussian random matrix whose entries are

i.i.d. N (0, 1
d ). The approximate solution of the problem (4.10) can be calculated

as follows:

Vi = P(Xi R),

where P(Y ) = argminZ∈Od
‖Z − Y‖F with Y ∈ R

d×d .

For the solution obtained in the aboveway, a constant approximation ratio on the objec-
tive function value is shown, which recovers the known 2

π
approximation guarantee

for the classical little Grothendieck problem.

Theorem 4.9 Let V1, · · · , Vn ∈ Od be obtained as above. For being given a symmetric
matrix C � 0, then

E

⎡

⎣
n∑

i=1

n∑

j=1
tr

(
C�i j Vi V�j

)
⎤

⎦ � α(d)2 max
O1,··· ,On∈Od

n∑

i=1

n∑

j=1
tr

(
C�i j Oi O

�
j

)
,

where

α(d) := E

⎡

⎣ 1

d

d∑

j=1
σ j (Z)

⎤

⎦ ,

Z ∈ R
d×d is a Gaussian random matrix whose components i.i.d.N (0, 1

d ) and σ j (Z)

is the j th singular value of Z.

123



A Brief Introduction to Manifold Optimization 243

5 Conclusions

Manifold optimization has been extensively studied in the literature. We review
the definition of manifold optimization, a few related applications, algorithms and
analysis. However, there are still many issues and challenges. Many manifold opti-
mization problems that can be effectively solved are still limited to relatively simple
structures such as orthogonal constraints and rank constraints. For other manifolds
with complicated structures, what are the most efficient choices of Riemannian met-
rics and retraction operators are not obvious. Another interesting topic is to combine
the manifold structure with the characteristics of specific problems and applications,
such as graph-based data analysis, real-time data flow analysis and biomedical image
analysis. Non-smooth problems appear to be more and more attractive.
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