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Abstract
Although Deep Learning (DL) has achieved success in complex Artificial In-

telligence (AI) tasks, it suffers from various notorious problems (e.g., feature re-
dundancy, and vanishing or exploding gradients), since updating parameters in Eu-
clidean space cannot fully exploit the geometric structure of the solution space. As
a promising alternative solution, Riemannian-based DL uses geometric optimiza-
tion to update parameters on Riemannian manifolds and can leverage the under-
lying geometric information. Accordingly, this article presents a comprehensive
survey of applying geometric optimization in DL. At first, this article introduces
the basic procedure of the geometric optimization, including various geometric
optimizers and some concepts of Riemannian manifold. Subsequently, this article
investigates the application of geometric optimization in different DL networks in
various AI tasks, e.g., convolution neural network, recurrent neural network, trans-
fer learning, and optimal transport. Additionally, typical public toolboxes that im-
plement optimization on manifold are also discussed. Finally, this article makes a
performance comparison between different deep geometric optimization methods
under image recognition scenarios.

1 Introduction
With increasing computing power, deep neural networks optimized in Euclidean space
have achieved remarkable success from computer vision to natural language process-
ing (e.g., autonomous driving and protein structure prediction) [1, 2]. However, to fully
exploit the valuable information hidden in the data, most deep learning models tend to
increase the capacity of their networks, either by widening the existing layers or by
adding more layers [3, 4, 5]. For example, models often contain hundreds of convolu-
tion and pooling layers with various activation functions and multiple fully connected
layers, producing millions or billions of parameters during training. These massive
parameters associated with complex model architectures challenge the optimization
of deep learning networks. As an alternative paradigm, optimization on the Rieman-
nian manifold exploits hidden valuable information by utilizing geometric properties
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of parameters, rather than increasing the network capacity. Therefore, geometric op-
timization can alleviate over-parameterization and feature redundancy problems. For
example, deep learning models trained on the orthogonal manifold have less correlated
parameters, making features much less redundant [6].

The optimization objective in most deep learning methods can be formulated as

argmin
θ∈D

fθ(x), s.t. C(θ), (1)

where D denotes the predefined admissible search space, f denotes a real-value opti-
mization function (e.g., loss function) to be minimized by trainable parameters θ, and
C(θ) represents constraints (e.g., orthogonality [6] and unit row sums [7]) that θ is
subject to. Most deep learning methods define the search space D as the Euclidean
space. However, parameters satisfying constraints are on the manifold, which is a low
dimensional subspace and only occupies a small part of Euclidean space. Therefore,
to eliminate constraints and reduce parameters, geometric optimization [8, 9, 10, 11]
narrows the search space from Euclidean space to a smooth manifold. Hence, Equa-
tion (1) is transformed into a differentiable optimization function f : M → R on a
Riemannian manifold, i.e.,

argmin
θ∈M,M={θ|C(θ)}

fθ(x). (2)

As shown in Equation (2), selecting a manifold composed of points that meet con-
straints C(θ) in Equation (1), a large class of constrained deep learning problems in
Euclidean space can be optimized as unconstrained and convex ones on the Riemannian
manifold [10], which helps ensure the convergence. For example, a typical dimension
reduction problem can be defined as follows

argmin
θ∈E

fθ(x) = −tr(θTxTxθ), s.t. θTθ = I, (3)

where E represents the Euclidean space, I represents the identity matrix and param-
eters θ are constrained to be orthogonal. Since all matrices that satisfy orthogonality
compose of the Stiefel manifold , Equation (3) can be treated as an unconstrained prob-
lem on the Stiefel manifold, which is a kind of Riemannian manifold.

Figure 1 depicts the intuitive paradigm for optimization processes in arbitrary Eu-
clidean space and on Riemannian manifolds. Traditional optimization methods in Eu-
clidean space may ignore the advantages of applying geometric optimization strategies.
For example, the latter can obtain richer geometric information from different unique
manifold structures and convert constrained optimization problems into unconstrained
problems. Moreover, geometric optimization can achieve faster convergence speed and
mitigate gradient explosion and disappearance problems in deep learning, which will
be detailed in Section 4. Due to the above potential, geometric optimization has been
applied to various deep neural networks in recent years, such as convolution neural net-
work (CNN) [12, 6, 13], recurrent neural network (RNN) [14] and vision transformer
(ViT) [15]. For instance, orthogonal parameterization is used in CNN to reduce filter
similarities, make spectra uniform [16], and stabilize the activation distribution in dif-
ferent network layers [17]. However, there is a lack of comprehensive surveys focused
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Figure 1: Comparison between geometric and Euclidean optimization path. The blue
center point is the global optimum. The red curve describes the Riemannian optimiza-
tion path converging upon the global optimal goal, always along a curve on manifolds.
In contrast, the green dotted line indicates the Euclidean gradient descent path towards
the optimal goal, taking the risk of moving off the manifold.

on deep learning methods applying geometric optimization. To explore benefits of ge-
ometric optimization, this article aims to give an overall review of recent advances on
applying geometric optimization in deep learning.
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Figure 2: An overview of the central idea of this article.

1 Overview and article organization. In this article, a survey of geometric opti-
mization techniques for deep learning is presented, including the theory and applica-
tions of geometric optimization. Figure 2 displays an overview of the central idea of
this article. Since the optimization theory is unified and model-independent, this arti-
cle illustrates the theory first, including various geometric gradient descent optimizers

1Notations In this work, vectors and matrices are denoted by bold lower case letters and upper case
ones, respectively. Let R be the set of real numbers, C be the set of complex numbers and ∇f denotes the
Euclidean gradient.
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(Section 2). The motivation and technique of applying geometric optimization in clas-
sical machine learning is different from that of deep learning. Therefore, this article
reviews how to apply geometric optimization to shallow learning (Section 3) and deep
learning (Section 4) separately. In particular, this article investigates representative
manifold optimization toolboxes (Section 5), followed by performance comparisons
of different geometric deep learning methods on image recognition tasks (Section 6).
Finally, we conclude the article and highlight future challenges and research trend (Sec-
tion 7).

2 Geometric Optimization Theory
The essence of an optimization problem is to find the maximum or minimum value of a
cost function. An unconstrained optimization problem can use conventional optimiza-
tion methods (e.g., steepest descent method, conjugate gradient method, and Newton
method) to find an optimal solution [18]. However, a broad range of optimization
problems that occur in computer vision tasks are known as constrained optimization
problems. In such a case, finding a closed form for the cost function is difficult. To
use the aforementioned conventional optimization techniques, the constrained problem
can be transformed into an unconstrained form by using the method of Lagrange mul-
tipliers or using a barrier penalty function [18]. However, the above methods hardly
take advantage of underlying manifold structures. They merely treat the constrained
problem as a “black box” and solve them by using algebraic manipulation.

As an alternative solution, geometric optimization methods are developed to exploit
intrinsic geometric structures of objective function parameters. By utilizing the under-
lying geometry of a cost function, geometric optimization methods can narrow the
search space of constrained optimization problems from Euclidean space to smooth
Riemannian manifolds. Riemannian manifold has a differentiable structure and is
equipped with smooth inner product and Riemannian gradients, which are different
from Euclidean space and lay the foundation for geometric optimization. Based on
the Riemannian inner product and Riemannian gradients, a broad spectrum of con-
ventional optimization techniques in Euclidean space can have their counterparts on
smooth manifolds [19, 20, 21, 8], including the steepest descent method [19, 20, 21],
conjugate gradient descent method [22, 23, 24], trust-region method [8, 25] and New-
ton’s method [26, 8]. Therefore, geometric optimization methods can use Riemannian
optimizers to find an optimal solution for objective functions.

In the following subsections, this article first illustrates the model-independent op-
timization process on the Riemannian manifold, covering basic concepts related to
geometric optimization (Section 2.1). Next, this article briefly introduces various Rie-
mannian gradient descent optimizers implementing geometric optimization, which is a
counterpart of optimizers in Euclidean space (Section 2.2). Finally, this article presents
a series of manifold structures that are commonly used in deep geometric learning
methods (Section 2.3).
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M

Θ(j)

TΘ(j)M

H

Update: Θ(j) + γH

Retraction: RΘ(j)(γH)

grad f(Θ(j))

∇f(Θ(j))

ΓΘ(j) (γH)
Θ(j+1)

Figure 3: The update process in geometric gradient descent algorithm. It shows an
update from the point Θ(j) to the point Θ(j+1) in a search direction H ∈ TΘ(j)M
along the geodesic curve ΓΘ(j)(γH). Moreover, it describes how to approximate the
geodesic ΓΘ(j)(γH) by using the retraction RΘ(j)(γH).

2.1 Geometric Optimization Process on Manifolds
Figure 3 depicts the update process in geometric optimization[27] through the gradient
descent example. There are two nearby points Θ(j) and Θ(j+1) on a manifold M
together with the tangent space at Θ(j) (refer to the green area in Figure 3). Each point
Θ on the manifold has its corresponding tangent space TΘM, which is a generalization
of the tangent plane in Euclidean space and consists of all tangent vectors passing
through Θ [28]. Each tangent space has an inner product, which is vital for vector
metrics such as length and angles. Inner product space further helps induce the concept
of orthogonality, an extension of vertical in higher dimensions. A Riemannian gradient
grad f(Θ) for geometric optimization is a tangent vector on the tangent space TΘM
and points to the direction where the cost function on the manifold ascends steepest
[28]. Figure 3 shows that gradient∇f(Θ) is computed in the ambient Euclidean space.
Since the manifold is locally homomorphic to the Euclidean space, grad f(Θ) can be
achieved by projecting Euclidean gradient ∇f(Θ) to the appropriate tangent space
TΘM, i.e.,

grad f(Θ) = ΠTΘM(∇f(Θ)), (4)

where Π means the orthogonal projection.
As a counterpart of Euclidean straight lines, a geodesic is a locally shortest path

between two points on the manifold. Therefore, reaching the optimal goal along a
correct geodesic is shortest. Formally, a geodesic ΓΘ(γH) is a smooth curve on the
manifold, proceeding from Θ in the direction of tangent vector H ∈ TΘM with a step
size of γ ∈ R+ [23]. Since each tangent vector is the direction vector of a specific
geodesic curve, it can uniquely determine a geodesic curve. In particular, the geodesic
defined by the negative Riemannian gradient reveals the next point in the optimization
direction. A point can be mapped from the tangent space to the manifold through ex-
ponential mapping. In practice, to alleviate the high computational cost of exponential

5

chenz
高亮

chenz
高亮

chenz
高亮

chenz
高亮

chenz
高亮

chenz
删划线



mapping, retraction operation RΘ(γH) is often used as an approximation [29]:

RΘ(γH) : TpM→M, γH→ ΓΘ(γH), (5)

where H denotes an opposite vector of the Riemannian gradient. Therefore, H points
in the direction of the steepest descent of the optimization function. As a result, the
optimization function will be minimized if parameter Θ is updated along a geodesic
curve in the direction of H. In summary, with a step size of γ, the optimizing process
from the current parameter Θ(j) to the next parameter Θ(j+1) can be formulated as

Θ(j+1) = ΓΘ(j)(γH) ≈ RΘ(j)(γH) = RΘ(j)(−γgrad f(Θ(j))). (6)

2.2 Gradient Descent Optimizers
Optimization problems defined in Euclidean space can be abstracted as

min{fθ(x) : θ ∈ E}, (7)

where θ are trainable parameters andE means the Euclidean space. There are a variety
of standard optimizers for Equation (7). The gradient descent method is a most basic
optimization strategy. It can be improved by stochastic gradient descent (SGD), which
can accelerate convergence. The other two typical variants of the gradient descent
method are stochastic gradient descent-momentum (SGD-M) and root mean square
prop (RMSProp). To solve valley oscillation and saddle point stagnation problems that
SGD suffers from, SGD-M is developed to maintain the inertia of the previous step.
According to empirical judgments of different parameters, RMSProp can adaptively
determine the learning rate of parameters, i.e., parameters with low update frequency
can have a larger learning rate, while parameters with high update frequency can re-
duce the step size. Let θ(k) represent parameters at iteration k and θ(k+1) represent
parameters at iteration k + 1, this section first explains the above Euclidean gradient
descent optimizers and then shows how to generalize them to the Riemannian manifold
for geometric optimization 2.

Gradient Descent. The gradient descent method takes the following form

θ(k+1) = θ(k) − λ∇f(θ(k)), (8)

where λ is a hyper-parameter representing the step size. The negative direction of the
gradient∇f(θ(k)) has a vital property, i.e., it is a descent direction of the optimization
problem. Therefore, the optimization process is to iteratively update trainable parame-
ters along the negative direction of gradient until convergence.

Stochastic Gradient Descent (SGD). The main idea behind SGD is to use random
mini-batches of training data to update parameters of the optimization problem, which
inherently reduces the calculation workload. Although the parameters may not be up-
dated in the direction of the steepest descent every time, the overall update is in the
steepest descent direction through multiple rounds of updates. As a result, SGD can
greatly speed up the optimization process.

2For simplicity, this paper uses ∇f to denote ∂fθ(x)
∂θ

in Section 2.2.
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Stochastic Gradient Descent-Momentum (SGD-M). Inspired by the concept of
momentum in physics, SGD-M exerts the influence of the last update on the current
update to damp oscillation and accelerate convergence. Let m(k) denote the update
imposed on θ(k−1) and ∇f denote the gradient at time k, the update m(k+1) to be
imposed on θ(k) can be achieved as

m(k+1) = λ0 m
(k) + λ1∇f, (9)

where λ0 and λ1 are hyper-parameters. Sequentially, the parameter θ(k) is updated to
θ(k+1) by m(k+1) as follows

θ(k+1) = θ(k) −m(k+1). (10)

Root Mean Square Prop (RMSProp). Similar to SGD-M, RMSProp considers
the influence of the last update when calculating the upcoming update. Let m(k) be
the update on the previous occasion and∇f be the current gradient, RMSProp designs
upcoming update m(k+1) as follows

m(k+1) = λ m(k) + (1− λ)(∇f �∇f), (11)

where λ is a hyper-parameter and � denotes the Hadamard product [29] which is
element-wise. RMSProp updates θ(k) to θ(k+1) in the following way, i.e.,

θ(k+1) = θ(k) − η ∇f√
m(k+1) + ε

, (12)

where η is a hyper-parameter and ε is positive to prevent the denominator from being
zero. Using element-wise square root and division operation, RMSProp guarantees that
different elements in gradient ∇f have different coefficients, which represent learning
rates in deep learning. Therefore, RMSProp enables parameters to have different learn-
ing rates [29], which makes the optimization process more flexible.

Based on the aforementioned optimization process on manifolds (Section 2.1), the
Euclidean gradient descent algorithm in Equation (8) can be transferred to Riemannian
manifolds as

θ(k+1) = Rθ(k)(−λgrad f(θ(k))), (13)

where Rθ(k) means the retraction operation at point θ(k) and grad f means the Rie-
mannian gradient. For better understanding, this article takes constraint SGD-M and
constraint RMSProp as an instance to explain how to generalize gradient descent opti-
mizers from Euclidean space to manifolds. By performing orthogonal projection and
retraction, other Euclidean gradient descent optimizers can be similarly converted to
Riemannian optimizers.

Constraint SGD-M [29]. Constraint SGD-M is a generalization of SGD-M op-
timizer on manifolds. In the k-th iteration, m(k) denotes a tangent vector on the tan-
gent space Tθ(k−1)M and m(k+1) denotes another vector on the tangent space Tθ(k)M .
Since ∇f is in the surrounding Euclidean space, it needs to be orthogonally projected
to tangent space Tθ(k)M , i.e., the current Riemannian gradient grad f is achieved as
follows

grad f = ΠT
θ(k)M (∇f). (14)
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The transportation from a tangent space associated with point p to another tangent
space associated with point q is called parallel transportation, i.e., Γp→q : TpM →
TqM . After projecting the Euclidean gradient ∇f to the tangent space Tθ(k)M and
transporting m(k) from Tθ(k−1)M to Tθ(k)M , Equation (9) is transformed to:

m(k+1) = λ0 Γθ(k−1)→θ(k)(m(k)) + λ1 ΠT
θ(k)M (∇f). (15)

Based on the retraction operation, the optimization parameter θ(k+1) can be updated
from θ(k) by searching along the geodesic in the negative direction of m(k+1), i.e., the
iterate optimization can be expressed as

θ(k+1) = Rθ(k)(−m(k+1)). (16)

Constraint RMSProp [29]. Similar to constraint SGD-M, after transporting m(k)

from tangent space Tθ(k−1)M to Tθ(k)M and orthogonally projecting ∇f � ∇f to
corresponding tangent space, Equation (11) can be transformed into:

m(k+1) = λΓθ(k−1)→θ(k)(m(k)) + (1− λ)ΠT
θ(k)M (∇f �∇f). (17)

The parameter θ(k+1) of the optimization goal can be iteratively searched on the man-

ifold with a determined direction −η
ΠT

θ(k)M (∇f)√
m(k+1)+ε

, that is,

θ(k+1) = Rθ(k)(−η
ΠT

θ(k)M (∇f)
√
m(k+1) + ε

). (18)

2.3 Manifold Examples
Different kinds of matrix manifolds have different geometry structures and satisfy dif-
ferent constraints, bringing different advantages when applying geometric optimization
to deep learning. For example, the oblique manifold plays a significant role in dictio-
nary learning due to its property of unit-norm columns, while the Stiefel manifold has a
positive effect on optimizing RNNs since matrices on the Stiefel manifold have orthog-
onal and uncorrelated columns, which helps alleviate feature abundancy problems in
RNNs. Since space is limited, this section only presents common manifold structures3

such as Stiefel manifold, oblique manifold, and Graßmann manifold, all of which are
widely used in existing geometric optimization techniques that are discussed in Sec-
tion 3 and Section 4.

Product Manifold and Quotient Manifold. Let A and B be two manifolds of
dimension dA and dB , for any pair of charts (U, φ) and (V, ϕ) of A and B, the map Φ
is defined on U × V by Φ(x, y) = (φ(x), ϕ(y)). It specifies a smooth product man-
ifold structure on the product space A × B. Quotient manifold is an abstract space
with similar subsets in the same manifold. These subsets can be described with equiv-
alence relationship. A represents a manifold equipped with an equivalence relation

3For more introduction on matrix manifolds, we refer interested readers to the website
https://www.Pymanopt.org.
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∼, which satisfies three properties, i.e., reflexivity, symmetry and transitivity [8]. The
equivalence class of one point x consists of all elements that are equivalent to it, i.e.,

[x] := {y ∈ A : y ∼ x}, (19)

where [x] indicates the equivalence class of x. The quotient of manifold A by relation
∼ is defined as follows

A/ ∼ := {[x] : x ∈ A}, (20)

with the projection π : A → A/ ∼, indicated by x → [x]. When π is a submersion
projection, andA is a smooth manifold [8, 30],A/ ∼ admits a unique smooth manifold
structure B, which is the quotient manifold of A.

Symmetric Positive-Definite Manifold [29]. It consists of Symmetric Positive-
Definite (SPD) matrices M ∈ Rp×p equipped with the Affine Invariant Riemannian
Metric (AIRM) as follows

Sp++ , {M ∈ Rp×p : vTMv > 0,∀v ∈ Rp − {0p}}. (21)

SPD manifold achieves great success in computer vision due to its powerful statistical
representations for images and videos. For example, SPD matrices are used to construct
region covariance matrices for pedestrian detection [31], joint covariance descriptors
for action recognition [32], and image set covariance matrices for face recognition [33].

Stiefel Manifold [29]. The Stiefel manifold St(p, n) is composed of orthogonal
matrices W ∈ Rn×p(p ≤ n) endowed with the Frobenius inner product as follows

St(p, n) , {W ∈ Rn×p : WTW = Ip}, (22)

where Ip denotes Rp×p identity matrix. The optimization function over the compact
Stiefel manifolds has an upper bound, which allows it to achieve an optimal solution.

Sphere Manifold and Oblique Manifold. The set of unit Frobenius norm matri-
ces of size n ×m is denoted by the sphere Snm−1. It can be treated as a Riemannian
submanifold embedded in Euclidean space Rn×m endowed with the usual inner prod-
uct 〈H1, H2〉 = trace(HT

1 H2). The oblique manifold OB(n,m) is the set of matrices
of size n×m with unit-norm columns. It has the same geometry as that of the product
manifold of spheres

∏m
i=0 Sn−1.

Graßmann Manifold [29]. The Graßmann manifold G(n, p) embraces the set of
subspaces spanned by the orthogonal matrices X ∈ Rn×p(p ≤ n) as

G(n, p) , {Span(X) : X ∈ Rn×p, XTX = Ip}. (23)

Note that a Graßmann manifold is different from a Stiefel manifold, i.e., a point on the
Stiefel manifold represents a basis for a subspace, whereas a point on the Graßmann
manifold represents an entire subspace. Moreover, Graßmann manifolds are of linear
subspaces and can be used to perform a geometry-aware dimension reduction.

Unitary Manifold. Unitary matrices are the extension of orthogonal matrices to
the complex domain, i.e.,

U(n) , {U ∈ Cn×n : U∗U = In}, (24)
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where U∗ denotes the conjugate transpose matrix and In represents the identity matrix
of size n×n. Orthogonal or unitary matrices can preserve norm of vectors, i.e., ‖Wh‖2
= ‖h‖2 whenW is an orthogonal or unitary matrix. Therefore, exploding and vanishing
gradient problems in deep temporary networks can be alleviated when parameters are
optimized on the orthogonal or unitary manifold, which will de detailed in Section 4.2.

Lie Group [13]. Lie groups are real or complex manifolds with group structure.
There are two compact and connected Lie groups, i.e., the special orthogonal group
formulated as

SO(n) = {B ∈ Rn×n|BTB = I, det(B) = 1}, (25)

and the unitary group formulated as

U(n) = {B ∈ Cn×n|B∗B = I}. (26)

The tangent space at the identity element of the Lie group is called the Lie algebra of
it. For the special orthogonal group and the unitary group, their Lie algebras are given
by

so(n) = {A ∈ Rn×n|A +AT = 0},
u(n) = {A ∈ Cn×n|A +A∗ = 0}.

(27)

so(n) is known as skew-symmetric matrix, while u(n) is skew-Hermitian matrix. The
Lie exponential map (exp : g → G where G denotes the Lie Group and g denotes its
Lie algebra) on a connected, compact Lie group is surjective. Therefore, the optimiza-
tion problem on a Lie group can be converted to the optimization problem in Euclidean
space where Euclidean gradient descent optimizers can be directly used.

3 Applications in Classical Machine Learning
Classical machine learning methods gained achievements in solving artificial intelli-
gence problems (e.g., dimension reduction, inverse problem, sparse representation,
analysis operator learning, and temporal models). Despite the increasing computing
power of modern computer facilities, it is still difficult to solve a large category of con-
strained classical machine learning problems in Euclidean space. To decrease the solv-
ing difficulty, geometric optimization focuses on the special structure of constrained
problems and regards them as unconstrained ones on Riemannian manifolds [10].

3.1 Dimension Reduction
By using a mapping µ : Rm → Rl with l < m, dimension reduction (DR) aims to
find a lower-dimensional representation yi ∈ Rl of given data samples xi ∈ Rm. The
most popular DR paradigm uses a linear projection while others employ a nonlinear
transformation to constrain locality properties between data. Table 1 summarizes main
properties of mainstream DR approaches (e.g., linear discriminant analysis (LDA) [34],
principal component analysis (PCA) [35, 36, 37], multi-dimensional scaling (MDS)
[38, 39], isometric feature mapping (ISOMAP) [40], local linear embedding (LLE)
[41], laplace eigenmaps (LE) [42], and locality preserving projections (LPP) [43]).
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The mapping µ : Rm → Rl used in DR methods is often restricted to be an orthog-
onal projection, i.e.,

µ(x) := V>x, (28)

where the orthogonal matrix V ∈ Rm×l belongs to the Stiefel manifold St(l,m) :={
V ∈ Rm×l|V>V = Il

}
. One generic algorithmic framework to find an optimal

V ∈ St(l,m) can be formulated as a maximization problem, i.e.,

argmax
V∈St(l,m)

tr(V>AV)

tr(V>BV) + σ
, (29)

where matricesA,B ∈ Rm×m are often symmetric or positive definite matrices. Equa-
tion (29) is called trace quotient or trace ratio. Note that constant σ > 0 can prevent
the denominator from being zero. Matrices A and B are constructed to measure the
similarity between data points according to specific problems. V is not unique and
closely related to selected eigenvalues. Solutions of Equation (29) are rotation invari-
ant, i.e., let V∗ ∈ St(l,m) be a solution of the problem, then V∗Θ for any orthogonal
Θ ∈ Rl×l is also a solution of Equation (29). In other words, the solution set of
Equation (29) is the set of all l-dimensional linear subspaces in Rm, which can be
represented by Graßmann manifold , i.e.,

Gr(l,m) :=
{
VV>|V ∈ St(l,m)

}
. (30)

As shown above, most linear DR methods begin with solving tr(V TAV ) while non-
linear DR methods construct a graph by connecting nearby points, which captures in-
formation on the local neighborhood structure of data and forms a similar optimization
problem. Taking the non-linear DR method LE as an example, the Laplace matrix as-
sociated with the neighborhood graph [44] can be regarded as the symmetric matrix A
in Equation (29).

3.2 Inverse Problem
Aiming to explore internal patterns from phenomena [45], an inverse problem has a
significant impact on practical applications. For example, the following practical prob-
lems can be modeled as inverse problems: i) deducing structural information in human
body from the X-ray; and ii) infering interior appearance of stratigraphy from seis-
mic wave. An inverse problem can be viewed as reconstructing inputs from outputs as
follows,

y = Wx, (31)

where y ∈ Rl is the given output and W is a matrix that maps input data x to output
data y. The goal of the inverse problem in Equation (31) is to recover x on the premise
that y is a priori. It is challenging to get a precise solution, however, an approximate
solution can be achieved by confining the parameter matrix W to reside on a smooth
Riemannian manifold. Let the sum of elements in the same row of matrix W be exact
1, Equation (31) can be solved by optimization on the oblique manifold M where
matrices all have unit row sums [7], i.e.,

min
W∈M

‖y −Wx‖22 . (32)
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Table 1: Summary of Dimension Reduction Algorithms
Methods Linear/Non− Linear1 Global/Local2 Properties

LDA Linear Global is supervised, uses prior knowledge of categories,
is limited to Gaussian distribution samples

PCA Linear Global is unsupervised, uses orthogonal principal components
to eliminate interactions between each components

MDS Non-Linear Global
has simple calculation, preserves the data relationship
in original space, is visualization-friendly, mistakenly
assumes that each dimension has a same contribution

ISOMAP Non-Linear Global
suits low dimensional manifolds with a flat interior
rather than that with large internal curvature, has high
computation cost

LLE Non-Linear Local

suits non-closed locally linear low dimensional
manifolds, has small computational complexity,
is limited to dense uniform dataset, is sensitive to the
number of nearest neighbor samples

LE Non-Linear Local preserves local features, is less sensitive to outliers and
noise, has a stable embedding

LPP Linear Local is defined at any point in space, i.e., can be generalized
to the testing set and not limited to the training set

1 Linear represents linear projection mapping, while non-linear represents non-linear projection mapping.
2 The global/local represents the geometric relationship of the input data.

3.3 Dictionary Learning
As a specific inverse problem, dictionary learning has been widely used to obtain the
most essential features of input data [23]. Let X ∈ Rn×k denote the input sample, in
dictionary learning, X is expanded into a linear combination as

X = D1φ1 + · · ·+Dnφn, (33)

where D1, · · · , Dn represent the most essential features to be learned from the in-
put, while φ1, · · · , φn indicate combination coefficients of features D1, · · · , Dn. Let
D ∈ Rk×n indicate the dictionary set {D1, · · · , Dn} and Φ ∈ Rn×r indicate the set
{φ1, · · · , φn}, Equation (33) can be simplified as follows,

X = DΦ, (34)

where D and Φ can have various kinds of combinations. Dictionary learning aims to
learn a D that makes the coefficients Φ be zero or close to zero, i.e., a sparse repre-
sentation of samples X . The dictionary D and the sparse coefficients Φ are calculated
alternately. When Φ is fixed, the dictionary learning part is the same as the form of
Equation (31), which is an inverse problem of reconstructing D. Let ‖φ‖0 denote
the number of entries in Φ that are different from zero, the dictionary D is subject to
‖D1‖ = ... = ‖Dn‖ = 1. Therefore, the above dictionary learning problem can be
transformed to the following minimization problem on the oblique manifold:

argmin
D∈OB(k,n)

‖X −DΦ‖22 + λ ‖Φ‖0 . (35)

3.4 Analysis Operator Learning
Analysis operator learning assumes that a few operators are sufficient to represent ob-
served high-dimensional variables [46]. However, these operators are implicit and

12

chenz
高亮

chenz
高亮

chenz
高亮

chenz
高亮

chenz
高亮



unobserved, for instance, store environment and service quality are latent operators
hidden behind the observed variable “price”. The goal of analysis operator learning
is to find out these invisible operators, since low-dimensional operators can simplify
original high-dimensional variables.

Let X be original high-dimensional variables and F be latent operators with lower
dimensions, the analysis operator learning can be generally formulated as follows

X = AF, (36)

where A denotes the operator loading matrix, in which the element Aij represents the
load of variable xi on factor fj . It is proved that the parameter A can be positive [47],
the analysis operator learning can therefore be converted to an optimization problem
on the positive manifoldM as follows

min
A∈M

‖X −AF‖22 . (37)

3.5 Temporal Model
The temporal probability model is composed of a transition model describing the state
evolution over time and a sensor model describing the observation process [27]. A
temporal model is helpful to cope with filtering, prediction and smoothing. In the
transition model, next state zt+1 is transited from the current state zt, independent
from previous states. Given the time-relevant transition probability A(t), the transition
process of states can be modeled as

zt+1 = A(t) · zt + ε(t), (38)

where the noise ε(t) follows the Gaussian distribution.
States are invisible and a hidden state can manifest as a specific observation with

the help of an emission probability. The current observation xt is only defined by the
current state zt, having nothing to do with previous states and observations. Given a
time-varying emission probability C(t), the observation process can be modeled as

xt = C(t) · zt + δ(t), (39)

where the noise δ(t) follows the Gaussian distribution.
As a mixture of Equation (38) and Equation (39), temporal models can be divided

into hidden Markov models and linear dynamic systems. A hidden Markov model has
discrete hidden state variables while the hidden state and observed variables of a linear
dynamic system obey Gaussian distribution. Let n represent the size of the temporal
sequence, the expectation of observation sequences E[x0, x1, x2 · · · ] can be deduced
as:

[C(t), C(t)A(t), C(t)A(t)2 · · ·C(t)A(t)n−1] z0, (40)

where z0 is the initial hidden state. It can be considered as a sequence of subspaces
spanned by the emission and transition matrix columns at the corresponding time [48].
As is mentioned in Section 2.3, a point on the Graßmann manifold is a subspace.
Therefore, the temporal model can be mathematically optimized on the Graßmann
manifold.
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4 Applications in Deep Learning
With the increasing attention to geometric optimization, more and more deep learn-
ing methods have developed to combine with it. Geometric optimization techniques
vary with different deep learning backbones (e.g., CNN, RNN and GNN). Therefore,
this section classifies applications in deep learning into the following categories, i.e.,
i) geometric CNN; ii) geometric RNN; iii) geometric GNN and iv) geometric opti-
mization for other deep learning methods, such as transfer learning and optimal trans-
port. Orthogonal manifold is widely employed in geometric CNNs to reduce feature
redundancy. Examples include utilizing kernel orthogonality in Orthogonal CNNs [6],
optimization on Submanifolds of Convolution Kernels in CNNs [49], and regularizing
the convolution kernel with orthogonality when training deep CNNs [12]. In addi-
tion, geometric CNNs can leverage the unique structure of Stiefel manifold [50] and
Graßmann manifold [51]. Geometric RNNs take advantage of the norm-keeping prop-
erty of orthogonal and unitary manifolds to alleviate gradient explosion and vanishing
problems. Examples include complex unitary matrices in Unitary Evolution Recurrent
Neural Networks [14], and the special orthogonal group and unitary group in Cheap Or-
thogonal Constraints: A Simple Parameterization of the Orthogonal and Unitary Group
[13]. Geometric GNNs pay much attention to hyperbolic manifold and extensively use
it for structure capturing. Examples include the hyperbolic GNN [52] and a geometric
neural network which incorporates Euclidean space with hyperbolic geometry [53].

4.1 Geometric CNN
Deep CNN has achieved great success in various computer vision tasks, such as image
recognition [54] and segmentation tasks [55]. CNN can automatically learn features
from large-scale data by benefiting from three essential structures, i.e., convolution,
activation, and pooling structures [10]. Although CNNs have worked efficiently, using
the entire Euclidean space to search optimal solutions cause problems (e.g., training in-
stability and feature redundancy) that hinder the further development. To alleviate these
problems, geometric optimization approaches optimize CNNs on the suitable Rieman-
nian manifold via kernel space, geometric regularization, and quasi-CNN architectures
with parameters on the manifold.

Kernel Space. A low-dimensional manifold is often embedded in the high-dimensional
Euclidean space. Kernel functions can map original features to a higher dimensional
space. Therefore, with the help of kernel functions, computationally cheap operations
on manifolds can represent complex operations in Euclidean space. Kernel spaces can
be utilized and described by topological smooth manifolds. For example, positive-
definite kernels, which are known as Graßmann kernels on the Graßmann manifold,
can be used to map the manifold into a Hilbert space [56]. Zhang et al. [57] designed a
new kind of Graßmann kernel based on canonical correlations to distinguish one class
from others more accurately. Liu et al. [58] designed RBF kernels for linear subspace,
covariance matrix, and Gaussian distribution to optimize emotion video recognition
on the Riemannian manifolds. Hariri et al. [59] defined a kernel based on the SPD
covariance matrix to indicate the similarity of two face images for face matching.

Kernel space constructed on nonlinear data helps learn the inherent manifold struc-
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ture. Yuan et al. [60] combined manifold kernel space with deep learning architecture
for scene recognition. To preserve the geometric structure of input scene images and
achieve a greater representational ability, [60] defines a low-level feature layer X and
a hidden manifold kernel space Y as a base unit. Moreover, the deep architecture is
unit-by-unit and Yk serves as the input of another base unit to generate the next hid-
den space Yk+1. Comparative experiments evaluate the performance of the manifold
regularized deep network on the large-scale scene data set.

Ozay et al. [49] considered the kernel estimation problem in CNNs as an optimiza-
tion on embedded or immersed submanifolds of kernels. [49] explores geometric prop-
erties of convolution kernel space in CNNs and reveals that different kernel normal-
ization methods induce different geometric properties. For example, the orthonormal
normalization manner implies Stiefel manifold, while kernels normalized with the unit-
norm reside on the sphere manifold. Furthermore, [49] proposes an SGD algorithm for
optimization on kernel submanifolds. Experiments carried out on three kernel subman-
ifolds confirm that the above approach can boost the performance of traditional CNN
training.

Geometric Regularization. Regularization acts as the penalty term of the opti-
mization function. It is used to impose restrictions on the parameters of the optimiza-
tion function. The commonly used geometric regularization is the orthogonal con-
straint, aiming to restrict parameters to be on the orthogonal manifold. Recall orthogo-
nal matrices WTW = I introduced in Section 2.3, orthogonal regularization methods
are roughly divided into hard orthogonality as

‖WTW − I‖2F (41)

and soft orthogonality as
λ‖WTW − I‖2F (42)

where ‖ · ‖F indicates the Frobenius norm and λ represents a relaxation coefficient.
Based on the soft orthogonality, we can achieve double soft orthogonality as

λ(‖WTW − I‖2F + ‖WWT − I‖2F ). (43)

Based on the observation that the kernel orthogonality is necessary but insufficient
for the orthogonal convolution, Wang et al. [6] proposed an approach where orthog-
onality constraints directly regularize a convolution layer. During training, the con-
volution filter K is transformed into a Doubly Block-Toeplitz (DBT) matrix and the
spectrum is regularized to be uniform, which requires row or column orthogonality.
The orthogonality constraint on the DBT matrix helps relieve exploding and vanishing
gradient problems, making the training more stable. Moreover, a number of experi-
ments show that it can achieve amazing performance such as stronger robustness and
better generalization.

Bansal et al. [12] observed that orthogonality can stabilize the energy distribution
of activations within CNNs and enhance the efficiency of training. [12] compares dif-
ferent orthogonality regularizers, e.g. soft orthogonality, double soft orthogonality and
mutual coherence regularization that lowers the column correlation as much as possi-
ble to enforce orthogonality. Meanwhile, [12] designs a novel orthogonality regularizer

15

chenz
高亮



named Spectral Restricted Isometry Property Regularization, which focuses on mini-
mizing the spectral norm of WTW − I . Remarkable experimental results suggest that
regarding orthogonality regularizations as standard tools for training deep CNNs offers
better accuracy and stablity.

In order to estimate human face poses under challenging circumtances such as com-
plex background or various orientations, Hong et al. [61] proposed manifold regu-
larized convolutional layers (MRCL) to enhance the nonlinear locality constraints of
CNN parameters. With MRCL being on top of traditional CNN’s pooling and activa-
tion operations, a low-rank manifold structure of latent data can be recovered for better
optimization. By employing multitask learning with low-rank learning, multimodal of
different data representations can be combined to predicate face postures. Compara-
tive experiments validate the benefit of imposing manifold regularization to traditional
convolutional layers.

Roufosse et al. [62] proposed a spectral unsupervised functional map network
(SURFMNet) where the matching network from one shape to another is constrained
to the orthogonal manifold. SURFMNet computes correspondences across 3D shapes
using unsupervised learning, i.e., building shape correspondences without ground truth.
Solid experimental results support the consistent superiority of SURFMNet compared
to state-of-the-art unsupervised shape matching methods. Experimental results also
show that SURFMNet is comparable to supervised ones.

Different from existing methods that shallowly learn Lie group features, Huang
et al. [63] incorporated a Lie group structure to parameter matrices in the deep hu-
man action recognition network. The proposed skeleton-based human model (V,E)
is a binary relation, where V represents a set of vertexes that consists of body joints
(v1, . . . , vN ) and E represents a set of edges that consists of body bones (e1, . . . , eM ).
The rotation matrix is represented by the axis-angle model based on the skeleton and
forms the special orthogonal group. To preserve the Lie group structure of the input
rotation matrix, the above human action recognition network is optimized on the Lie
group manifold and mapped to a tangent space for the final classification.

Similar to the above action recognition network [63], Chen et al. [64] put forward
a deep manifold learning (DML) framework to learn manifold information and deep
representations of action videos. [64] studies that leveraging geometry information in
deep learning contributes to high accuracy and efficiency for action recognition. To
extract more expressing features, the DML framework applies a manifold regularizer
on the previous layer, label information and manifold parameters. Furthermore, adapt-
ing the DML framework to restricted Boltzmann machine can relieve the overfitting
problem and improve the recognition accuracy.

Quasi-CNN Architecture. Kernel methods and orthogonal regularization do not
change fundamental CNN components (e.g., convolution and pooling operations). An-
other method of applying geometric optimization to deep learning is to mimic tra-
ditional CNN architecture and establish a new architecture suitable for the manifold
structure. In this article, the above architecture is named as quasi-CNN architecture.
Convolution and activation layers are rebuilt to induce geometric optimization in the
quasi-CNN architecture. To achieve this goal, parameters in the quasi-CNN archi-
tecture are designed to reside on the compact Stiefel manifold. For a more intuitive
explanation, this article takes the deep SPD matrix network (SPDNet) [50] and deep
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Graßmann neural network architecture (GrNet) [51] as examples.
Let X be the input, and W be the transformation parameter on the compact Stiefel

manifold. First, SPDNet is designed for optimization on the SPD manifold. Bilinear
mapping (BiMap) layer fb = WXWT plays the role of convolution layers in tradi-
tional CNNs. Based on the eigenvalue decomposition X = UΣU , eigenvalue rectifi-
cation (ReEig) layers fr = Umax(εI,Σ)UT are designed to replace nonlinear activa-
tion layers and ε is the activation threshold. SPDNet designs the eigenvalue logarithm
(LogEig) layer to flatten the Riemannian manifold to a flat space where classical Eu-
clidean computations can be applied. GrNet is designed for optimization along the
orthonormal manifold. Full rank mapping (FRMap) layers ffr = WX in GrNet re-
place the convolution layer in traditional CNNs. Inspired by the QR decomposition
X = QR where Q is orthonormal, GrNet designs re-orthonormalization (ReOrth)
layer ffo = XR−1 = Q to achieve an orthonormal output. Unlike the LogEig layer
in SPDnet, GrNet uses inner product XXT to reduce the manifold to a flat Euclidean
space. After pooling operations on the resulting Euclidean data, GrNet designs or-
thonormal mapping (OrthMap) layer fom = U1:q to transform the output matrix back to
the orthonormal manifold, where U1:q denotes the first q largest eigenvectors achieved
by the eigenvalue decomposition.

4.2 Geometric RNN
RNNs are designed to process sequential data since they can capture spatial and tempo-
ral dependencies between the sequential input. Therefore, RNN can be applied in tasks
such as speech recognition, text prediction, and machine translation. Given an input
sequence Xτ = x1, x2, · · · , xτ (xi ∈ Rn) with length τ , a basic RNN framework is
aimed to generate the output sequence Yτ = y1, y2, · · · , yτ (yi ∈ Rp). With hidden
state h passed recurrently into the model at each time step, output predictions oi ∈ Rp
of the RNN are computed as follows [65]:

hi = σ(Uxi +Whi−1 + b),

oi = V hi + c,
(44)

where U ∈ Rm×n is the input weight matrix, W ∈ Rm×m is the recurrent weight
matrix, hi−1 ∈ Rm is the previous hidden state, b ∈ Rm is the input bias, σ(·) is a
pointwise nonlinearity function, hi ∈ Rm is the current hidden state, V ∈ Rp×m is the
output weight matrix, and c ∈ Rp is the output bias.

4.2.1 Orthogonal RNN (ORNN)

Denote L as the objective function to be minimized, the gradient of the loss function
for the hidden state is computed as:

∂L
∂hi

=
∂L
∂hτ

· ∂hτ
∂hi

=
∂L
∂hτ

·
τ−1∏
j=i

∂hj+1

∂hj
=

∂L
∂hτ

(

τ−1∏
j=i

Dj+1W
T ), (45)

where Dj+1 ∈ Rm×m is a diagonal matrix, whose entries consist of the derivate of
the activation function. The pointwise non-linearity function σ(·) in Equation (44) is
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suggested to be a rectified linear unit (ReLU) function [66, 67], whose output has a
minimum value of 0. The input Dj+1 has at least one non-zero entry of the derivative
value for all j. Taking the Euclidean l2 − norm to both sides of Equation (45), we
have: ∥∥∥∥ ∂L∂hi

∥∥∥∥
2

6 (

τ−1∏
j=i

∥∥Dj+1W
T
∥∥

2
)

∥∥∥∥ ∂L∂hτ
∥∥∥∥

2

= (

τ−1∏
j=i

‖W‖2)

∥∥∥∥ ∂L∂hτ
∥∥∥∥

2

(46)

If ‖W‖2 is greater than one,
∥∥∥ ∂L∂hi

∥∥∥
2

grows exponentially as the increase of τ . As
a result, the norm of the gradient in Equation (46) disclosures the well-known gradi-
ent exploding problem that hinders the RNN from training [68]. If ‖W‖2 is smaller
than one,

∥∥∥ ∂L∂hi

∥∥∥
2

declines exponentially as the increase of τ , which leads to gradient
vanishing problems [68].

A recent line of ORNNs imposes the orthogonal constraint on the hidden-to-hidden
transformation of RNN. The recurrent weight transformation matrix W is restricted to
be on the orthogonal manifold. Let A be an orthogonal matrix, for each vector X , its
norm after orthogonal transformation is:

(AX)T (AX) = XTATAX = XTX, (47)

which means that orthogonal transformations do not change the norm of the original
vector. As a result,

∥∥∥ ∂L∂hi

∥∥∥
2

can remain invariant in ORNN when the transformation
matrix W in Equation (46) is orthogonal. Therefore, the exploding and vanishing
gradient problem of RNN can be alleviated. Moreover, orthogonal constraints can be
generalized to unitary constraints in the complex domain.

4.2.2 Recent Advances of ORNN

uRNN [14] constructs a large unitary matrix by simple parametric unitary matrices,
i.e., the unitary hidden-to-hidden matrix W is composed as follows,

W = D3R2F
−1D2ΠR1FD1, (48)

where D is a diagonal matrix whose diagonal element Dj,j = eiwj is defined by the
imaginary unit i and parameters wj ∈ R, R = I − 2 vv∗

‖v‖2 is a reflection matrix with
the complex vector v ∈ Cn, Π is a fixed random index permutation matrix, and F and
F−1 are the Fourier and inverse Fourier transforms. In the matrix construction strategy
like Equation (48), the number of parameters, memory, and computational overhead
increase slowly at approximately linear speeds. Therefore, the training cost of large
hidden layers can be reduced. In uRNN, a variation of the nonlinear activation ReLU
named modReLU has been proposed to maintain the phase of complex-valued hidden
states:

σmodReLU (z) =

(|z|+ b)
z

|z|
, if |z|+ b ≥ 0

0, if |z|+ b ≤ 0
(49)
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where b ∈ R is a bias parameter. uRNN defines a matrix U to map complex-valued
hidden state ht to real-valued output for prediction. The corresponding loss function is
calculated as follows

ot = U

(
Re(ht)

Im(ht)

)
+ bo, (50)

where bo is the output bias, Re(ht) and Im(ht) represent the real and imaginary part
of ht respectively.

However, Wisdom et al. [69] noticed that the unitary parameter construction of
Equation (48) cannot cover allN×N unitary matrices forN > 7, i.e., at least oneN×
N unitary matrix cannot be represented in the form of Equation (48). To address this
problem, [69] designs a method to measure the representation capacity of the structured
N × N unitary matrix. [69] comes up with a perspective that the unitary matrices
parameterized by P real-valued parameters for P ≥ N2 is full-capacity, which means
that it can cover all N ×N unitary matrices.

Unlike generating compound orthogonal matrices with simple ones, the Lie expo-
nential map can achieve orthogonal constraint on the hidden-to-hidden transformation
[13]. The connected subjective exponential mapping exp : g → G on the special or-
thogonal group is defined as

exp(A) := I + A+
1

2
A2 + . . . . (51)

Since it is a subjection, for each hidden-to-hidden transformation matrix W belonging
to the special orthogonal group or unitary group, there must exist a skew-symmetric (or
skew-Hermitian matrix)A that satisfies exp(A) = W . Therefore, the hidden-to-hidden
transformation ht+1 = σ(Wht + Txt+1) is equivalent to ht+1 = σ(exp(A)ht +
Txt+1). That is, the optimization on the orthogonal or unitary manifold can be trans-
formed to the optimization in Euclidean space. Consequently, classic gradient descent
optimizers such as Adam can be applied to minimize the loss function as well as sat-
isfying orthogonal constraints. As a result, the Lie exponential map can achieve both
cheap computation overhead and the mitigation of gradient exploding and vanishing
problems.

Another method [70], which is based on the Lie group, defines a basis {Tj}j={1,··· ,n2}
and coefficients {λj}j={1,··· ,n2} to construct the element L ∈ u(n) as follows,

L = Σn
2

j=1λjTj . (52)

By using exponential mapping, the elementU of corresponding unitary Lie groupU(n)
can be represented as:

U = exp(L) = exp(Σn
2

j=1λjTj). (53)

Furthermore, Hyland et al. [70] offered an argument that the above parameterization
helps generalize unitary RNN to arbitrary unitary matrices and figure out long-memory
tasks.

Learning orthogonal filters in deep neural networks (DNN) can be formulated as an
optimization problem over multiple dependent Stiefel manifolds (OMDSM) [71]. The
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orthogonal linear module can substitute standard linear module in DNNs to stabilize
the distributions of activation and regularize networks. Let Wk and bk be learnable
weight matrix and bias, parameter θ be {Wk, bk|k = 1, 2, . . .K}, the deep neural
network can be represented as f(x, θ) : x → ŷ, where x is the input feature, and ŷ is
the output prediction of DNN. The loss function is often designed as the discrepancy
between label y and prediction values: L(y, f(x, θ)). Finally, the optimization problem
is formulated as

θ∗ = argminθE(x,y)∈D[L(y, f(x, θ))]. (54)

OMDSM trains DNN with orthogonal weight matrix Wk in each layer. Thus, the
optimization problem is reformulated as

θ∗ = argminθE(x,y)∈D[L(y, f(x, θ))]

s.t. Wk ∈ Onk×dk
k , k = 1, 2, . . .K,

(55)

where the matrix family Onk×dk
k = {Wk ∈ Rnk×dk |WkW

T
k = I} is composed of

multiple real Stiefel manifolds, which is an embedded sub-manifold of Rnk×dk . Each
independent orthogonal filter W ∈ Rn×d is given by the proxy parameter V ∈ Rn×d
as

W = PV, (56)

where n is the number of output channels, d is the number of input channels, and
P ∈ Rn×n is the coefficient of the linear transformation. Firstly, V is centered by VC :

VC = V − c1Td , (57)

where c = 1
dV 1d and 1d is the d-dimension vector with all ones. Moreover, the eigen-

values ∧ and eigenvectors D of the covariance matrix VCVCT are used to construct P :

P = D ∧−1/2 DT . (58)

Finally, W is formulated as

W = D ∧−1/2 DTVC . (59)

Research has been conducted on exploring the influence of soft orthogonal con-
straints [72]. By allowing the diagonal elements of S to float around 1, the orthogonal
transformation matrix W is relaxed as

W = USV T , (60)

where U and V are strict orthogonal matrices.
The above methods are mainly subject to O(n3) time complexity or dependent on

complex matrices [73]. It is discovered that orthogonal matricesW ⊆ O(2n) with dou-
bled hidden size, can substitute complex or unitary matrices in Cn×n. Inspired by the
above discovery, [73] proposed to utilize Householder matrices to achieve parametriza-
tion of orthogonal transition matrices. As a result, complex matrices are unneeded and
time complexity is reduced, while the effect is similar to the unitary constraint.
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The norm-keeping property of orthogonal matrices may make ORNN have diffi-
culty paying little attention to extraneous information [74]. To relieve this problem,
Jing et al. [74] put forward the gated orthogonal recurrent unit (GORU) to be un-
concerned with irrelevant or noise information while learning long-term dependencies.
By adding the gating mechanism, experiment results demonstrate that GORU outper-
forms the unitary RNN on natural language processing tasks such as question answer-
ing tasks, together with long-term dependency tasks such as denoising and copying
tasks.

In summary, uRNN [14] parameterizes the unitary hidden-to-hidden matrix by
composing simple unitary matrices. However, the above parameterization cannot cover
all N × N unitary matrices. To make up for that, full-capacity uRNN [69] is put for-
ward. Unlike uRNN, expRNN [13] exploits the exponential map to achieve orthogonal
constraints more easily. Furthermore, OMDSM innovatively uses re-parameterization
to optimize DNN over multiple dependent Stiefel manifolds instead of one manifold
[71]. Moreover, research has explored whether and how the hard orthogonal con-
straints on RNN can be relaxed [72]. By creatively introducing the householder matrix,
the considerable time complexity of parameterizing unitary matrices can be mitigated
[73]. Last but not least, GORU [74] designs a forget gate, so that ORNN can pay little
attention to extraneous information.

4.3 Geometric GNN
GNN can be used to construct a learning network based on irregular graphs. Each
graph is represented by vertexes and edges, which describes the relationship between
vertexes. GNN encodes vertexes as feature vectors and models edges as a relation-
ship matrix between vertexes. In GNN, graph convolution is performed between the
relationship matrix and the feature matrix. Therefore, GNN can take advantage of the
graph structure and update the feature information of each vertex iteratively. Endow-
ing Eucludiean GNN with hyperbolic geometry can make it superior in capturing graph
structure [52]. Recently, plenty of geometric GNN research has investigated how to in-
corporate GNN with hyperbolic manifold to benefit from a neighborhood with a highly
organized structure.

To make full use of the rich geometric information in the graph, geometry inter-
action learning (GIL) [53] incorporates Euclidean space with hyperbolic geometry by
exponential and logarithmic transformations. Moreover, learnable message passing pa-
rameters are optimized on the Möbius manifold. To allow each node to determinate
the importance of each geometry space freely, the GIL framework employs a flexible
dual-space to model both low-dimensional regular data and complex hierarchical struc-
tures. A broad spectrum of experiments show that the GIL method is adaptative to node
classification and link prediction tasks.

Observing that GCN cannot cope with changes in static structure information, Liu
et al. [75] put forward a manifold regularized dynamic graph convolutional network
(MRDGCN), which integrated manifold regularization into GCN to model dynamic
structure information. MRDGCN automatically updates the structure information be-
fore convengence, which makes up for GCN’s inability to remain optimal in pace with
the learning process. Considerable comparative experiments on human activity datasets
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and citation network datasets evaluate that MRDGCN outperforms GCN and other
semi-supervised learning methods.

4.4 Geometric Optimization for Other Deep Learning Methods
Robust Time Series Prediction. Considering that noises and outliers are inevitable
and important for system modeling, Feng et al. [76] put forward a robust manifold
broad learning system (RM-BLS) for time series prediction with large-scale noisy dis-
turbations. RM-BLS applies low-rank constraint so that features spoiled by perturba-
tions can be abandoned by feature selection. Furthermore, RM-BLS can also abandon
features that are not satisfied to low-dimensional manifold embedding. In addition to
the low-rank manifold, [76] also considers Stiefel manifold optimization and satisfies
orthogonal constraints by Cayley transformation and curvilinear search algorithm.

Medical Reconstruction. Geometric optimization have played an essential role
in the medical field, such as magnetic resonance imaging (MRI) for cardiac diagno-
sis. Dynamic MR can be optimized on a low-rank tensor manifold [77] to seize the
powerful temporal connection between dynamic signals. Moreover, the iterative re-
construction process is flattened to a neural network for acceleration, called dubbed
Manifold-Net. To recover free breathing and ungated cardiac MRI data, Biswas et al.
[78] creatively combined CNN with smoothness regularization on manifolds (SToRM)
prior. The Laplacian matrix L in SToRM tr(XTLX) is defined on the manifold to
model similarities between data beyond the ambient space. To utilize the manifold
structure and patient-specific information, data denoizing based on CNN and SToRM
together with conjugate gradients (CG) step take place alternatively. Experiments con-
firm that combining CNN with SToRM leads to a fast and high quality reconstruction
of MRI data even when the down sampling frequency is less than 8.2s of acquisition
time per slice.

Transfer Learning. To maximize the utilization of finite computing resources,
transfer learning aims to reuse the neural network, which is trained for task A, to
address a similar task B. Knowledge distillation (KD) is intended to transfer model
knowledge from a well-trained model (teacher) to a compact model (student) with soft
labels. Zhang et al. [79] devised an end-to-end deep manifold-to-manifold transform-
ing network (DMT-Net) for discriminative feature learning. However, reconstructing
a more discriminative SPD manifold from the original one is challenging. DMT-Net
designs a local SPD convolutional layer and the non-linear SPD activation layer to deal
with it. Huang et al. [80] designed a manifold-to-manifold transformation matrix W
and constrained the optimization to reside on the SPD manifold. Moreover, the intra-
class and inter-class dissimilarity graphs are built under W . Hence, they can represent
local geometry structures and learn the discriminative feature of SPD data.

Optimal Transport. Optimal transport aims to measure the distance between two
probability distributions by using transport plan Γ and cost matrix C , i.e.,

min
Γ∈Π(µ1,µ2)

trace(ΓTC), (61)

where Π(µ1, µ2) consists of joint distributions with marginals µ1 and µ2. Supposing
µ1 has m points and µ2 has n points, the size of both Γ and C is m × n. There are
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works that have explored the application of geometric optimization in optimal trans-
port problems [81]. By using the Riemannian gradient descent (RGD) algorithm, [82]
explored how to convert optimal transport problems with different regularizations to
the optimization problem on the coupling matrix manifold (CMM). To clarify the ge-
ometry optimization process, [82] took classic optimal transport problems (e.g., the
entropy-regularized [83] and power-regularized optimal transport problems [84]) as an
example. Observing that the constrained set Π(µ1, µ2) has a differentiable manifold
structure, [85] and [86] solved the optimal transport problem on a generalized doubly
stochastic manifold, broadening the application of manifold geometry in non-linear op-
timal transport problems. In addition to general problems, [86] discusses how to adapt
the above geometric optimization framework to particular ones, such as problems with
sparse optimal transport map and problems of how to learn multiple transport plans
simultaneously.

Robots. Bayesian optimization is an important technology for robots since it is
effective in solving optimization problems such as controller tuning, policy adaptation,
and robot design. Bayesian optimization is based on the Gaussian Process that relies
on domain knowledge exploration. Therefore, geometry-aware Bayesian optimization
emerges as a promising paradigm that can incorporate domain geometry into the op-
timization algorithm. There are many commonly used kernels in Gaussian Process,
among which Matérn kernel is used to study geometry-aware Gaussian process and
Bayesian optimization. Euclidean Matérn kernel is defined as follows,

K(x, x′) = exp(−‖x− x
′‖2

2σ2
), (62)

where σ is a free parameter. Matérn kernel is a commonly used kernel function when
constructing stationary Gaussian process. Borovitskiy et al. [87] pointed out that gen-
eralizing the Matérn kernel to the Riemannian manifold merely by replacing Euclidean
norms ‖x− x′‖2 with geodesic distances dg(x− x′) could not produce a well-defined
kernel function. To construct the Riemannian Matérn kernel defined by stochastic
partial differential equations, Borovitskiy et al. proposed to obtain Laplace–Beltrami
eigenpairs for the specific manifold and approximate the infinite sum, which forms
the basis for geometry-aware Bayesian optimization on robotics. However, the above
method suffers from two problems [88], i.e., i) the amount of computation increases
exponentially with the manifold dimension; and ii) such method is inapplicable to non-
compact manifolds. To address these problems, Jaquier et al. [88] observed a general
expression of Matérn kernels, which is helpful to generalize them to the torus and
sphere manifold. More importantly, Matérn kernels can be generalized to non-compact
manifolds (e.g., SPD matrix manifold and the Hyperbolic space) by using the general
expression.

Continual learning. Continual learning aims to remember and use the experi-
ence of previous tasks to learn new tasks, which raises requirements for the memory
ability of neural networks. Chaudhry et al. [89] proposed to achieve the purpose of
continual learning on the low-rank orthogonal manifold. The core idea of this method
is to project the gradient into disjoint low-rank orthogonal subspace by introducing
task-specific projection matrix in the last second layer, which can make the gradient
between different tasks orthogonal and alleviate catastrophic forgetting. The concept
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of gradient orthogonality was first proposed in [90]. The essential reason for catas-
trophic forgetting is that learning new tasks will affect the parameters learned on the
old tasks. Updating parameters in the direction orthogonal to the gradient of the old
tasks can not only learn new tasks but also keep the loss of the old tasks, which alle-
viates catastrophic forgetting. In the deep neural network, the chain derivation process
can be approximately regarded as the linear transformation of the gradient, which will
destroy the orthogonality of the gradient of the earlier layers and lead to catastrophic
forgetting. To ensure the orthogonality of the gradient between different tasks, [89]
constrains parameters on the Stiefel manifold, making this linear transformation an or-
thogonal transformation.

5 Toolbox
The success of the Tensorflow platform and PyTorch framework in deep learning shows
that toolboxes can conveniently help build neural networks. There are valuable tool-
boxes designed for quickly setting up manifolds optimization. Manopt [91], Pymanopt
[92], McTorch [93], and Geomstats [94] are classic toolboxes that implement manifold
geometries and optimization algorithms. Moreover, they are user-friendly and time-
saving. Table 2 compares these toolboxes from the aspect of applicable manifolds and
geometry operations.

Manopt, which is built on Matlab, is a helpful tool to handle a variety of geometry
constraints (e.g., different manifold structures introduced in 2.3). A Riemannian op-
timization in Manopt [91] is designed as a problem including manifold structures that
the search space is confined to. The cost function, or optimization object, is included
in the above optimization problem as well. If needed, a problem structure can also
cover derivatives of the objective function. In Manopt, solvers are functions that give
a general implementation to Riemannian optimization algorithms, including steepest-
descent, conjugate-gradient, and Riemannian trust-regions algorithms. Since solvers in
Manopt is designed to minimize the cost function, the cost function should be multi-
plied by a negative one if it is a maximization problem.

Pymanopt [92] extends Manopt to python. Similar to the usage of Manopt in Mat-
lab, a Riemannian optimization in Pymanopt should be initialized with a predefined
manifold and cost function. Equipped with different solvers, the optimization process
and result can be diverse. Pymanopt covers all sorts of smooth manifolds such as the
oblique manifold, sphere manifold, and Graßmann manifold. Numerable optimization
algorithms are included as solvers, for instance, trust-regions, conjugate-gradient, and
steepest-descent algorithms are contained by Pymanopt.

Manopt and Pymanopt are limited to shallow learning optimizations and are not
applicable to deep learning optimizations. To fill the deficiency of Manopt and Py-
manopt, McTorch has been implemented by extending Pytorch [93], a handy frame-
work for deep learning. As a result, it implements a general solution for deep learning
optimizations on the manifold. Unlike Manopt and Pymanopt, Riemannian optimiza-
tion in McTorch does not need to define problems, manifolds, and solvers. Similar to
Pytorch, Riemannian optimization in McTorch only needs to define modules and op-
timizers such as Adam. Network modules inherited from torch.nn.module initialize

24

chenz
高亮

chenz
高亮

chenz
高亮



layers with manifolds and forward functions.
Geoopt [95], which is implemented on top of Pytorch, has a cheaper infrastructure

cost than McTorch. Extended from torch.nn.Module.parameters, Geoopt supports
tensors and parameters on the manifold. Moreover, Geoopt provides Riemannian op-
timizers, for instance, RiemannianSGD and RiemannianAdam are available and
inherited from torch.optim.SGD and torch.optim.Adam, respectively [95].

Another toolbox, Geomstats, is composed of two core modules, i.e., geometry and
learning [94]. The former implements Riemannian metrics, including geodesic dis-
tance. The latter implements statistics and learning algorithms inherited from Scikit-
Learn classes such as K-Means and PCA. Compared with Geomstats, other toolboxes
mentioned are less modular and lack statistical learning algorithms. Taking clustering,
one of the classic statistical learning problems, as an example, Geomstats encapsulates
the class Online K-Means with the parameter metric. To perform clustering operation,
users only need to initialize the Riemannian metric and call fit function of class Online
K-Means as they do in Scikit-Learn, which is easy and convenient.

TheanoGeometry [96] uses Theano, a python-based and research-oriented frame-
work, to implement differential geometry and non-linear statistics problems. Theano-
Geometry outperforms other manifold toolboxes since it can handle symbolic calcula-
tions. Thus, Theano code can be generated from symbolic expression directly, where
non-linear symbolic statistics can be optimized with a trivial amount of code. Theano-
Geometry goes further beyond efficient symbolic computation. It implements Rie-
mannian geometry such as geodesic equations, parallel transport, and curvature with
automatic differentiation features [97].

6 Performance Evaluation
Table 4, 5, 6, 7, 8 compare the performance of aforementioned geometric optimization
methods on various visual tasks (e.g., character recognition, emotion recognition, act
recognition, and scene recognition tasks). Each image dataset used in different visual
tasks is summarized in Table 3.

Table 4 shows that GORU [74] outperforms other ORNNs on the MNIST dataset.
GORU adds a forget gate, which enables ORNN to filter out irrelevant information.
Taking advantage of the surjective exponential map, expRNN [13] realizes orthogonal
parameterization with a more straightforward way. Unlike expRNN, uRNN [14] uses
simple unitary matrices to construct the unitary hidden-to-hidden matrix. However,
such matrix construction method fails to represent all N ×N unitary matrices. There-
fore, Scott Wisdom et al. [69] proposed full-capacity uRNN to overcome that bot-
tleneck of uRNN. Using regularization terms to realize orthogonal parameterization,
soRNN [72] explores the effect of soft orthogonal constraints on RNN. ORNN [73]
exploits the householder matrix to enforce an orthogonal constraint on RNN, which
mitigates the considerable time complexity of unitary matrices. Table 4 shows that
combining the forget gate, or noise filter, with ORNN improves the performance of
ORNN.

Table 5 shows that SPDNet [50] and GrNet [51] can achieve better classification re-
sults than state-of-the-art methods on AFEW dataset [99]. The following methods for
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comparison are shallow learning methods applying manifold structure: Expression-
lets on Spatio-Temporal Manifold (STM-ExpLet) [107], Riemannian Sparse Repre-
sentation combining with Manifold Learning on the manifold of SPD matrices (RSR-
SPDML) [32], Discriminative Canonical Correlations (DCC) [109], Graßmann Dis-
criminant Analysis (GDA) [56], Grassmannian Graph-Embedding Discriminant Anal-
ysis (GGDA) [118], and Projection Metric Learning (PML) [110]. Deep Second-order
Pooling (DeepO2P) [108] is a traditional CNN model using the standard optimization
method. SPDNet exploits the Stiefel manifold parameterization by BiMap layers and
introduces non-linearity into the network by ReEig layers. Experiments prove that
using the manifold geometry in deep learning optimization can improve network per-
formance. The LogEig layer is crucial to Riemannian computing and contributes to the
emotion classification success of SPDNet. The success of GrNet shows that optimiz-
ing on the Graßmann manifold and building a geometry-aware deep learning network
is significant for learning representative features and classifying emotions with a rela-
tively high level of accuracy.

Table 5 presents that the manifold-based classification method proposed by Hariri
et al. [59] achieves the highest precision on BU-3DFE and Bosphorus datasets. Hariri
et al. used a Graph-Matching kernel and classified facial expression data with SPD
covariance descriptors. It outperforms Tree-PNN [111] and XP Huynh [113] on the
BU-3DFE dataset by a narrow margin, and the latter two methods use traditional CNN.
The manifold-based method proposed by Hariri et al. greatly exceeds the methods
proposed by Stefano Berretti [112] and Amal Azazi [114] by approximately 15% and
8% on BU-3DFE dataset. In particular, the latter two methods apply SIFT and Speed
Up Robust Features descriptors. On the Bosphorus dataset, the classification accuracy
of Hariri et al.’s method [59] is almost far higher than all state-of-the-art methods. For
example, it is even 30% better than the ZernikeMoments [117]. The low-accuracy
methods use local features rather than SPD covariance matrices. Overall, these results
indicate that using geometry constraints is vital for feature representation and emotion
recognition.

Table 6 shows that SPDNet achieves the highest accuracy on the action recog-
nition task, followed by GrNet. As Table 7 shows, SPDNet and GrNet outperform
state-of-the-art methods on the face recognition task. The eigenvalue decomposition
in SPDNet introduces non-linearity and the QR decomposition in GrNet performs re-
orthonormalization, both of which contribute to the classification accuracy. Therefore,
using matrix decomposition is vital for exploring manifold constrained parameters.
The success of the deep manifold network on the action recognition and face recog-
nition task shows that optimizing deep learning on the manifold helps learn favorable
features and classify human actions better.

As shown in Table 8, Scene Recognition by Manifold Regularized Deep Learn-
ing Architecture (SRMR) [60] outperforms state-of-the-art non-manifold methods on
all three scene recognition datasets. Lazebnik et al. [120] partitioned images into
fine subregions for image matching. Dixit et al. [121] formulated Bayesian adapta-
tion for scene image classification. Kwitt et al. [122] recognized scene images on the
statistical (semantic) manifold. From the perspective of information geometry, they
can consider the parameter vectors as Riemannian manifolds. Goh et al. [123] used
SIFT descriptors and represented vectorially for image recognition. Li et al. [104]
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interpreted the semantic components of images. Wu and Rehg [124] used the His-
togram Intersection Kernel (HIK) for sports game classification. Donahue et al. [124]
used extracted features for novel generic tasks. SRMR’s incredible success on scene
recognition tasks shows that manifold regularizations are significant for improving the
classification accuracy of deep learning. Experimental results vary with different net-
work architecture settings for the same manifold constrained method. For example,
SPDNet [50] has four different architecture configurations: i) SPDNet-0BiRe without
using blocks of BiMap/ReEig, ii) SPDNet-1BiRe using 1 block of BiMap/ReEig, iii)
SPDNet-2BiRe using 2 blocks of BiMap/ReEig, and iv) SPDNet-3BiRe using 3 blocks
of BiMap/ReEig. GrNet [51] has three different configurations: i) GrNet-0Block with-
out using blocks of Projection-Pooling, ii) GrNet-1Block using 1 block of Projection-
Pooling, and iii) GrNet-2Block using 2 blocks of Projection-Pooling. These methods
studied how different architecture settings affected classification accuracy. Note that
our article follows the raw settings reported from corresponding articles. On that ac-
count, this article did not present classification accuracy under different architecture
configurations.

7 Conclusions and Future Work
In this article, a survey on recent advances in applying geometric optimization to deep
learning is presented. This article reviewed progress of optimizing deep learning net-
works on manifolds according to the classification of deep learning backbones (e.g.,
CNN, RNN, and GNN). In particular, this article discussed the theory and toolboxes
for geometric optimization. Although geometric optimization brings various advan-
tages to deep learning methods, it still suffers from the following challenges.

- Dataset-Oriented Geometric Optimization. Various methods (e.g., uRNN [14]
and Cheap Orthogonal Constraints in Neural Networks [13]) utilize small image
datasets such as MNIST handwritten digits to validate the effectiveness of geomet-
ric optimization. Whether geometric optimization can achieve good performance on
enormous and complicated datasets such as Penn Tree Bank (PTB) needs further
research. This prompts researchers to use more challenging datasets to verify the
performance of deep learning techniques after applying geometric optimization.

- Model-Oriented Geometric Optimization. Although optimizing deep learning
networks such as CNN and RNN on the Riemannian manifold has been proven suc-
cessful, geometric optimization has not been applied to all deep learning methods.
For example, there is a lack of research in optimizing reinforcement learning and
federated learning on manifolds, which is crucial in automatic control and privacy
protection. This forces researchers to further explore the potential and benefit of
optimizing more deep learning networks from a geometric perspective.

- Manifold-Oriented Geometric Optimization. Manifold geometry plays an impor-
tant role in geometric optimization and different manifolds have different applica-
tions. For instance, the orthogonal manifold can be used to alleviate feature re-
dundancy and oblique manifold can be utilized for optimizing dictionary learning.
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However, applications of certain manifolds such as centered matrix manifold remain
blank in the literature. This motivates researchers to exploit and use manifold struc-
tures for geometric optimization applications as much as possible.

This article demonstrated that geometric optimization can grasp advantage of the ge-
ometry information of search space, speed up the optimization process, and mitigate
gradient explosion and vanishing problems. However, considering unexplored deep
learning methods such as reinforcement learning, together with unused manifold struc-
tures such as centered matrix manifold, it is still a huge challenge to push the bound-
aries of geometric optimization in deep learning.
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Table 2: Toolboxes Comparison in Terms of Manifolds and Geometry
Toolboxes Manifolds Geometry

Manopt [91]

Euclidean manifold,
symmetric matrices,
sphere, complex circle,
SO (n), Stiefel,
Graßmannian, oblique
manifold, SPD (n),
fixed-rank PSD matrices

Exponential and
logarithmic maps,
tangent space
projector, retraction,
vector transport,
egrad2rgrad,
ehess2rhess,
vector, metric,
distance, norm

Pymanopt [92] Same as Manopt Same as Manopt
McTorch [93] Stiefel, SPD (n) Same as Manopt

Geoopt [95]
Euclidean manifold,
sphere, Stiefel,
Poincaré ball

Same as Manopt

Geomstats [94]

Euclidean manifold,
Minkowski and
hyperbolic space,
sphere, SO (n), SE (n),
GL (n), Stiefel,
Graßmannian, SPD (n),
discretized curves,
Landmarks

Exponential and
logarithmic maps,
parallel transport,
inner product,
distance, norm,
Levi-Civita conne-
ction, geodesics,
invariant metrics

TheanoGeometry [96]
Sphere, ellipsoid,
SPD (n), Landmarks,
GL (n), SO (n), SE (n)

Inner product,
exponential and
logarithmic maps,
parallel transport,
Christoffel symbols,
Riemann, Ricci and
scalar curvature,
geodesics,
Fréchet mean
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Table 3: Datasets for Different Visual Tasks
Vision Task Dataset Total Samples Categories Image Size

Character Recognition MNIST[98] 70000 10 32 × 32

Emotion Recognition
AFEW [99] 1345 7 400 × 400

NABU3DFE [100] 2500 6 NA
Bosphorus dataset [101] 4666 6 NA

Action Recognition HDM05 [98] 18000 130 93 ×93
Face Verification PaSC [102] 12529 NA 401× 401

Scene Recognition
Scene15 [103] NA 15 300× 250

Eight sports event categories[104] NA 8 NA
SUN [105, 106] 899 NA NA

Table 4: Comparison Results of Character Recognition
Dataset Method Accuracy

MNIST [98]

uRNN [14] 97.6%
full-capacity uRNN [69] 96.9%

expRNN [13] 98.7%
soRNN [72] 97.3%
ORNN [73] 97.2%
GORU [74] 98.9%

Table 5: Comparison Results of Emotion Recognition
Dataset Method Accuracy

AFEW [99]

STM-ExpLet [107] 31.73%
RSR-SPDML [32] 30.12%

DeepO2P [108] 28.54%
DCC [109] 25.78%
GDA [56] 29.11%

GGDA [56] 29.45%
PML [110] 28.98%

SPDNet [50] 34.23%
GrNet [51] 34.23%

BU-3DFE [100]

Tree-PNN [111] 93.23%
Berretti et al. [112] 77.53%
Huynh et al. [113] 92.73%
Azazi et al. [114] 85.71%
Hariri et al. [59] 93.50%

CSLBP [115] 76.98 %
CLBP [116] 76.56%

Bosphorus ZernikeMoments [117] 60.53%
[101] Azazi et al. [114] 84.10%

Hariri et al. [59] 90.01%
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Table 6: Comparison Results of Action Recognition
Dataset Method Accuracy

HDM05 [98]

RSR-SPDML [32] 48.01%
DCC [109] 41.74%
GDA [56] 46.25%

GGDA [118] 46.87%
PML [110] 47.25%

SPDNet [50] 61.45%
GrNet [51] 59.23%

Table 7: Comparison Results of Face Recognition
AccuracyMethod PaSC1 [102] PaSC2 [102]

VGGDeepFace [119] 78.82% 68.24%
DeepO2P [108] 68.76% 60.14%

DCC [109] 75.83% 67.04%
GDA [56] 71.38% 67.49%

GGDA [118] 66.71% 68.41%
PML [110] 73.45% 68.32%

SPDNet [50] 80.12% 72.83%
GrNet [51] 80.52% 72.76%

Table 8: Comparison Results of Scene Recognition
Dataset Method Accuracy

Scene15 [103]

Lazebnik et al. [120] 81.2%
Dixit et al. [121] 82.3%
Kwitt et al. [122] 85.4%
Goh et al. [123] 85.4%

SRMR [60] 86.9%

Eight sports
event

categories[104]

Li et al. [104] 73.4%
Kwitt et al. [122] 83.0%

Wu and Rehg [124] 84.3%
SRMR [60] 86.1%

Xiao et al. [105] 27.2%
SUN Kwitt et al. [122] 28.9%
[105] Donahue et al. [125] 30.14%

SRMR [60] 30.3%
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