
Riemannian Stochastic Recursive Gradient Algorithm

Hiroyuki Kasai 1 Hiroyuki Sato 2 Bamdev Mishra 3

Abstract
Stochastic variance reduction algorithms have re-
cently become popular for minimizing the aver-
age of a large, but finite number of loss func-
tions on a Riemannian manifold. The present pa-
per proposes a Riemannian stochastic recursive
gradient algorithm (R-SRG), which does not re-
quire the inverse of retraction between two dis-
tant iterates on the manifold. Convergence anal-
yses of R-SRG are performed on both retraction-
convex and non-convex functions under compu-
tationally efficient retraction and vector transport
operations. The key challenge is analysis of the
influence of vector transport along the retraction
curve. Numerical evaluations reveal that R-SRG
competes well with state-of-the-art Riemannian
batch and stochastic gradient algorithms.

1 Introduction
Let f : M → R be a smooth real-valued function on a
Riemannian manifold M (Absil et al., 2008). The target
problem concerns a given model variable w ∈ M, and is
expressed as

min
w∈M

{
f(w) :=

1

n

n∑
i=1

fi(w)

}
, (1)

where n is the total number of the elements. This prob-
lem has many applications; for example, in principal com-
ponent analysis (PCA) and the subspace tracking problem
(Balzano et al., 2010) on the Grassmann manifold. The
low-rank matrix/tensor completion problem is a promis-
ing application concerning the manifold of fixed-rank ma-
trices/tensors (Mishra & Sepulchre, 2014; Kasai & Mishra,
2016). The linear regression problem is also defined on the
manifold of fixed-rank matrices (Meyer et al., 2011).

A popular choice of algorithms for solving (1) is the Rie-
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mannian gradient descent method, which calculates the
Riemannian full gradient estimation, i.e., gradf(w) =
1
n

∑n
i=1 gradfi(w), for every iteration, where gradfi(w)

is the Riemannian gradient on the Riemannian manifold M
for the i-th sample. However, this estimation is computa-
tionally costly when n is extremely large. A popular alter-
native is the Riemannian stochastic gradient descent algo-
rithm (R-SGD), which extends the stochastic gradient de-
scent algorithm (SGD) in the Euclidean space (Bonnabel,
2013) to the Riemannian manifold. As R-SGD calculates
only gradfi(w) for the i-th sample, the complexity per iter-
ation is independent of the sample size n. Although R-SGD
requires retraction and vector transport operations in every
iteration, those calculation costs can be ignored when they
are lower than those of gradfi(w); this applies to many im-
portant Riemannian optimization problems, including the
low-rank tensor completion problem and the Riemannian
centroid problem as seen in Section 5.

Similar to SGD (Robbins & Monro, 1951), R-SGD is hin-
dered by a slow convergence rate due to a decaying step
size sequence. To accelerate the rate of R-SGD, the Rie-
mannian stochastic variance reduced gradient algorithm
(R-SVRG) (Sato et al., 2017; Zhang et al., 2016) has re-
cently been proposed; this technique reduces the vari-
ance of the stochastic gradient exploiting the finite-sum
form of (1) based on recent progress in variance reduc-
tion methods in the Euclidean space (Johnson & Zhang,
2013; Roux et al., 2012; Shalev-Shwartz & Zhang, 2013;
Defazio et al., 2014; Reddi et al., 2016). One distinguished
feature is reduction of the variance of noisy stochastic
gradients by periodical full gradient estimations, which
yields a linear convergence rate. R-SQN-VR has also re-
cently been proposed, where a stochastic quasi-Newton al-
gorithm and the variance reduced methods are mutually
combined (Kasai et al., 2018). Although it achieves practi-
cal improvements for ill-conditioned problems, its conver-
gence rate is worse than that of R-SVRG. Both R-SVRG
and R-SQN-VR transport vectors between two distant iter-
ates on the manifold M; thus, they must calculate a tangent
vector to connect them at every iteration, and are hindered
by additional larger errors caused by vector transport com-
pared with the parallel translation approach.

Here, we propose a Riemannian stochastic recursive gra-
dient algorithm (R-SRG) that does not rely on two distant
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iterates. This feature of R-SRG is relevant for practical
implementations and is also interesting from a theoretical
analysis perspective. The R-SRG counterpart in the Eu-
clidean space is proposed in (Nguyen et al., 2017a;b). The
advantage of R-SRG over R-SVRG is more notable in the
Riemannian than Euclidean case.

Contributions. Our contributions are summarized below.

• Our convergence analysis of R-SRG deals with
both (strongly) retraction-convex (Definition 3.3 and
Lemma 3.6) and non-convex functions.

• Our analysis considers computationally efficient re-
traction and vector transport instead of the more
restrictive exponential mapping and parallel trans-
lation. This is more challenging than R-SVRG
(Zhang et al., 2016), which involves exponential map-
ping and parallel translation.

• The obtained total complexity is the first result with
respect to retraction and vector transport. Sato et al.
(2017) have analyzed R-SVRG under retraction and
vector transport, but have not provided the total com-
plexity. Zhang et al. (2016) have provided the total
complexity with only exponential mapping and par-
allel translation. Here, we derive a key fact (Lemma
3.8): the constants of L-smooth and Ll-Lipschitz are
not identical with respect to retraction. Addressing
the Ll/L ratio and the deviation parameter θ between
vector transport and parallel translation (Lemma 3.7),
we provide completely new complexities.

• The proposed algorithm has a linear convergence rate
for (strongly) retraction-convex functions; converges
at the sublinear rate in a single outer loop for general
non-convex functions; and provides a linear rate in the
case of gradient-dominated functions (Definition 3.4)
(Polyak, 1963; Reddi et al., 2016; Zhang et al., 2016).

The advantages of R-SRG are summarized below.

• In R-SRG, computationally efficient retraction and
vector transport are employed. Whereas R-SVRG
transports vectors between two distant iterates, R-
SRG transports vectors from the previous iterate.
Thus, calculation of the inverse of retraction is
avoided and R-SRG is computationally more efficient.

• R-SRG alleviates the additional errors caused by vec-
tor transport between two distant points encountered
by R-SVRG.

• A practical variant of R-SRG accelerates the conver-
gence speed, exploiting the linear convergence of the
modified stochastic gradient in the inner loop.

• Use of retraction and vector transport enables appli-
cation of R-SRG to a wider range of manifolds. For

example, unlike our analysis and algorithm, the algo-
rithm proposed by Zhang et al. (2016) cannot be ap-
plied to the Stiefel and fixed-rank manifolds, because
they do not have closed-form expressions for parallel
translation.

This paper is organized as follows. Section 2 presents de-
tails of the proposed R-SRG. Sections 3 and 4 summarize
the preliminaries and present the convergence analysis, re-
spectively. In Section 5, numerical comparisons with R-
SGD and R-SVRG on two manifolds are given. The re-
sults suggest superior performance of R-SRG. The codes
of R-SRG are implemented in the Matlab toolbox Manopt
(Boumal et al., 2014) and are available at https://
github.com/hiroyuki-kasai/RSOpt. Concrete
proofs of theorems and details of additional experiments
are provided as supplementary material.

2 Riemannian stochastic recursive
gradient algorithm (R-SRG)

We assume that the manifold M is endowed with a Rie-
mannian metric structure; i.e., a smooth inner product
⟨·, ·⟩w is associated with tangent space TwM for each
w ∈ M (Absil et al., 2008). The norm ∥ · ∥w of a tan-
gent vector in TwM is that associated with the Riemannian
metric. The metric structure allows a systematic frame-
work for optimization over manifolds. Conceptually, the
constrained optimization problem (1) is translated into an
unconstrained problem over M.

2.1 R-SGD and R-SVRG
R-SGD: Given a starting point w0 ∈ M, R-SGD pro-
duces a sequence {wt} in M that converges to a first-
order critical point of (1). Specifically, it updates w as
wt+1 = Rwt(−αtgradfit(wt)), where αt is the step
size and gradfit(wt) is a Riemannian stochastic gradient
for the it-th sample, which is a tangent vector at wt ∈
M. gradfit(wt) represents an unbiased estimator of the
Riemannian full gradient gradf(wt), and the expectation
of gradfit(wt) is gradf(wt), i.e., E[gradfit(wt)|Ft] =
gradf(wt). E[·|Ft] denotes an expected value taken
with respect to the distribution of the random variable it.
Ft = σ(w0, i1, . . . , it−1) is the σ-algebra that depends on
(w0, i1, . . . , it−1). The update moves from wt in the di-
rection −gradfit(wt) with step size αt, remaining on M.
This mapping, denoted Rw : TwM → M : ζ 7→ Rw(ζ),
is called a retraction at w, and maps tangent space TwM
onto M with a local rigidity condition that preserves the
gradients at w. Exponential mapping Exp is an instance of
retraction. Here, a curve defined by retraction R is called a
retraction curve in this paper, being a geodesic when R is
the exponential mapping.
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R-SVRG: R-SVRG has a double loop structure where the
s-th outer loop, called the epoch, has ms−1 inner iterations.
Retaining a selected w ∈ M at the end of the (s−1)-th
epoch as w̃, R-SVRG computes and stores the full Rieman-
nian gradient gradf(w̃) for this stored w̃. At the t-th inner
iteration of the s-th epoch at wt, picking the it-th sample, it
computes the Riemannian stochastic gradient gradfit(wt)
and gradfit(w̃) for this sample. Then, it calculates a modi-
fied stochastic gradient ξt by modifying gradfit(wt) using
both gradf(w̃) and gradfit(w̃). Because they belong to
different tangent spaces, their simple addition is not well-
defined, as Riemannian manifolds are not vector spaces.
Consequently, after gradfit(w̃) and gradf(w̃) are trans-
ported to Twt

M by T wt

w̃ , the resultant update is performed
as wt+1 = Rwt(−αtξt), where ξt is set as

ξt = gradfit(wt)− T wt

w̃ (gradfit(w̃)− gradf(w̃)).

Here, T z
w or Tη represents vector transport from w to z sat-

isfying Rw(η) = z. Vector transport T : TM ⊕ TM →
TM, (η, ξ) 7→ Tηξ is associated with R, where ξ, ζ ∈
TwM and w ∈ M. It holds that (i) Tηξ ∈ TR(η)M, (ii)
T0ξ = ξ, and (iii) Tη is a linear map. Parallel translation
is a special instance of vector transport, which transports
a vector along a curve γ from w to z. It is represented by
P (γ)zw, or simply P z

w, when γ is clear. Additionally, P (γ)η
or Pη are also used.

2.2 Proposed R-SRG
Similar to R-SVRG, R-SRG has double loops. However,
differently from R-SVRG, the inner loop of R-SRG gen-
erates the modified stochastic gradient vt by adding and
subtracting gradients to and from the previous vt−1. More
specifically, the recursive update of the stochastic gradient
is calculated as v0 = gradf(w0) and, for t ≥ 1, as

vt = gradfit(wt)

−T wt
wt−1

gradfit(wt−1) + T wt
wt−1

vt−1. (2)

Then, the iterate update is calculated as wt+1 =
Rwt

(−αtvt) with step size αt > 0. Note that, while
the (modified) stochastic gradient of both R-SGD and
R-SVRG is an unbiased estimator of the full gradient,
that of R-SRG is not, i.e., E[vt|Ft] = gradf(wt) −
T wt
wt−1

gradf(wt−1) + T wt
wt−1

vt−1 ̸= gradf(wt). However,
the total expectation E[vt] = E[gradf(wt)] holds. The al-
gorithm is summarized in Algorithm 1.

Inspired by (Nguyen et al., 2017a), we propose a practical
variant of R-SRG called R-SRG+. R-SRG has a linearly
convergent vt in retraction-convex functions (Proposition
4.4); thus, we propose an adaptive length for the inner loop
size m. In detail, we stop the inner loop at t = tlast < m
when the norm of vt decreases below the threshold of that
of v0, and proceed to the next outer loop. The threshold
control parameter is denoted ϑ(0 ≤ ϑ ≤ 1); the ϑ = 0

Algorithm 1 R-SRG algorithm
Require: Update frequency m and sequence {αt} with

αt > 0.
1: Initialize w̃0.
2: for s = 1, 2, . . . do
3: Store w0 = w̃s−1.
4: Calculate Riemannian full gradient gradf(w0).
5: Store v0 = gradf(w0).
6: Update w1 = Rw0

(−α0v0).
7: for t = 1, 2, . . . ,m− 1 do
8: Choose it ∈ {1, 2, . . . , n} uniformly at random.
9: Calculate vt by (2):

10: Update wt+1 = Rwt(−αtvt).
11: end for
12: Set w̃s = wt′ for randomly chosen t′ ∈

{0, 1, . . . ,m}.
13: end for

case is identical to R-SRG. We also adopt a practical selec-
tion of w̃s as wtlast+1. The proposed variant eliminates the
need for careful selection of m in R-SRG. Note that this ap-
proach is inapplicable to R-SVRG because such a linearly
convergent decrease of the modified stochastic gradient ξt
is absent.

3 Preliminaries
For the convergence analysis, we derive the retraction Ll-
Lipschitz lemma (Lemma 3.8) assuming the bound of the
Hessian of f along a retraction curve, and exploiting the
retraction L-smooth lemma (Lemma 3.5). First, we briefly
present definitions and assumptions, followed by the essen-
tial lemmas.

3.1 Definitions and assumptions
We first summarize some definitions. Let R be a retrac-
tion. For linear transformations in tangent spaces, we use
the operator norm with respect to the inner product from
the Riemannian metric.

Definition 3.1 (Upper-Hessian bounded). f is said to be
upper-Hessian bounded in U ⊂ M with respect to R if
there exists a constant L > 0 such that d2f(Rw(tη))

dt2 ≤ L,
for all w ∈ U and η ∈ TwM with ∥η∥w = 1, and all t such
that Rw(τη) ∈ U for all τ ∈ [0, t].

Definition 3.2 (Lower-Hessian bounded). f is said to be
lower-Hessian bounded in U ⊂ M with respect to R if
there exists a constant µ > 0 such that µ ≤ d2f(Rw(tη))

dt2 ,
for all w ∈ U and η ∈ TwM with ∥η∥w = 1, and all t such
that Rw(τη) ∈ U for all τ ∈ [0, t].

Definition 3.3 (Retraction convex (Huang et al., 2015b)).
f is retraction convex in S ⊂ M with respect to R if, for
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all w ∈ S and η ∈ TwM with ∥η∥w = 1, f(Rw(τη))
is convex for all t which satisfies f(Rw(τη)) ∈ S for all
τ ∈ [0, t].

Definition 3.4 (τ -gradient dominated (Polyak, 1963)). f
is τ -gradient dominated in U ⊂ M if there exists a con-
stant τ > 0 such that for w ∈ U , f(w) − f(w∗) ≤
τ∥gradf(w)∥2w, where w∗ is a global minimizer of f .

We make the following assumptions about (1).

Assumption 1. For problem (1), we assume the following:

(1.1) f and its components f1, f2, . . . , fn are twice contin-
uously differentiable.

(1.2) T is isometric on M, i.e., ⟨Tξη, Tξζ⟩Rw(ξ) = ⟨η, ζ⟩w
holds for any w ∈ M and ξ, η, ζ ∈ TwM.

(1.3) The sequence generated by Algorithm 1 is continu-
ously contained in a sufficiently small neighborhood U ⊂
M of an optimal solution w∗. There exists a constant
c0 > 0 such that T satisfies ∥Tη−TRη∥ ≤ c0∥η∥w, ∥T −1

η −
T −1
Rη

∥ ≤ c0∥η∥w for all w, z ∈ U with Rw(η) = z,
where TR denotes the differentiated retraction, i.e., TRζ

ξ =
DRw(ζ)[ξ] with ξ ∈ TwM.

(1.4) The norms of the Riemannian gradient and Hessian
are bounded, i.e., there exist constants Cg > 0 and Ch > 0
such that ∥gradfi(wt)∥w ≤ Cg and ∥Hessfi(w)∥ ≤ Ch

for w ∈ U .

(1.5) The neighborhood U is a totally retractive neigh-
borhood and totally normal neighborhood of w∗ (see
(Huang et al., 2015b)).

(1.6) There exists a constant cR > 0 such that
∥Exp−1

w (z)−R−1
w (z)∥w ≤ cR∥R−1

w (z)∥2 for all w, z ∈ U .

Note that Assumption (1.1) is standard and (1.2) is guar-
anteed by the specific vector transport in (Huang et al.,
2015b). Further, (1.3) is guaranteed when the vector
transport is C0, as derived from the Taylor expansion.
Also, (1.4) holds when the manifold is compact like the
Grassmann manifold, or through slight modification of
the objective function and the algorithm. For (1.5), see
(Huang et al., 2015b) for detail. Since R is a first-order
approximation of Exp, (1.6) can be also considered natu-
ral.

3.2 Essential lemmas
Here, we present the lemmas essential for the convergence
analysis under Assumption 1. The complete proofs are in
the supplementary material.

Lemma 3.5 (Retraction L-smooth). Suppose that Assump-
tions (1.1) and (1.5) hold and that f is upper-Hessian
bounded in U . Then, for all w, z ∈ U and the constant

L > 0 in Definition 3.1, we have

f(z) ≤ f(w) + ⟨gradf(w), ξ⟩w +
1

2
L∥ξ∥2w,

where ξ ∈ TwM and Rw(ξ) = z. Here, such an f is called
retraction L-smooth with respect to R.
Lemma 3.6 (Retraction µ-strongly convex (Huang et al.,
2015b)). Suppose that Assumptions (1.1) and (1.5) hold
and that f is lower-Hessian bounded in U . Then, for µ > 0
from Definition 3.2 and for all w, z ∈ U ,

f(z) ≥ f(w) + ⟨gradf(w), ξ⟩w +
1

2
µ∥ξ∥2w,

where ξ ∈ TwM and Rw(ξ) = z. Here, such an f is called
retraction µ-strongly convex with respect to R.

We also introduce the following lemma to quantify the dif-
ference between parallel translation and vector transport.
Lemma 3.7 (Difference between parallel translation
and vector transport (Huang et al., 2015b, Lemma 3.5),
(Huang et al., 2015a, Lemma 6)). Let T ∈ C0 be a vector
transport associated with the same retraction R as that of
the parallel translation P ∈ C∞. Under Assumption (1.3),
there exists a constant θ > 0 such that for all w, z ∈ U ,

∥Tηξ − Pηξ∥z ≤ θ∥ξ∥w∥η∥w,
∥T −1

η χ− P−1
η χ∥w ≤ θ∥χ∥z∥η∥w,

where ξ, η ∈ TwM, χ ∈ TzM, and Rw(η) = z.

Finally, we derive the following key lemma:
Lemma 3.8 (Retraction Ll-Lipschitz). Let R be a retrac-
tion on M. Suppose that Assumptions (1.1) and (1.3)–(1.5)
hold. Then, there exists a constant Ll > 0 such that

∥P (γ)wz gradf(z)− gradf(w)∥w ≤ Ll∥η∥w,
for all w, z ∈ U , where Ll = Ch(1 + Cηθ), with Cη being
the upper bound of the norm of η for η ∈ TwM. Note that
θ is in Lemma 3.7; γ is a curve γ(t) := Rw(tη) defined by
R on M with γ(0) = w and γ(1) = z; and P (γ)wz (·) is a
parallel translation operator along γ from z to w.

L and Ll are counterparts to those of L-smooth and L-
Lipschitz for the geodesically L-smooth case and the L-
smooth Euclidean case. However, it should be specifically
emphasized that L and Ll are not identical in the retraction
curve case.
Lemma 3.9. Suppose that Assumptions (1.3) and (1.6)
hold. Then, there exists a constant ν > 0 such that
⟨ξ,Exp−1

w (z)⟩w ≤ ⟨ξ,R−1
w (z)⟩w + ν∥R−1

w (z)∥2w, for all
w, z ∈ U , where ξ ∈ TwM and ∥ξ∥w ≤ 2Cg , where Cg is
a constant in Assumption (1.4).

4 Convergence analysis
This section presents convergence analyses on both
retraction-convex and non-convex functions under retrac-
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tion and vector transport operations. To this end, we derive
the bound on the number of iterations T to achieve an ϵ-
accurate solution in terms of calls to the incremental first-
order oracle (Agarwal & Bottou, 2015). In this particular
case, we use the bound to guarantee the expected squared
norm of a stochastic gradient E[∥gradf(wT )∥2] ≤ ϵ. Note
that we derive the total complexity with regard to standard
parameters such as n, ϵ, and L, and also ρl = Ll/L in
Lemma 3.8 and θ in Lemma 3.7 for this particular purpose.

4.1 Retraction-convex functions
We further suppose Assumption B.3 holds, which is equiv-
alent to that f is L-smooth and convex in the Euclidean
case (see the supplementary material).

Theorem 4.1 (Convergence analysis within a single outer
loop on retraction convex functions). Let M be a Rieman-
nian manifold and w∗ ∈ M be a minimum of f . Sup-
pose that Assumptions 1 and B.3 hold and f is upper-
Hessian bounded. Consider Algorithm 1 with α that sat-
isfies α < 2/L and (2((2Ll + 2θCg + L)θCg + νL)m −
L2)α2 + 3Lα− 2 ≤ 0. Then, for any s ≥ 1,

E[∥gradf(w̃s)∥2w̃s ] ≤ 2
α(m+1)E[f(w̃

s−1)− f(w∗)]

+ αL
2−αLE[∥gradf(w̃

s−1)∥2w̃s−1 ].

Proof. The complete proof is in the supplementary ma-
terial. The proof proceeds as follows: Using Lemmas
3.5 and 3.8, and exploiting Lemma 3.7, the bound of∑m

t=0 E[∥gradf(wt)− vt∥2wt
] is derived. Then, condition-

ing α to eliminate additional terms caused by vector trans-
port, E[∥gradf(w̃s)∥2w̃s ] is derived from Lemma 3.5.

Suppose the θ in Lemma 3.7 and ν in Lemma 3.9 are
sufficiently close to zero, i.e., T and R are close to P
and Exp, respectively. This reasonable assumption yields
β < L2; thus, (L2 − β)α2 − 3Lα + 2 ≥ 0, where
β = 2((2Ll+2θCg +L)θCg +νL)m. The smaller root of

(L2 − β)α2 − 3Lα+ 2 = 0, which is 3L−
√

L2+8β

2(L2−β) (= αl),
is smaller than 1/L, and the larger root exceeds 2/L. The-
orem 4.1 with α ≤ 1/L implies E[∥gradf(w̃s)∥2w̃s ] ≤

2
α(m+1)E[f(w̃

s−1) − f(w∗)] + E[∥gradf(w̃s−1)∥2w̃s−1 ].

Consequently, selecting α = α∗ :=
√
2αl/(m+ 1) such

that m satisfies α∗ ≤ 1/L, we have

E[∥gradf(w̃s)∥2w̃s ]

≤ 2

√
L2−β

(3L−
√

L2+8β)(m+1)
E[f(w̃s−1)− f(w∗)]

+ E[∥gradf(w̃s−1)∥2w̃s−1 ].

This result means that the convergence rate within a sin-
gle outer loop for retraction-convex functions is sublinear.
Next, the convergence rates with multiple outer steps are
derived based on this bound in Theorem 4.1.

Theorem 4.2 (Convergence analysis on retraction-convex
functions). Suppose that all the conditions in Theorem 4.1
hold and define δk = 2

α(m+1)E[f(w̃
k)−f(w∗)] for k =

0, 1, . . . , s − 1, and δ = max0≤k≤s−1 δk. We also define
∆ = δ(1 + αL

2(1−αL) ), and φ = αL
2−αL . Then, we have

E[∥gradf(w̃s)∥2w̃s ]−∆ ≤ φs(∥gradf(w̃0)∥2w̃0 −∆).

The proof of Theorem 4.2 follows a similar approach to
that given by (Nguyen et al., 2017a).

Suppose β ≤ L2/3 and that we select ∆ = ϵ/4, φ ≤
2L2

3(L2−β) (with α = α∗ := 2αl/3 =
3L−

√
L2+8β

3(L2−β) ) and
m = O(1/ϵ) in Theorem 4.2. As each inner loop evalu-
ates n+ 2m gradients, the total complexity with respect to
ϵ-accuracy is O((n + (1/ϵ)) log(1/ϵ)/ log(c(1 − β/L2)))
where c > 1 is a constant and O(β/L2) = O(ρlθ/L).

Theorem 4.3 (Convergence analysis on retraction
µ-strongly convex functions). Suppose that all the con-
ditions in Theorem 4.1 hold and further assume that f
is lower-Hessian bounded, where µ > 0 satisfies the
conditions in Definition 3.2 for both retraction R and ex-
ponential mapping Exp. Define σm := 1

µα(m+1) +
αL

2−αL .
Then, choosing α and m to satisfy σm < 1, we have

E[∥gradf(w̃s)∥2w̃s ] ≤ (σm)s∥gradf(w̃0)∥2w̃0 .

Let κ := L/µ be the condition number of f . Suppose
β ≤ L2/5 and choose α = α∗ := αl/2 and m = 6.5κ for
T := ⌈log(∥gradf(w̃0)∥2w̃0/ϵ)/ log(

5(L2−β)
4L2 )⌉ outer iter-

ations in Theorem 4.3. Then, the total complexity with
respect to ϵ-accuracy is O((n + κ) log(1/ϵ)/ log(c(1 −
β/L2))), where c > 1 and O(β/L2) = O(ρlθ/L).

The proof of Theorem 4.3 is also similar to that given by
(Nguyen et al., 2017a).

Finally, we show the linear convergence of vt in Algorithm
1 when f is retraction µ-strongly convex.

Proposition 4.4 (Linear convergence of vt in inner loop).
Suppose that Assumption B.4 and all the conditions in The-
orem 4.3 except for α hold. Consider vt in Algorithm 1 with
a constant step size α < 2/L. Then, there exist a function
ϕ(α) and constant a0 > 0 such that, for t ≥ 1, we have

E[∥vt∥2wt
] ≤

[
1−

(
2
αL − 1

)
(a0µ− a1Cg)

2α2 + ϕ(α)
]t

×E[∥gradf(w0)∥2w0
].

When θ and ν are sufficiently close to zero, ϕ(α) is close
to zero regardless of α. Then, this result indicates that we
obtain the linear convergence rate of ∥vt∥2wt

for expectation
rate (1− 1/κ2) selecting α = O(1/L).
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4.2 Non-convex functions
We next find the convergence rate for non-convex func-
tions.

Theorem 4.5 (Convergence analysis within a single outer
loop on non-convex functions). Let w∗ ∈ M be a mini-
mizer of f and suppose Assumption 1 and that f is upper-
Hessian bounded. Consider Algorithm 1 with a constant
step size α ≤ 2

L+
√

L2+8m(L2
l +C2

gθ
2)

. Then, for w̃ = wt′ ,

we have

E[∥gradf(w̃)∥2w̃] ≤ 2
α(m+1) [f(w0)− f(w∗)],

where t′ is randomly chosen from {0, 1, . . . ,m}.

Proof. The complete proof is in the supplementary file,
whose strategy is similar to those of Theorem 4.1 and
(Nguyen et al., 2017b). Conditioning α to eliminate ad-
ditional terms caused by retraction and vector transport,
E[∥gradf(w̃)∥2w̃] is upper bounded by Lemma 3.5.

We suppose that θ is sufficiently close to zero. Then, se-
lecting the upper bound of α in Theorem 4.5 as α∗ yields

E[∥gradf(w̃)∥2w̃]

≤L+
√

L2+8m(L2
l +C2

gθ
2)

m+1 E[f(w0)−f(w∗)].

Hence, when selecting m = O((L2ρ2l + θ2)/ϵ2) and α∗ =

O(1/
√
m(L2ρ2l + θ2)), we have E[∥gradf(wt)∥2wt

] ≤ ϵ
to achieve a sublinear convergence rate with m for expec-
tation rate O(

√
(L2ρ2l + θ2)/m). Hence, the total com-

plexity for ϵ-accuracy is O(n + (L2ρ2l + θ2)/ϵ2). Finally,
the convergence rate with multiple outer steps is derived.

Theorem 4.6 (Convergence analysis on non-convex func-
tions). Assume that all the conditions in Theorem 4.5 hold
and that f is τ -gradient dominated. Consider Algorithm 1
with α as in Theorem 4.5 and assume σ̄m := 2τ

α(m+1) < 1,
i.e., α(m+ 1)/2 > τ . Then, we have

E[∥gradf(w̃s)∥2w̃s ] ≤ (σ̄m)s∥gradf(w̃0)∥2w̃0 .

Here, we choose α as the upper bound in Theorem 4.5.
We need m=O(τ2(L2ρ2l + θ2)) to achieve α(m+1)

2 > τ ,
and s = O(log(1/ϵ)) to achieve ϵ-accuracy in the outer
loop. Consequently, the total complexity with respect to
ϵ-accuracy is O((n+ τ2(L2ρ2l + θ2)) log(1/ϵ)).

4.3 Discussions
We here discuss the total complexity of R-SRG as summa-
rized in Table 1, addressing the special terms strongly re-
lated to retraction and vector transport, i.e., ρl (= Ll/L), θ
and β/L2. It should be noted that, as previously, we restrict
the discussion to the case where Ll and θ are sufficiently
close to L and zero, respectively. Note that c in Table 1 is
a constant satisfying β ≤ (1− 1

c )L
2.

Table 1. Comparison of total complexity.
Function type R-SRG (Proposed)
Retraction convex
(vector transport) O((n + 1

ϵ ) log(
1
ϵ )/ log(c(1 − β/L2)))

Retraction
µ-strongly convex
(vector transport)

O((n + κ) log( 1
ϵ )/ log(c(1 − β/L2)))

Non-convex
(vector transport) O(n +

L2ρ2l +θ2

ϵ2
)

τ -gradient dominated
(vector transport) O((n + τ2(L2ρ2

l + θ2)) log( 1
ϵ ))

Function type R-SRG (Proposed) R-SVRG (Zhang et al., 2016)
Geodesically convex
(parallel translation) O((n + 1

ϵ ) log(
1
ϵ )) –

Geodesically
µ-strongly convex
(parallel translation)

O((n + κ) log( 1
ϵ )) O((n + ζκ2) log( 1

ϵ ))

Non-convex
(parallel translation) O(n + L2

ϵ2
) O(n + ζ

1
2 n

2
3 /ϵ)

τ -gradient dominated
(parallel translation) O((n+τ2L2)log(1ϵ)) O((n+Lτζ

1
2n

2
3)log(1ϵ))

Impact on complexity due to retraction and vector
transport: Clearly, when a retraction curve deviates from
the geodesic, the value of ρl increases, deviating from 1.
Furthermore, θ deviates from 0 when the vectors from
vector transport deviate from those of parallel translation.
In those cases, the total complexity increases drastically.
Those deviations more strongly influence the non-convex
cases than the convex case. However, in the opposite case,
the complexities retain values similar to the case of expo-
nential mapping and parallel translation. Finally, the de-
rived complexity is the worst case estimate for use of re-
traction and vector transport compared with the case of ex-
ponential mapping and parallel translation. Therefore, we
leave investigation of more efficient retractions and vector
transports than exponential mapping and parallel transla-
tion for future research.

Comparison with R-SVRG (Zhang et al., 2016): Addi-
tionally, we compare R-SRG with R-SVRG when expo-
nential mapping and vector transport are used. In this case,
we have ρl = 1, θ = 0 and β/L2 = 0; the results are
also summarized as special cases in Table 1. Although R-
SVRG has a curvature parameter ζ(≥ 1), R-SRG is supe-
rior to R-SVRG in the geodesically µ-strongly convex case.
The convergence of R-SRG in a single outer loop for non-
convex functions is inferior to that of R-SVRG in terms of
ϵ, but superior with regard to n. R-SRG is superior to R-
SVRG for τ -gradient dominated functions.

5 Numerical comparisons
In this section, we compare R-SRG(+) with R-SGD with
a decaying step size sequence and R-SVRG with a fixed
step size. The decaying step size sequence is αk = α(1 +
αλα⌊k/m⌋)−1, where k is the number of inner iterations,
and where ⌊·⌋ denotes the floor function. As references,
we also perform comparisons with two Riemannian batch
methods with backtracking line search, R-SD and R-CG,
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(a) Optimality gap vs. # of gradient evaluations.
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(b) Optimality gap vs. processing time.
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(c) Norm of gradient vs. # of gradient evaluations.
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(d) Influence of ϑ on R-SRG+.
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(e) Influence of ϑ on R-SRG+.
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(f) Norm of modified stochastic gradient.

Figure 1. Riemannian centroid problem on SPD manifold.

which are the steepest descent and conjugate gradient algo-
rithms on Riemannian manifolds, respectively (Absil et al.,
2008). All experiments are executed in Matlab on a 4.0
GHz Intel Core i7 PC with 32 GB RAM, and are stopped
when the gradient norm passes below 10−8 or a predefined
maximum iteration is reached. All hyper parameters are
selected by cross-validation. The supplementary material
presents additional results.

5.1 Riemannian centroid computation on
symmetric positive-definite (SPD)
manifold

We consider the problem of computing the Riemannian
centroid on the d × d symmetric positive-definite (SPD)
manifold Sd

++, which frequently appears in computer vi-
sion problems such as visual object categorization and pose
categorization (Jayasumana et al., 2015). Details of the
SPD manifold are in the supplementary material.

Given n points {X1, . . . ,Xn} ∈ Sd
++, the Rieman-

nian centroid is derived from the solution to the problem
minC∈Sd

++

1
2n

∑n
i=1(dist(C,Xi))

2, where dist(a, b) =

∥ log(a−1/2ba−1/2)∥F represents the distance along the
corresponding geodesic between the two points a, b ∈
Sd
++ with respect to the affine-invariant Riemannian metric

(AIRM). The gradient of the loss function is computed as
1
n

∑n
i=1 −log(XiC−1)C.

We generate synthetic datasets and randomly initialize af-
ter setting the maximum iteration number as 20 for R-
SVRG and R-SRG(+), and 60 for all others. α is tuned
from {10−5, . . . , 10−1}. m and the batch size are n and
10, respectively. ϑ = 0.05 is selected for R-SRG+. Our
algorithm implementation for this particular problem uses
the retraction and vector transport of (Huang et al., 2015b),
which satisfy the requirements detailed in Section 4.

Figures 1(a)–(c), respectively, show two optimality gap re-
sults in terms of the number of gradient evaluations and
processing time, and the norm of the gradient when n =
10000 with d = 30. The optimality gap indicates the
performance against the minimum loss, which is calcu-
lated by R-CG with higher precision in advance. Hence,
R-SRG and R-SVRG outperform the batch methods, R-
SD and R-CG, even in terms of processing time. Fur-
ther, R-SRG is competitive with R-SVRG, and R-SRG+
outperforms the others, especially in terms of process-
ing time. Next, to investigate the influence of ϑ on R-
SRG+, we consider the optimality gap when ϑ is changed
to {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001} (Figures
1 (d), (e)). Clearly, all results in this ϑ range indicate su-
perior performance over the original R-SRG and R-SVRG.
More importantly, R-SRG+ is insensitive to ϑ. Finally, the
norms of the modified stochastic gradients ξt of R-SVRG
and vt of R-SRG are compared in Figure 1(f); the results
for the first three outer loops are shown. While ξt of R-
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(a) Optimality gap for PCA problem.
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(b) Test MSE for MC problem (Jester).
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(c) Test MSE for MC problem (MovieLens).

Figure 2. PCA problem and MC problem on Grassmann manifold.

SVRG fluctuates through each outer loop, vt of R-SRG de-
creases monotonically, supporting Proposition 4.4.

5.2 PCA and matrix completion problems
on Grassmann manifold

We also consider the PCA and matrix completion (MC)
problems on the Grassmann manifold Gr(r, d), where a
point is an equivalence class represented by a d × r or-
thogonal matrix U with orthonormal columns: UT U =
I. Note that projection-based vector transport and QR-
decomposition-based retraction, which do not satisfy As-
sumption 1, are used in the following experiments for com-
putational efficiency. The motivation is to show that our al-
gorithm also empirically performs well without use of the
specific vector transport. Details are given in the supple-
mentary material.

PCA problem. Given an orthonormal matrix projector
U ∈ St(r, d), the PCA problem involves minimization
of the sum of squared residual errors between projected
data points and the original data, which is expressed as
minU∈St(r,d)

1
n

∑n
i=1 ∥xi − UUTxi∥22, where xi is a data

vector of size d × 1. This problem is equivalent to max-
imizing 1

n

∑n
i=1 x

T
i UUTxi. Here, the critical points in

the space St(r, d) are not isolated, because the cost func-
tion remains unchanged under the group action U 7→ UO
for all orthogonal matrices O of size r × r. Subsequently,
this is an optimization problem on the Grassmann mani-
fold Gr(r, d). Figure 2(a) shows the results of the opti-
mality gap when n = 50000, d = 200, and r = 10. α
is from {10−3, 2 × 10−3, . . . , 10−2}. The minimum loss
for the optimality gap is obtained via the Matlab function
pca. Figure 2(a) reveals that R-SRG(+) exhibits superior
convergence performance to the alternatives.

MC problem. The MC problem involves completion of
an incomplete matrix X, say, of size d × n, from a small
number of entries by assuming that the latent structure
of the matrix is low-rank. If Ω is the set of known in-

dices in X, the rank-r MC problem amounts to solving
minU,A ∥PΩ(UA) − PΩ(X)∥2F , where U ∈ Rd×r,A ∈
Rr×n. The operator PΩ acts as PΩ(Xpq) = Xpq if
(p, q) ∈ Ω and PΩ(Xpq) = 0 otherwise. Partitioning
X = [x1, . . . ,xn], the previous problem is equivalent
to minU∈Rd×r, ai∈Rr

1
n

∑n
i=1 ∥PΩi

(Uai) − PΩi
(xi)∥22,

where xi ∈ Rd and PΩi
is the sampling operator for the

i-th column. Given U, ai admits a closed-form solution.
Consequently, the problem depends on the column space of
U only and is on Gr(r, d) (Boumal & Absil, 2015). Here,
we use the Jester dataset (Goldberg et al., 2001) consist-
ing of 24983 user ratings of 100 jokes. Each rating is
a real number between −10 and 10. We randomly ex-
tract two ratings per user as the training set Ω and test
set Φ. α is chosen from {10−7, . . . , 10−2} for R-SGD,
R-SVRG, and R-SRG(+), and the batch size is 1, r = 5,
and ϑ = 0.1. The maximum number of outer iterations
is 30 for R-SVRG and R-SRG(+), and 60 for the others.
The algorithms are initialized randomly. We also use the
MovieLens-1M dataset (Mov) containing one million rat-
ings for 3952 movies (N ) from 6040 users (d). We further
randomly split this set into 80/10/10 percent datasets of the
entire dataset as train/validation/test partitions. α is chosen
from {10−5, 5×10−5, . . . , 10−2, 5×10−2}, the batch size
is 50, r = 5, and ϑ = 0.5. The maximum number of outer
iterations to stop is 20 for R-SVRG and R-SRG(+), and 60
for the others. Figures 2(b) and (c) show the superior per-
formance of SRG(+) in both datasets.

6 Conclusions
We have proposed a Riemannian stochastic recursive gra-
dient algorithm (R-SRG) on manifolds that is well suited
for finite-sum minimization problems, and presented con-
vergence analyses. R-SRG makes explicit use of retraction
and vector transport, making it appealing for a wide variety
of manifolds. Numerical comparisons have shown the ben-
efits of R-SRG for a number of applications, with notable
advantages over R-SVRG in both theory and practice.
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