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Abstract

LDA/QR, a linear discriminant analysis (LDA) based dimension reduction algorithm is presented. It achieves the e)ciency
by introducing a QR decomposition on a small-size matrix, while keeping competitive classi7cation accuracy. Its theoretical
foundation is also presented.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

With the e*orts of addressing the singularity problem
(of scatter matrix) in the classical linear discriminant anal-
ysis (LDA), LDA is receiving more and more attentions.
PCA+LDA [1] is a popular way to deal with the singularity
problem. Recently, LDA/GSVD was developed in Ref. [2]
along this direction. Pseudo-inverse [3] is a common way
to deal with the singularity problem on matrix. Generalized
LDA based on pseudo-inverse was presented in Ref. [4] to
overcome the singularity problem in classical LDA.
In this paper, we will present a novel member of LDA

family, namely LDA/QR, as an e)cient and e*ective dimen-
sion reduction algorithm (by e*ective wemean the high clas-
si7cation accuracy). The utilization of QR-decomposition
on the small-size matrix is the soul of LDA/QR algorithm.
It can be shown that its time complexity is linear on the size
of the data and also linear on the number of dimensions. It is
also numerically stable since all of the decompositions and
the inversions are applied to small dimension matrices.
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We will also give the theoretical foundation of LDA/QR
by showing the equivalence between LDA/QR and the gen-
eralized LDA. The experiments in the 7nal part of this pa-
per will show the e*ectiveness of the LDA/QR dimension
reduction algorithm.

2. Classical LDA and generalized LDA

Throughout the paper, N denotes the number of points,
n is the dimension, and k is the number of classes. Matrix
A∈Rn×N is the data matrix, where each column of A denotes
a training data point in the n-dimensional space. Ai ∈Rn×Ni
is the data matrix containing the data points from the ith
class, where Ni is the size of the ith class.
Classical LDA is found by solving one of the trace opti-

mizations in Eq. (1),

G = argmax
G
trace((GTSwG)

−1(GTSbG))

if Sw is nonsingular

or

G = argmin
G
trace((GTSbG)

−1(GTSwG))

if Sb is nonsingular: (1)
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The between- and within-class matrices Sb and Sw in Eq. (1)
are de7ned as [4]

Sb =
1
N

k∑
i=1

Ni(mi − m)(mi − m)T = 1
N
HbH

T
b ;

Sw =
1
N

k∑
i=1

∑
x∈Ci

(x − mi)(x − mi)T = 1
N
HwH

T
w ; (2)

where

Hb =
[√
N1(m1 − m); : : : ;

√
Nk(mk − m)

]∈Rn×k ;
Hw = [A1 − m1 · e1; : : : ; Ak − mk · ek ]∈Rn×N ;

(3)

ei=(1; : : : ; 1)∈R1×Ni , Ai is the data matrix containing only
the points from the ith class, mi is the centroid of class Ci,
and m is the global centroid of the whole data set. Note the
matrix Hb is much smaller than Hw.
The optimization problem in Eq. (1) is equivalent to the

following generalized eigenvalue problem, Sbx = �Swx, for
� �= 0. The solution can be obtained by solving an eigen-
problem on matrix S−1

w Sb, if Sw is nonsingular, or on S−1
b Sw,

if Sb is nonsingular. There are atmost k − 1 eigenvectors
corresponding to nonzero eigenvalues, since the rank of the
matrix Sb is bounded above by k−1. Therefore, the reduced
dimension by classical LDA is atmost k − 1.
Generalized LDA uses pseudo-inverse to deal with singu-

larity problem. A natural extension of classical LDA, using
the pseudo-inverse, is to solve the eigenproblem on S+b Sw or
S+w Sb. The pseudo-inverse of a matrix can be computed by
SVD [3]. More speci7cally, if A=U�V T is the singular value
decomposition of the matrix A∈Rm×n, where U ∈Rm×t and
V ∈Rn×t have orthonormal columns, �∈Rt×t is diagonal
with positive diagonal entries, and t = rank(A), then the
pseudo-inverse of A is de7ned as A+ = V�−1U T.

3. LDA/QR algorithm for dimension reduction

In this section, we present the LDA/QR algorithm. It
has two stages. The essence of the 7rst stage is the max-
imum separability among di*erent classes obtained by
QR-decomposition [3] (note that QR is more e)cient than
SVD numerically). The second stage contains four steps
that involve the concern of within-class distance.
The 7rst stage aims to solve the following optimization

problem:

G = arg max
GTG=I

trace(GTSbG): (4)

Note that this optimization problem only gives the con-
cern on maximizing between-class distance. The solution
can be obtained by solving the eigenproblem on Sb. How-
ever, the solution to Eq. (4) can also be obtained through
QR-decomposition on the matrixHb as follows. LetHb=QR
be the QR-decomposition on Hb, where Q∈RN×t has or-
thonormal columns, R∈Rt×k is an upper triangular matrix,

and t = rank(Hb), then G = QW , for any orthogonal ma-
trix W ∈Rt×t solves the optimization problem in Eq. (4).
Detailed proof is omitted because of space limit.
Note the rank t of the matrix Hb, is bounded above by

k − 1. In practice, the k centroids in the data set are usually
linearly independent. In this case, the reduced dimension t
equals to k − 1.
The LDA/QR algorithm concerns the within-class dis-

tance at the second stage. Its second stage in-cooperates
the within-class scatter information by applying a relaxation
scheme on W (relaxing W from an orthogonal matrix to be
an arbitrary matrix, details following in the next paragraph).
The 7nal optimization problem is exactly the same one as
in classical LDA, but with matrices of much smaller size,
hence can be solved e)ciently and stably.
Speci7cally, we make a relaxation on the solution to the

optimization problem (4). That is, we look for a transforma-
tion matrix G such that G=QW , for any matrix W ∈Rt×t ,
henceW is not required to be orthogonal. The original prob-
lem of 7nding G is now equivalent to computing W . The
7rst stage of the LDA/QR algorithm choose W to be any
orthogonal matrix, by omitting the within-class scatter. The
second stage of LDA/QR algorithm solves this limitation by
considering both the between-class and within-class scatters
as follows. Since

GTSbG =W
T(QTSbQ)W; GTSwG =W

T(QTSwQ)W; (5)

the original optimization on 7nding optimal G is equivalent
to 7nding W , such that

W = argmin
W
trace((W TS̃bW )

−1(W TS̃wW )); (6)

where S̃b = QTSbQ and S̃w = QTSwQ. Note that S̃b is non-
singular, hence the optimization problem in Eq. (6) is well
de7ned and can be solved using similar method for the op-
timization problem in Eq. (1) of classical LDA. That is,
we compute optimal W , by solving a small eigenproblem
on S̃−1

b S̃w. The main steps of LDA/QR include: (1) con-
struct the matrix Hb and Hw as in Eq. (3); (2) compute
QR-decomposition of Hb by Hb = QR; (3) compute the
t eigenvectors wi of S̃−1

b S̃w, with increasing eigenvalues,
where S̃b and S̃w are de7ned above; and (4) G ← QW ,
where W = [w1; : : : ; wt]. It is easy to check that the time
complexity of LDA/QR is O(Nnk).

4. Equivalence between LDA/QR and generalized LDA

As discussed in Section 2, classical LDA computes the
optimal transformation matrix by solving the eigenproblem
on S−1

w Sb, if Sw is nonsingular, or S−1
b Sw, if Sb is nonsin-

gular. A natural extension of the classical LDA, using the
pseudo-inverse, is to solve the eigenproblem on S+b Sw or
S+w Sb, as discussed in Section 2 on generalized LDA.
Interestingly, the solution to the eigenproblem on S+b Sw

is equivalent to the solution by the LDA/QR algorithm, as
stated in the following theorem.
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Theorem 4.1. Let G be the optimal transformation ma-
trix obtained from LDA/QR algorithm. Then the columns
of G are eigenvectors of S+b Sw corresponding to nonzero
eigenvalues.

Proof. Let x be an eigenvector of S+b Sw corresponding to
nonzero eigenvalue �, i.e. S+b Swx= �x. Let Hb= [Q; Q̃]

( R
0

)
be the QR-decomposition of Hb, where [Q; Q̃]∈Rn×n is or-
thogonal, Q∈Rn×t , Q̃∈Rn×n−t , R∈Rt×k is upper triangu-
lar and t = rank(Hb). It follows that

S+b = (HbH
T
b )

+ =

(
[Q; Q̃]

(
RRT 0

0 0

)
[Q; Q̃]T

)+

= [Q; Q̃]

(
(RRT)−1 0

0 0

)
[Q; Q̃]T:

Hence

S+b Swx = [Q; Q̃]

(
(RRT)−1 0

0 0

)
[Q; Q̃]THwH

T
w x = �x:

It follows that(
(RRT)−1

0

)
QTHwH

T
w [Q; Q̃]

(
QT

Q̃T

)
x = �

(
QT

Q̃T

)
x:
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Fig. 1. The x-axis is the number of neighbors used in KNN, and the y-axis is the accuracy.

It is easy to check Q̃Tx = 0. Hence (RRT)−1(QTHwHT
wQ)

QTx = �QTx, which implies QTx is an eigenvector of
(RRT)−1QTHwHT

wQ, the same matrix used in step 3 of
LDA/QR algorithm. This completes the proof of this
theorem.

5. Experiments and discussion

We presented the experimental results on two kinds of
data sets. The 7rst category is of image data, including AR
and ORL. The second category is of text data, derived from
the TREC collections, and the Reuters-21578 text catego-
rization test collection Distribution 1.0. We considered the
7rst stage of the LDA/QR algorithm as a separate dimen-
sion algorithm and named it pre-LDA/QR. We did com-
parison between PCA+LDA, pre-LDA/QR, LDA/QR and
LDA/GSVD.
The K-nearest-neighbor (KNN) algorithm was applied to

evaluate the quality of di*erent dimension-reduction algo-
rithms as in Refs. [2,4]. The classi7cation accuracies are
estimated by 10-fold cross validation. The accuracy curves
associated with di*erent algorithms on each data set is pre-
sented in Fig. 1 whose horizontal axis shows the size of
neighbors used in KNN and whose vertical axis shows the
accuracy.



854 J. Ye, Q. Li / Pattern Recognition 37 (2004) 851–854

ORL face data set, is a well-known data set for face recog-
nition. It contains the face images of 40 persons. The image
size is 92× 112. The AR face image data, is not only huge,
but also pretty large area of occlusion, such as sun glasses
and scarf. The existence of occlusion dramatically increases
the within-class variances of AR face image data. We use
a subset of AR face. This subset contains 1638 face images
of 126 people’s faces. Its image size is 768× 576. We 7rst
crop the image from the row 100 to 500, and column 200 to
550, and then subsample the cropped images with sample
step 4× 4. The dimension of each instance is thus 8888.
The Doc1 document data set is a text document data set

derived from the TREC collections (http://trec.nist.gov). It
has 878 documents belonging to 10 classes, with 7455 di-
mensions. The Doc2 document data set is a text document
data set derived from Reuters-21578 text categorization
test collection Distribution 1.0 (http://www.research.att.com/
∼lewis). It has 1657 documents belonging to 24 classes,
with 3759 dimensions. We used the tf-idf weighting scheme
[4] for the text data.
The most interesting result lies in the AR image data set.

We can observe that LDA/QR and LDA/GSVD distinctly
outperform the other dimension reduction algorithms. Re-
mind that AR face images contain pretty large area of
occlusion whose direct e*ect is the large within-class vari-
ances of each class/individual. The e*ort of minimizing of
the within-class variance achieves distinct success in this
situation. Pre-LDA/QR does not have the e*ort in minimiz-

ing the within-class variance. For the two-stage PCA+LDA
algorithm, we use the 7rst 150 principal components 1 (note
the reduced dimension in this case is 126−1). On ORL, the
best accuracies are around 99%.Multiple LDAmembers can
achieve this accuracy. This is mainly due to the relatively
small within-class variances in this data.
Themain observation on the text data is that pre-LDA/QR,

a member in LDA without any e*ort in handling the
within-class variance, performs pretty well especially when
more than 15 neighbors. This observation reminds us a fact
on text data, i.e., they do have relatively small within-class
variance.
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