
1

A Selective Overview of Sparse Principal Component Analysis

Hui Zou and Lingzhou Xue

University of Minnesota and Pennsylvania State University

Abstract—Principal component analysis (PCA) is a widely used
technique for dimension reduction, data processing and feature
extraction. The three tasks are particularly useful and important
in high-dimensional data analysis and statistical learning. How-
ever, the regular PCA encounters great fundamental challenges
under high-dimensionality and may produce ‘wrong’ results. As a
remedy, sparse PCA has been proposed and studied. Sparse PCA
is shown to offer a ‘right’ solution under high-dimensions. In this
article, we review methodological and theoretical developments
of sparse PCA, as well as its applications in scientific studies.

I. PCA

Principal component analysis (PCA) was invented by (Pear-

son 1901). As a dimension reduction and feature extraction

method, PCA has numerous applications in statistical learning,

such as handwritten zip code classification (Hastie et al. 2009),

human face recognition (Hancock et al. 1996), eigengenes

analysis (Alter et al. 2000), gene shaving (Hastie et al. 2000),

and so on. It would not be exaggerating to say that PCA is

one of the most widely used and most important multivariate

statistical techniques.

This review article focuses on the high-dimensional exten-

sion of the regular PCA, which is often called sparse PCA.

There are several popular sparse PCA methods in the literature,

which will be reviewed in Section 2. Their formulations are

different but related, because the regular PCA has several

equivalent definitions from different viewing angles. These

definitions are equivalent without sparsity constraints, and

differ with sparsity constraints. To be self-contained, we briefly

discuss the several views of PCA in the following.

From a dimension reduction perspective, PCA can be de-

scribed as a set of orthogonal linear transformations of the

original variables such that the transformed variables maintain

the information contained in the original variables as much as

possible. Specifically, let X be a n × p data matrix, where

n and p are the number of observations and the number of

variables, respectively. For ease of presentation, assume the

column means of X are all 0. The first principal component

is defined as Z1 =
∑p

j=1 α1jXj where α1 = (α11, . . . , α1p)
T

is chosen to maximize the variance of Z1, i.e.,

α1 = argmax
α

αT
Σ̂α subject to ‖α1‖ = 1 (1)

with Σ̂ = X
T
X

n . The rest principal components can be defined

sequentially as follows:

αk+1 = argmax
α

αT
Σ̂α (2)

subject to

‖α‖ = 1 and αTαl = 0, ∀1 ≤ l ≤ k. (3)

This definition implies that the first K loading vectors are the

first K eigenvectors of Σ̂.
The eigen-decomposition formulation of PCA also relates

PCA to the singular value decomposition (SVD) of X . Let

the SVD of X be

X = UDV
T

where D is a diagonal matrix with diagonal elements

d1, . . . , dp in a descending order, and U and V are is n×p and

p×p orthonormal matrices, respectively. Because the columns

of V are the eigenvectors of Σ̂, V is the loading matrix

of the principal components. By XV = UD, we see that

Zk = Ukdk where Uk is the kth column of U . Note that SVD

can be interpreted as the best low rank approximation to the

data matrix.

PCA has another geometric interpretation, as the closest

linear manifold approximation of the observed data. This

definition actually matches the construction of PCA considered

by Pearson (1901). Let xi be the ith row of X . Consider the

first k principal components jointly V k = [V1| · · · |Vk]. By

definition, V k is a p × k orthonormal matrix. Project each

observation to the linear space spanned by {V1, . . . , Vk}. The

projection operator is P k = V kV
T
k and the projected data is

P kXi, 1 ≤ i ≤ n. One way to define the best projection is

by minimizing the total ℓ2 approximation error

min
V k

n∑

i=1

‖xi − V kV
T
k xi‖2. (4)

It is easy to show that the solution is exactly the first k
principal components.

In applications variables can have different scales and

units. Practioners often standardize each variable such that its

marginal sample variance is one. When this practice is applied

to PCA, the resulting covariance matrix of standardized vari-

ables is the sample correlation matrix of the raw variables.

Note that the eigenvalues and eigenvectors of the correlation

matrix can be different from those of the covariance matrix.

II. METHODS FOR SPARSE PRINCIPAL COMPONENTS

Each principal component is a linear combination of all

p variables, which makes it difficult to interpret the derived

principal components as new features. Rotation techniques

are commonly used to help practitioners to interpret principal

components (Jolliffe 1995). Vines (2000) considered simple

principal components by restricting the loadings to take values

from a small set of allowable integers such as 0, 1 and -1.

This restriction may be useful for certain applications but not

all. Simple thresholding is an ad hoc way to achieve sparse

loadings by setting the loadings with absolute values smaller

than a threshold to zero. Although the simple thresholding is
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frequently used in practice, it can be potentially misleading

in various respects (Cadima & Jolliffe 1995). Sparse variants

of PCA aim to achieve a good balance between variance

explained (dimension reduction) and sparse loadings (inter-

pretability).

Sparse learning is ubiquitous in high-dimensional data

analysis. Prior to the sparse principal component problem,

an important question is how to select variables in high-

dimensional regression. For the regression problem, the lasso

proposed in Tibshirani (1996) is a very promising technique

for simultaneous variable selection and prediction. The lasso

regression is an ℓ1 penalized least squares method. The use

of ℓ1 penalization yields a sparse solution and also permits

efficient computations.

A. SCoTLASS

Inspired by the lasso regression, Jolliffe et al. (2003) pro-

posed a procedure called SCoTLASS to obtain sparse loadings

by directly imposing an ℓ1 constraint on the loading vector.

SCoTLASS extends the standard PCA by taking the vari-

ance maximization perspective of the PCA. It successively

maximizes the variance

aTk Σ̂ak (5)

subject to

aTk ak = 1 and (for k ≥ 2) aTh ak = 0, h < k; (6)

and the extra ℓ1 constraints

p∑

j=1

|akj | ≤ t (7)

for some tuning parameter t. However, SCoTLASS is high

computational cost which makes it an impractical solution

for high-dimensional data analysis. It motivated researchers to

consider more efficient proposals for sparse principal compo-

nents. A related but more efficient approach is the generalized

power method presented in Section 2.5.

B. SPCA

After SCoTLASSO, the first computational efficient sparse

PCA algorithm for high-dimensional data was introduced by

Zou et al. (2006). Their method is named Sparse Principal

Component Analysis (SPCA). Before reviewing the technical

details, let us consider the application of SPCA to the pitprops

data (Jeffers 1967), a classical example showing the difficulty

of interpreting principal components. The pitprops data has

180 observations and 13 measured variables. In Zou et al.

(2006) the first six ordinary principal components and the first

six sparse principal components are computed. Here we only

cite the results of the first three principal components in Table

1. Compared with the standard PCA, SPCA generated very

sparse loading structures without losing much variance.

In the original lasso paper Tibshirani used a quadratic

programming solver to compute the lasso regression estimator,

which is not very efficient for high-dimensional data. Efron

et al. (2004) derived the first efficient algorithm named LARS

PCA SPCA

PC1 PC2 PC3 PC1 PC2 PC3
topdiam -.404 .218 -.207 -.477
length -.406 .186 -.235 -.476
moist -.124 .541 .141 .785
testsg -.173 .456 .352 .620
ovensg -.057 -.170 .481 .177 .640
ringtop -.284 -.014 .475 .589
ringbut -.400 -.190 .253 -.250 .492
bowmax -.294 -.189 -.243 -.344 -.021
bowdist -.357 .017 -.208 -.416
whorls -.379 -.248 -.119 -.400
clear .011 .205 -.070
knots .115 .343 .092 .013
diaknot .113 .309 -.326 -.015

variance 32.4 18.3 14.4 28.0 14.0 13.3

TABLE I
COMPARE PCA AND SPCA ON THE PITPROPS DATA. EMPTY CELLS MEAN

ZERO LOADINGS. THE VARIANCE OF SPCA IS EXPECTED TO BE SMALLER

THAN THAT OF PCA, BY THE DEFINITION OF PCA. THE DIFFERENCES IN

VARIANCE ARE SMALL.

for computing the entire solution path of the lasso regression

model with high-dimensional data. Motivated by LARS, Zou

et al. (2006) proposed to tackle the sparse principal component

problem from a regression formulation. The resulting algo-

rithm is SPCA.

SPCA extends the linear manifold approximation view

of the PCA to derive sparse loadings. Recall that the first

principal component can be defined as

α1 = arg min
α,β

n∑

i=1

‖xi − ααT
xi‖2 (8)

subject to ‖α‖2 = 1.

We reformulate (8) as

arg min
α,β

n∑

i=1

‖xi − αβT
xi‖2 (9)

subject to ‖α‖2 = 1 and α = β.

The following theorem says that we can drop the equality

constraint in (9) and still recover the first loading vector

exactly.

Theorem 1 (Zou et al. (2006)). For any λ0 > 0, let

(α̂, β̂) = arg min
α,β

n∑

i=1

‖xi − αβT
xi‖2 + λ0‖β‖2 (10)

subject to ‖α‖2 = 1.

Then β̂ ∝ V1.

In Theorem 1 the extra ℓ2 term λ0‖β‖2 is not needed when

p < n. When p > n, any λ0 > 0 should be used and it does not

affect the normalized β1. By dropping the equality constraint

α = β, we can use an alternating minimization algorithm to

optimize the criterion in (10) because α and β are separated

variables. With a fixed α, the optimization problem over β is

a regression problem.

Based on Theorem 1, we can impose a sparse penalty on

β to gain zero loading because the normalizing step does not
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change the support of β. The SPCA for the first principal

component is defined as

(α̂, β̂) = arg min
α,β

n∑

i=1

‖xi − αβT
xi‖2 + λ0‖β‖2 + λ1‖β‖1(11)

subject to ‖α‖2 = 1.

and the output loading vector is V̂1 = β̂/‖β̂‖. For n > p,

we can let λ0 = 0 and solving β with a fixed α is a lasso

regression problem, which can be done efficiently. When n <
p, we need to use a positive λ0 (e.g., λ0 = 10−3), solving

β with a fixed α is an elastic net regression problem (Zou &

Hastie 2005), which can be done efficiently as well.

Theorem 1 can be generalized to handle the first k principal

components simultaneously, as stated in the next theorem.

Theorem 2 (Zou et al. (2006)). Suppose we are considering

the first k principal components. Let Ap×k = [α1, · · · , αk]
and Bp×k = [β1, · · · , βk]. For any λ0 > 0, let

(Â, B̂) = arg min
A,B

n∑

i=1

‖xi −AB
T
xi‖2 + λ0

k∑

j=1

‖βj‖2(12)

subject to A
T
A = Ik×k.

Then β̂j ∝ Vj for j = 1, 2, . . . , k.

Then the SPCA criterion for the first k sparse principal

components is defined as

(Â, B̂) = arg min
A,B

n∑

i=1

‖xi −AB
T
xi‖2 + λ0

k∑

j=1

‖βj‖2 +
k∑

j=1

λ1,j‖βj‖1

(13)

subject to A
T
A = Ik×k,

where different λ1,js are allowed for penalizing the loadings

of different principal components.

Zou et al. (2006) proposed an alternating algorithm to

minimize the SPCA criterion (13).

B given A:For each j, let Y ∗
j = Xαj . It can shown that B̂ =

[β̂1, · · · , β̂k] and each β̂j is obtained via

β̂j = arg min
βj

‖Y ∗
j −Xβj‖2+λ0‖βj‖2+λ1,j‖βj‖1.

(14)

One can use either the LARS-EN algorithm (Zou

& Hastie 2005) or the cyclic coordinate descent

algorithm (Friedman et al. 2007) to solve (14). Both

algorithms are efficient for high-dimensional data.

A given B:If B is fixed, the optimization problem of A is

arg min
A

n∑

i=1

‖xi −AB
T
xi‖2 = ‖X −XBA

T ‖2,

subject to A
T
A = Ik×k. This is called a reduced

rank Procrustes rotation problem in Zou et al. (2006)

because when k = p it is the Procrustes rotation

problem (Mardia et al. 1979). Zou et al. (2006)

derived an explicit solution to the reduced rank

Procrustes rotation problem. We compute the SVD

(XT
X)B = UDV

T , (15)

and set Â = UV
T .

The SPCA algorithm iterates between the elastic net regres-

sion step and the SVD step till convergence. The output is the

normalized B matrix: V̂j = β̂j/‖β̂j‖, 1 ≤ j ≤ k.

Zou et al. (2006) derived another SPCA criterion to further

speed up the computation efficiency. The derivation is based

on the observation that Theorem 2 is valid for all λ0 > 0. It

turns out that a thrifty solution emerges if λ0 is taken to be a

large constant.

Theorem 3 (Zou et al. (2006)). Let V̂j(λ0) =
β̂j

‖β̂j‖
(j =

1, . . . , k) be the sparse loadings defined in (13). Let (Â, B̂)
be the solution of the optimization problem

(Â, B̂) = arg min
A,B

−2Tr
(
A

T
X

T
XB

)
+

k∑

j=1

‖βj‖2 +
k∑

j=1

λ1,j‖βj‖1(16)

subject to A
T
A = Ik×k.

When λ0 → ∞, V̂j(λ0) → β̂j

‖β̂j‖
.

Solving (16) can also be done via an alternating minimiza-

tion algorithm. Given A, we have that for each j,

β̂j = arg min
βj

−2αT
j (X

T
X)βj + ‖βj‖2 + λ1,j‖βj‖1, (17)

and the solution is given by

β̂j = S(XT
Xαj ,

λ1,j

2
)

where S(Z, γ) is the soft-thresholding operator on a vector

Z = (z1, . . . , zp) with thresholding parameter γ and

S(Z, γ)j = (|zj | − γ)+ sgn(zj), 1 ≤ j ≤ p.

Given B, the solution of A is again Â = UV
T where U ,V

are from the SVD of (XT
X)B: (XT

X)B = UDV
T .

C. A semidefinite programming approach

We introduce some necessary notation first. Use Card(M)
to denote the number of nonzero element of M , where M
can be a vector of a matrix. The notation |M | means that we

replace each element of M with its absolute value. Let 1p be

the p-vector of 1.

Consider the first k-sparse principal component with at most

k nonzero loadings. A natural definition of the optimal k-

sparse loading vector is

argmax
α

αT
Σ̂α (18)

subject to ‖α‖ = 1, Card(α) ≤ k.

When k = p, then the above definition gives the loadings of

the first principal component. However, (18) is nonconvex and

computationally difficult, especially when p is large. Convex

relaxation is a standard technique used in operational research

to handle difficult nonconvex problems. d’Aspremont et al.

(2007) developed a convex relation of (18), which is expressed

as a semidefinite programming problem.

Let P = ααT . We write αT Σ̂α = Tr(Σ̂P ). The norm-1

constraint on α leads to a linear equality constraint on P :
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TrP = 1. Moreover, the cardinality constraint ‖α‖0 ≤ k
implies Card(P ) ≤ k2. Hence, we consider the following

optimization problem of P :

argmax
P

Tr(Σ̂P ) (19)

subject to TrP = 1, Card(P ) ≤ k2,

P � 0 and rank(P ) = 1.

The above formulation in (19) is still nonconvex and difficult

to handle due to the cardinality constraint and the rank one

constraint. By definition, P is symmetric and P
2 = P .

Observe that

‖P ‖2F = Tr(P T
P ) = Tr(P ) = 1.

By Cauchy-Schwartz,

1
T
p |P |1p ≤

√
Card(P )‖P ‖2F ≤ k.

Therefore, d’Aspremont et al. (2007) suggested to relax the

cardinality constraint in (19) to a linear inequality constraint

1
T
p |P |1p ≤ k. Furthermore, they dropped the rank one

constraint and ended up with the DSPCA formulation:

argmax
P

Tr(Σ̂P ) (20)

subject to

TrP = 1,

1
T
p |P |1p ≤ k,

P � 0 .

The above is recognized as a semidefinite programming prob-

lem and can be solved by software such as SDPT3.

DSPCA only solves for P but not α. To compute the loading

vector α, d’Aspremont et al. (2007) recommended truncating

P and retaining only the dominant (sparse) eigenvector of P .

For the second sparse principal component, it is suggested

to replace Σ̂ with Σ̂ − (αT
Σ̂α)ααT in (20). The same

procedure can be repeated to compute the rest sparse principal

components.

For larger problems, d’Aspremont et al. (2007) dis-

cussed a Nesterov’s smooth minimization technique to handle

DSPCA. The computation complexity of the algorithm is

O(p4
√

log(p)/ǫ), where ǫ is the numerical accuracy of the

solution. d’Aspremont et al. (2008) discussed a greedy algo-

rithm to speed up the computation. An alternating direction

method of multipliers was proposed in Ma (2013a).

DSPCA formulation generated many interests in the op-

erational research and machine learning communities. Some

follow-up works include Lu & Zhang (2012), Vu et al. (2013)

and d’Aspremont (2011), among others.

D. Iterative thresholding methods

PCA can be done via the singular value decomposition

(SVD) of the data matrix. Thus, it is natural to consider a

sparse PCA algorithm based on the SVD of X . This idea was

explored in Shen & Huang (2008) and Witten et al. (2009) .

Let the SVD of X be X = UDV
T . Consider the first

principal component. We know the loading vector is V1, the

first column of V . It is a well known result that SVD of X

is related to the best lower rank approximation of X (Eckart

& Young 1936). Specifically, let Ũ be a norm-1 n-vector and

Ṽ be a p-vector. Consider Ũ Ṽ T as a rank one approximation

of X . The best rank one approximation is defined as

min
Ũ,Ṽ

‖X − Ũ Ṽ T ‖2F subject to ‖Ũ‖ = 1, (21)

and the solution is Ũ = U1 and Ṽ = d1V1 where d1 is the

first singular value.

Based on (21) Shen & Huang (2008) proposed the following

optimization problem

(Û , V̂ ) = argmin
U,V

‖X−UV T ‖2F+λ‖V ‖1 subject to ‖U‖ = 1,

(22)

and the sparse loading vector is normalized V̂ , V̂
‖V̂ ‖

. An

alternating minimization algorithm is used to solve (22). Note

that given V , the optimal U is U = XV/‖XV ‖. Given U ,

the optimal V is

argmin
V

−2Tr(XTUV T ) + ‖V ‖2 + λ‖V ‖1

and the solution is given by the soft-thresholding operator:

V = S(XTU,
λ

2
)

Thus, Shen and Huang’s method is an iterative thresholding

algorithm.

Note that the above procedure is similar in spirit to the

SPCA algorithm in (16). The big difference is that SPCA

solves k components simultaneously, but Shen and Huang’s

method only deals with one component at a time.

Shen & Huang (2008) proposed to sequentially compute the

rest sparse principal components. Suppose that we have com-

puted the first k (U, V ) pairs, let X(k+1) = X −
∑k

l UlV
T
l

and then the iterative thresholding algorithm is applied to

X(k+1) to get (U(k+1), V(k+1)). The normalized V(k+1) is the

loading vector of the (k + 1)th sparse principal component.

The λ parameter is allowed to differ for different principal

components.

In the same vein Witten et al. (2009) proposed a penalized

matrix decomposition (PMD) criterion as follows

(Û , V̂ , d̂) = arg min
U,V,d

‖X − dUV T ‖2F (23)

subject to ‖U‖ = 1, ‖U‖1 ≤ c1; ‖V ‖ = 1, ‖V ‖1 ≤ c2.

By straightforward calculation, it can be shown that (23) is

equivalent to the following optimization problem

(Û , V̂ ) = argmax
U,V

UT
XV (24)

subject to ‖U‖ = 1, ‖U‖1 ≤ c1; ‖V ‖ = 1, ‖V ‖1 ≤ c2.

and d̂ = ÛTXV̂ .

They also used an alternating minimization algorithm to

compute (24). Given V , we update U by solving

max
U

UT
XV subject to ‖U‖ = 1, ‖U‖1 ≤ c1. (25)

Given U , we update V by solving

max
V

UT
XV subject to ‖V ‖ = 1, ‖V ‖1 ≤ c2. (26)
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The equality constraint ‖U‖ = 1, ‖V ‖ = 1 in (25) and (26)

can be replaced with inequality constraint ‖U‖ ≤ 1, ‖V ‖ ≤
1 and the solutions remain the same. So, (25) and (26) are

examples of the following convex optimization problem

Ẑ = argmax
Z

ZTR subject to ‖Z‖ ≤ 1, ‖Z‖1 ≤ c. (27)

It is easy to see that the solution to (27) is

Ẑ =
S(R,∆c)

‖S(R,∆c)‖
,

where S is the soft-thresholding operator and ∆c is selected as

follows: ∆c = 0 if ‖ R
‖R‖‖1 ≤ c, otherwise ∆c > 0 is chosen

to satisfy ‖Ẑ‖1 = c.

E. A generalized power method

Consider the first principal component. By the variance

maximization definition, a direct formulation of ℓ1 constrained

sparse principal component is

arg max
‖α‖=1

αT
X

T
Xα (28)

subject to‖α‖1 ≤ t.

Equivalently, we can solve

arg max
‖α‖=1

√
αTX

T
Xα (29)

subject to‖α‖1 ≤ t.

Journée et al. (2010) considered the Lagrangian form of (29)

arg max
‖α‖=1

√
αTX

T
Xα− λ‖α‖1. (30)

They offered a generalized power method for solving (31).

Their idea takes advantage of this simple observation: let Ũ =
argmax‖U‖=1 U

TZ, then Ũ = Z/‖Z‖ and ŨTZ = ‖Z‖.

Thus, an equivalent formulation of (31) is

(U∗, α∗) = argmax
U,α

UT
Xα− λ‖α‖1 (31)

subject to ‖U‖ = 1, ‖α‖ = 1.

Notice that the formulation (31) is the Lagrangian form of the

PMD formulation (24) without imposing the ℓ1 constraint on

U .

For any U , the optimal α and X
TU must share the same

sign for each component. Let zj = |αj |, and Z = |α|. Then

the optimal Z∗ must satisfy

Z∗ = argmax
Z

p∑

j=1

(|XTU |j − λ)zj (32)

subject to zj ≥ 0,

p∑

j=1

z2j = 1.

When |XTU |j − λ ≤ 0, z∗j = 0. By Cauchy-Schwartz, it is

easy to see that the solution to (32) is

z∗j =
(|XTU |j − λ)+√∑p
j=1(|XTU |j − λ)2+

, (33)

which yields

α =
S(XTU, λ)

‖S(XTU, λ)‖
, (34)

where S is the soft-thresholding operator. Plugging (33) back

to the objective function in (31), we obtain a new optimization

criterion of U :

U∗ = arg max
U :‖U‖=1

√√√√
p∑

j=1

(|XTU |j − λ)2+,

or equivalently

U∗ = arg max
U :‖U‖≤1

p∑

j=1

(|XTU |j − λ)2+. (35)

Once U∗ is solved, we have

α∗ =
S(XTU∗, λ)

‖S(XTU∗, λ)‖
.

Solving U∗ is a n-dimensional optimization problem, al-

though the original formulation (31) is a p-dimensional op-

timization problem. When p ≫ n, the generalized power

method achieves great computational savings. Moreover, the

objective function in (35) is differentiable and convex, and

the constraint set is compact and convex. Journée et al.

(2010) used an efficient gradient method to compute U∗ and

analyzed its convergence property. They also showed that the

generalized power method can be extended to handle the first

k principal components jointly.

There are other proposals for constructing spare principal

components such as the truncated power method in Yuan

& Zhang (2013) and the exact and greedy algorithms in

Moghaddam et al. (2006).

III. THEORETICAL RESULTS

Theoretical analysis of sparse PCA received considerable

attention in the past decade. In what follows, we first discuss

the inconsistency of the classical PCA in the high-dimensional

setting, and then present recent theoretical developments of

sparse PCA.

A. Inconsistency of PCA under high-dimensions

Statistical analysis of PCA views Σ̂ as the empirical co-

variance matrix and there is the population PCA on the true

covariance matrix Σ. In the conventional setting where the

dimension is fixed and the sample size increases, the principal

eigenvectors of the sample covariance matrix are the consistent

estimates of the principal eigenvectors of the corresponding

population covariance matrix (Anderson 2003).

However, the sample principal eigenvectors are inconsistent

estimates of the corresponding population principal eigenvec-

tors in the high-dimensional setting where the dimension is

no longer fixed and may be much larger than the sample

size. The inconsistency phenomenon was first observed in

the unsupervised learning theory literature in physics (for

example, Biehl & Mietzner (1994) and Watkin & Nadal

(1994)). About a decade ago, a series of papers in the statistics
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literature (for example, Baik & Silverstein (2006), Paul (2007),

Nadler (2008), Johnstone & Lu (2009) and Jung & Marron

(2009)) investigated the inconsistency results of the classical

PCA when estimating the leading principal eigenvectors in

the high-dimensional setting. Baik & Silverstein (2006), Paul

(2007) and Nadler (2008) showed that when limn→∞ p/n =
γ ∈ (0, 1), the largest eigenvalue λ1 is of unit multiplicity

and λ1 ≤ √
γ, the leading sample principal eigenvector v̂1 is

asymptotically orthogonal to the leading population principal

eigenvector v1 almost surely, that is,

P ( lim
n→∞

|vT
1 v̂1| = 0) = 1.

Johnstone & Lu (2009) considered the rank-one case and

gave the sufficient and necessary condition for the consistence

estimation of the leading population principal eigenvector. Let

R(v̂1,v1) = cosα(v̂1,v1) be the cosine of the angle between

v̂1 and v1, and let ω = limn→∞ ‖v1‖2/σ2 be the limiting

signal-to-noise ratio. Johnstone & Lu (2009) proved that

P
(
lim
n→∞

R2(v̂1,v1) = R2
∞(ω, c)

)
= 1

where c = limn→∞ p/n and

R2
∞(ω, c) = (ω2 − c)+/(ω

2 + cω).

Note that R2
∞(ω, c) < 1 if and only if c > 0. Thus, v̂1 is a

consistent estimate of v1 if and only c = 0, which implies the

inconsistency of the classical PCA in the high-dimensional

setting. Jung & Marron (2009) further studied the strong

inconsistency of the leading sample principal eigenvector in

the high dimension and low sample size context where the

sample size is fixed and the dimension increases.

These inconsistency results call for new formulation of

principal components that are consistent estimators of the

population principal components under high-dimensions.

B. Consistency of sparse PCA

In recent years, there is a series of papers to develop

the theoretical properties of the sparse PCA in the statistics

literature. The consistency results are established for various

regularized estimators of the leading eigenvectors. Under the

rank-one scenario with n−1 log(n ∨ p) → 0 as n → ∞,

Johnstone & Lu (2009) established a consistency result for

the classical PCA performed on a selected subset of variables

satisfying σ̂2 ≥ σ2(1+αn), where αn = α(n−1 log(n∨p))1/2.

Specifically, Johnstone & Lu (2009) proved that the estimated

principal eigenvector v̂I
1 obtained via the subset selection rule

is consistent:

P
(
lim
n→∞

α(v̂I
1,v1) = 0

)
= 1

when the magnitudes of ordered coefficients of v1 have rapid

decay, i.e., the r-the largest magnitude of v1 is no greater

than Cr−1/q , r = 1, 2, · · · , for some 0 < q < 2 and 0 < C <
∞. This marginal variance selection method fails when the

variables have equal or almost equal variance. Nevertheless,

Johnstone & Lu (2009) proved the first theoretical justification

for sparse PCA. Shen et al. (2013) established the consistency

of the sparse PCA in the high dimension and low sample

size context. Amini & Wainwright (2009) studied the support

recovery property of the semidefinite programming approach

of d’Aspremont et al. (2007) under the k-sparse assumption

for the leading eigenvector in the rank-1 spiked covariance

model. Ma (2013b) proved the consistency of the iterative

thresholding approach under a spiked covariance model. Lei

& Vu (2015) provided the general sufficient conditions for

sparsistency for the Fantope projection and selection method.

In a very recent paper, Jankova & van de Geer (2018) proposed

a de-biased sparse PCA estimator and studied the asymptotic

inference of the sparse eigenvectors.

C. Minimax rates of convergence

The minimax rate of estimation is another important theo-

retical development for the sparse PCA. The seminal paper by

Birnbaum et al. (2013) studied the minimax rates of conver-

gence and adaptive estimation when the rank is a fixed number

and the ordered coefficients of each principal eigenvector have

rapid decay. Specifically, Birnbaum et al. (2013) established a

lower bound on the minimax risk of estimators under various

models of sparsity for the population eigenvectors. Ma (2013b)

showed that the iterative thresholding estimator attains the

minimax rate of convergence over a certain Gaussian class

of distributions when the rank is treated as a fixed constant.

By allowing the rank increase with the sample size, Cai et al.

(2013) and Vu & Lei (2013) studied the minimax optimality

and adaptive estimation of the principal subspace for the sparse

PCA in the high-dimensional setting. Following Cai et al.

(2013), we assume that the n× p data matrix X is generated

as follows:

X = UDV
T +Z

where U is the n×k random effects matrix with i.i.d. N(0, 1)

entries, D = diag(λ
1/2
1 , · · · , λ1/2

k ) is a diagonal matrix with

ordered eigenvalues λ1 ≥ · · · ≥ λk > 0, V is an orthonormal

matrix, Z is a random matrix with i.i.d. N(0, σ2) entries,

and U and Z are independent. Denote by Σ the covariance

matrix of X . Note that Σ = V ΛV
T + σ2Ip and also that

the estimation of span(V ) is equivalent to the estimation

of V V
T . Now, we consider the optimal estimation of the

principal subspace span(V ) under the commonly used loss

function L(V , V̂ ) = ‖V V
T − V̂ V̂

T ‖2F and the following

parameter space for Σ:

Θ(s, p, k, λ)

= {Σ = V ΛV
T + σ2

Ip : κλ ≥ λ1 ≥ · · · ≥ λk ≥ λ > 0,V T
V = Ik, ‖V

where κ > 1, Λ = diag(λ1, · · · , λk), and ‖V ‖w =
maxj=1,··· ,p j‖V (j)∗‖0 is the weak ℓ0 radius of V . Note that

the union of the column supports of V is of size at most s.

Cai et al. (2013) used the local metric entropy (LeCam 1973,

Yang & Barron 1999) to construct the lower bound, and then

obtain the minimax risk bound in the high-dimensional setting

as follows:

inf
V̂

sup
Σ∈Θ(s,p,k,λ)

E[L(V , V̂ )] ≍
[
λ/σ2 + 1

n(λ/σ2)2

(
k(s− k) + s log

ep

s

)]
∧1.
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Cai et al. (2015) studied the minimax rates under the spectral

norm, which is directly related to estimating the rank of the

factor model.

D. Statistical and Computational Trade-off

It is important to point out that there is a fundamental trade-

off between statistical and computational performance. In

general, there are no known computationally efficient methods

to obtain the minimax rate optimal estimators for the sparse

PCA. Several seminal papers highlight the trade-off between

computational and statistical efficiency for the sparse PCA,

including Amini & Wainwright (2009), Berthet & Rigollet

(2013), Krauthgamer et al. (2015), Wang et al. (2016), Gao

et al. (2017) and others. Amini & Wainwright (2009) proved

that no algorithm can reliably recover the sparse eigenvector

under the single-spike covariance model when k ≥ Cn/log p
for some positive constant C and all sufficiently large n.

Krauthgamer et al. (2015) further proved that the semidefinite

programming approach (d’Aspremont et al. 2007) do not close

the gap between computational and statistical efficiency as

long as k ≥ C
√
n for some positive constant C and all

the sufficiently large n. Berthet & Rigollet (2013) considered

the optimal detection of sparse principal components in high

dimension:

H0 : x ∼ N(0, Ip) versus H1 : x ∼ N(0, Ip + θv1v
′
1)

where v1 has a fixed number of nonzero components. To this

end, Berthet & Rigollet (2013) studied a minimax optimal

test based on the k-sparse largest eigenvalue of the empirical

covariance matrix. The computation of this sparse eigenvalue

statistic depends on a well-known decision problem associated

to finding whether a graph contains a clique of size k,

whose computational complexity is proved to be NP-complete

in general (Karp 1972). In the follow-up paper, under the

hardness assumption of the planted clique problem (Feldman

et al. 2017), Wang et al. (2016) showed that there is an

effective sample size regime in which no randomized poly-

nomial time algorithm can achieve the minimax optimal rate

for new and larger classes satisfying a restricted covariance

concentration condition. Recently, Gao et al. (2017) obtained

the first computational lower bounds for sparse PCA under the

Gaussian single spiked covariance model and closed the gap

in sparse PCA computational lower bounds left by Berthet &

Rigollet (2013) and Wang et al. (2016).

IV. APPLICATIONS

Sparse PCA can be used in applications where PCA is

normally used. For example, the use of sparse PCA in clus-

tering can lead to sparse clustering algorithms (Chen et al.

2013). PCA is a part of the integrated omic-data analysis,

where sparse PCA can be used to replace the regular PCA

(Ritchie et al. 2015, Zang et al. 2016). We discuss a few

recent applications of SPCA in medical imaging, ecology and

neuroscience respectively.

Shape/image analysis Sjöstrand et al. (2007) applied SPCA

to landmark-based shape analysis of the CC brain structure.

The authors extracted 5, 20, and 50 nonzero principal com-

ponents out of the total 156 components corresponding to

landmarks, and they also applied the standard PCA as a

benchmark. In the subsequent analysis, they used the univari-

ate regression to study the relationship between the resulting

deformations based on extracted variables and four clinical

outcome variables (gender, age, walking speed, and verbal

fluency). Their findings confirmed the male/female mean shape

differences and identified the deformation of the CC corre-

sponding to the measure of walking speed. The results for

verbal fluency were also meaningful anatomically. Sjöstrand

et al. (2007) found that SPCA is useful to derive localized and

interpretable patterns of variability while PCA did not provide

much interpretational value.

Ecological study Motivated by generating meaningful com-

binations of the explanatory variables, Gravuer et al. (2008)

applied SPCA to perform the dimension reduction before

fitting the ABT model. The sparsity helps the interpretability

of their model. Specifically, Gravuer et al. (2008) used SPCA

to study a range of human, biogeographic, and biological

influences on the invasion of Trifolium species into New

Zealand. The sparse principal components were obtained from

29 categorical and continuous variables for three invasion

stages (i.e., introduction, naturalization, and spread), and stud-

ied the relationship of sparse principal components to invasion

success by using aggregated boosted trees. Specifically, the au-

thors identified 8 sparse principal components on 22 variables

for intentional introduction and unintentional introduction–

naturalization stages, 7 sparse principal components on 25

variables for naturalization of intentionally introduced species

and 7 sparse principal components on 28 variables for relative

spread rate. Gravuer et al. (2008) found that SPCA simulta-

neously improve interpretability and maintain high explained

variance.

Neuroscience study SPCA was used in Baden et al. (2016)

to study the light-driven Ca2+ signals of the GCL cells given

a set of standardized visual stimuli in a probabilistic clustering

framework. Baden et al. (2016) first used SPCA to extract fea-

tures that are localized in time and readily interpretable from

the responses to the chirp, color, and moving bar stimulus, and

then used a Gaussian mixture model on the extracted feature

set for clustering. The authors extracted 20 features from the

mean response to the chirp, 6 features from the mean response

to the color stimulus, 8 features from the response time course

and 4 features from its temporal derivative. Many classically

used temporal response features were identified, including ON-

and OFF responses with different kinetics or selectivity to

different temporal frequencies. They also tried the standard

PCA and found the results lead to inferior cluster quality.

SPCA is implemented in the R package elasticnet

available from CRAN:

http://cran.r-project.org/.

The Matlab implementation of SPCA is available in the

toolbox SpaSM from

http://www2.imm.dtu.dk/projects/spasm/
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V. CONCLUDING REMARKS

In our discussion, we have only presented the use of ℓ1
norm for sparsity, but there are other equally suitable penalty

functions to be used in the sparse PCA methods, including

SCAD (Fan & Li 2001, Fan et al. 2014) or ℓ0, among others.

We now have a good understanding of the role of sparsity in

PCA and ways to effectively exploit the sparsity. There are still

remaining issues. A very important question to be investigated

further is Automated sparse PCA? By “automated” we mean

that there is a principled but not overly complicated procedure

to set these sparse parameters in sparse PCA. This question is

particularly challenging when we solve several sparse principal

components jointly. We would also like to have more empirical

results to help us understand the pros and cons of each

proposed sparse PCA technique, which may also inspire new

and better approaches.
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