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EFFICIENT ALGORITHMS FOR INFERENCES ON GRASSMANN MANIFOLDS

Kyle A. Gallivart, Anuj Srivastavg Xiuwen Liu Paul Van Dooreh
Florida State University Universi€ catholique de Louvain
Tallahassee, FL, USA 32306 Louvain-la-Neuve, Belgium
ABSTRACT rotation matrices. A Lie group is a differentiable manifold with

Linear representations and linear dimension reduction techniquesa group structureSO(n) forms a group with matrix multiplica-

are very common in signal and image processing. Many such ap-tlo?l as the ?rt?up opeiaxtlkonh I SlqubSpaC?S lby reprgiented by their
plications reduce to solving problems of stochastic optimizations ohrt ongrma ases IRk ;! t Ien tde equiva endc?: wit (;esplecthto
or statistical inferences on the set of all subspaces, i.e. a Grass'© SU groupSO(n — k) is already accounted for and only the
mann manifold. Central to solving them is the computation of an subgroupSO(k) needs to be removed. In other words, for an

; nxk ; ;
“exponential” map (for constructing geodesics) and its inverse on aorthonormal basis’ € R , all the bases contained in the set

Grassmannian. Here we suggest efficient techniques for these two{Sg :hU ﬁjiogk)}t’ cdalled theprbllt OI Slglspan;he. stame“sqﬁsptac?
steps and illustrate two applications: (i) For image-based objectan should be treated as equivalent. Figure - pictorially ilustrates

recognition, we define and seek an optimal linear representationthIS idea where each subspace, corresponding to an equivalence

using a Metropolis-Hastings type, stochastic search algorithm ondaszr?gzazﬁfé'z%?:ﬁ.teg byrg;/:hrt.lc?(ljllrﬁ_. e well-known result
a Grassmann manifold. (ii) For statistical inferences, we illustrate v g 'S app 1S 10 UtIze W W FESUlts

computation of sample statistics, such as mean and variances, on Eom Lufhgrtoup tgeqry |nt(:]er|c\§(n)g algorlthms cﬁt‘)O(n). Itis wellt
Grassmann manifold. nown that geodesic paths (n) are given by one-parameter

exponential flows, i.et — exp(tB), whereB € R™*" is a skew-
symmetric matrix. Viewingg, » as a quotient space &fO(n)
1. INTRODUCTION one can specify geodesics 6 ;. as well. Geodesics iFO(n)
. . . . _ are also geodesics i@, , as long as they are perpendicular to
Studies of linear systems is very common in all branches of sCi- the orbits generated by the subgroi@ (k) x SO(n — k). This
ence and engineering. Linear systems are both easier to design anﬁlnplies that geodesics i, , are given by one-parameter expo-

analyze, and hence, linear approximations of more general sySantial flowst — exp(tB) where skew-symmetri& is further
tems are quite popular. High dimensional systems are commonly aciricted to be of the form

studied after undergoing linear dimension reduction. Examples in- -

clude image component analysis where images are projected onto B = ( 0o A ) A e ROM—FIxk 1)

low-dimensional (linear) subspaces, such as principal subspaces -4 0 ’

or independent component subspaces, before statistical algorithmpiease refer to [3] for details. Superscriptdenotes the matrix

are applied. In signal processing, the problems of transmitter de-yanspose. The sub-matrik specifies the direction and the speed

tection and tracking using sensor array data are intimately related,y geodesic flow. In Figure 1, the flows should be horizontal, or

to estimation/tracking of principal subspaces of the observed data.perpendicular to the vertical orbits, to be geodesidg,i.

Such problems, and many others, are now being viewed as those Gegdesics are central to solving several problen’@,pn For

of optimization or inferences on Grassmann manifolds, the sets ofjngiance, the solution of an optimization problem can be achieved

linear subspaces of a vector space. _ _ using a piecewise-geodesic flow driven by a gradient vector field
Consider the Grassmann manifold of B#Ulmensmnal_ sub- [1]. G..» becomes a metric space using the geodesic lengths as

spaces oRR", denoted byG., . Several textbooks describe the 5 metric, or one can define means and covariances of probabil-

structure of,, . with a focus on its geometry and calculus. Edel- jiy gistributions ong,, . using geodesic paths. There are two key

man et al. [1] use the differential geometry of Grassman and Othercomputations that are needed in evaluating geodesigs @n Let

orthogonally constrained manifolds in order to provide gradient s s, be two k-dimensional subspaces &, represented by

solutions to optimization problems. Srivastava et al. derived the i, basesS, and Si, respectively, and lett € R Fxk pe

geodesics and analyzed the associated structure via Lie group theany matrix. The process generated by the one-parameter flow

ory [2, 3] for addressing the problem of subspace tracking as thatq,(t) = Qexp(tB)J, whereQ € SO(n) such thatp” Sy = J
of nonlinear filtering onG,, . Liu et al. [4] have described a I,

stochastic gradient technique for solving an optimization problem andJ =
on g, i relating linear representations of images.

In this paper we focus on deriving efficient algorithms for use
in above-mentioned applications. Towards that goal, a convenient
approach is to viewj,, , as the quotient spac®O(n)/(SO(k) x
SO(n — k)) whereSO(n) is the Lie group ofr x n real-valued

} , is a geodesic flow iig,,  that starts from
On—k,&

So. Here, B is the skew-symmetric, block-diagonal matrix given
in Eqn. 1.

We outline three specific tasks for which we provide efficient
algorithms. These tasks are required in any problem of optimiza-
tion or statistical inferences @y, .

*Supported by NSF Grant CCR-9912415. 1. Task 1: Given the skew-symmetric and block-diagonal struc-
T Supported by NSF Grants NMA-201012010 and DMS-0101429. ture of B (Eqn. 1), we are interested in a technique for effi-




@t Sp) @ht( S]) S, itself as shown in Figure 1. Secondly, element§ oklate to

\ / the angles of rotation fror§, to Si.

As Figure 1 suggests, the geodesic connecfingndS; can
be stated in several similar ways depending upon the starting point.
A convenient way is to connect the basgs = SoU; andS; =
S1V1, the so-calledanonical basesThe geodesi@ (t) = Q exp(tB)J
can be re-written in terms of the canonical bases by multiplying on
right by Uy :

() = QexptB)Q" S

= QURMU"Q"S, 2)

whereexp(tB) = UR(t)UT. The matrixU € SO(n) is block

) S _ ) diagonall = < U 0
Fig. 1. A pictorial illustration of Grassmann manifold as a quo- 0 U
tient space.Sy and.S; are bases of two differeri-dimensional U € SO(n — k). The matrixR(t) € R™*™ takes the form:
subspaces dR". Geodesics i, flow perpendicular to the or-

) , whereU; is as defined earlier and

bits. _( R®) 0 aoy - (L@ ()
R(t) = ( 0 Lo ), where R(t) = ( _S(t) T() ) .
The matriced(t), X(t) € R*** are diagonal and nonnegative
cient computation off (¢), for several values aof, without with elementsy; = cos(t6;) ando; = sin(t6;) for 0 < 61 <
resorting to the fullD(n®) exponentiation of3. In Figure - < 6k < m/2 respectively. Thesé;s from the angles of rota-
1, this task amounts to computing the horizontal (broken) tionfromSo toSi. A similar characterization of this geodesic flow
line starting fromSy. can also be reached using the ideas presented in [5]. Substituting

. ) ) . for R(t) in Egn. 2, we obtain:
2. Task 2 GivenSy andS;, one is often interested in finding

an appropriate direction matri# such that geodesic along U(t)
that direction, and starting &, reachesS; in unit time .

In Figure 1 the goal is to find the directid® (and henced)

of geodesic flow from one orbit to another.

QUR(MUT JU, = QUR(t)J
INORY UL T(t)
QU( (1) ) *Q( _0,3(1) ) ®)

3. Task 3 Given Sy and Si, find the geodesic patt¥ that wherels is an(n — k) x k matrix made up of the first columns
starts fromSy and passes through the orbit 8f in unit of Us. In this notation, it can be shown that the sub-mattixc
time. This can be accomplished using the first two tasks but R(*~*) %% jnside the matrix3 (Eqn. 1) has the SVDI = U,0U{,
in cases where we do not need to make explicit the direction where® is a diagonal matrix with elements given Bys.

A of the geodesic flow, it can be done more efficiently. From a practical viewpoint, computation of geodesicg,in.
must have complexity far below th@(n?) implied by the expres-
sionexp(tB). Rotating from oné:-dimensional space or basis to
another can involve at mo8k directions since, in the worst case,
all £ original directions must be replaced byiew ones. The form
é)f R(t) and the fact thaB can have a rank of at mo2k (Eqn. 1)
also support that idea. Therefore, we seek an algorithm that uses
O(nk?) computations for computing geodesics and related terms.

The first computation is for exponentiation while the second one is
for its inverse or “logarithm” org,, . In this paper, we utilize the
geometry ofG,, , and some past results from linear algebra, the
CS decomposition in particular, to derive efficient algorithms for
these two computations. Then, we demonstrate these ideas in th
context of two applications, one in image component analysis and

image-based object recognition and other in computing StatISt'CSFurthermore, if it is necessary to evaluate the geodesic at many

from sampl int . ”
° TE?S, IE.'Z\eepr?s of c;iii];d as follows: Section 2 analyzes eodesié’alues oft, the cost per point must be kept@(rnk). Edelman et
ong arr)ldpuses stgndard results frorﬁ linear al ebra)tlo adgress theas" [1] suggest a form of geodesic that satisfies these computational
.k ; - . 9 - tonstraints when the initial basis(0) is given along with a direc-
three tasks outlined earlier. Section 4 presents two applications of

T nxk - - . .
these ideas in image analysis and sample statistics. tion \Ij(o.) € R™ .We ;eek computationally efficient algorithms
for use in related situations.

Now we return to the three tasks laid out in the introduction.
2. ALGORITHMS FOR EFFICIENT COMPUTATIONS In all these cases we are givSp and need to determine a comple-
tion Q such that)™ Sy = J. This computation can be performed
Let Sp and S; be two matrices ilRR"** whose columns are or- in O(nkQ) computations as described later in Section 2.1.
thogonal bases for the-dimensional spaceS, andS; and@ =

(So Co) be ann x n orthogonal completion of,. The com- Task 1. Here we are given_: (i) a basky for the initial subspace
putation ofQ, given Sy, is discussed later in Section 2.1. Let So onG, x and (i) a matrixA € R %) x k that determines
U:TV{T be a singular value decomposition (SVD) of thex k direction of geodesic flow. The goal is to be sample the resulting

matrix Sg S;. This decomposition is important for several rea- geodesic at various values pincludingt = 1.

sons. First, it helps in finding the nearest elements on the orbit of ~ Let A = U,0©U{ be the compact SVD of the direction matrix.
S given any element on the orbit 6%. For instance, the element ~ From this decomposition, we can determing) and X(¢), and
nearest taSy is S1 ViU while the element nearest & U, Vi’ is along withUs, U substitute them back in Egn. 3 to evaludté).



This idea is computationally feasible for evaluating only a small 2.1. Key Computational Steps
number of points on the geodesic due todh@k?) cost of apply-
ing Q. If the number of points to be evaluated is large, the follow-
ing approach can be utilized. Sin@gt) = Q exp(tB)JU1, we
have

The algorithms discussed above achieve the required complexity
of O(nk?) preprocessing witlD(nk) cost per time point when
sampling the geodesic curve. Algorithms for the SVD can be im-
) plemented reliably [6] and the computation of principal angles and
T(0) = Q ( OA ) Uy = —Cyl,0 = —DO (4) vectors is addressed by@gk and Golub [7]. Stewart discusses a
- reliable algorithm to determine the CS decomposition in [8], and
for D = C,U. Therefore, the work of Paige aqd Wei [9] provides usefull generalizations.
_ - The transformatior) can be computed via Householder re-
W(t) = SoUrI(t) — (CoU2)XE(t) = SolUnI'(t) — DX(). (5) flectors with a complexity 0O (nk?) [6]. Its form can be chosen
To compute®(t), first computeD usingQ, A, ©, andU; (Egn. so that its application to an x k matrix also require®) (nk?).

4), and then substitute them in Egn. 5. An important advantage of HOWever, we can reduce the complexity of produdipgo O(k?)

using the geodesic between the canonical bases, as opposed to ar}W'? insuring stability if we rotate the basis 65, ie,GTSy =
other bases, is that the two matrideg) and ¥ (t) are diagonal G"Sg2 ), whereG' € SO(k) and chosen so that €

only for this representation. In the interest of numerical stability kag is triangular with negative diagonal elements. This requires
one can combine the two steps to obtain the second term in Eqn. 50(k*) computations and we have

as\(0)(0~'%(t)) more reliably.

The matrixD can be computed first i@ (nk?) operations and QT =1, — L-I (I-L)™* ( LT -1, GTSE, ) ,
then the cost of evaluating (¢) at each value of follows with - r SOT?G - - AT T
O(nk) operations. STQo=(Sii Sl )Qo=(SIS%G" Sk+Z"G"Ss, )

Task 2. Here we are given two baseS, and Sy, for the initial where(L — I)Z = ( G"S5 51 — St ).
and final subspaces on the geodesic, and the goal is to find the
direction matrix4A € R ~¥)*% of the geodesic connecting the
two subspaces.

We first compute)™ S, and then compute its thin CS decom-

3. APPLICATIONS

We present two applications of the efficient algorithms described

position, i.e., earlier. One relates to finding the best linear representation of im-
x (1) ages for application in image-based object recognition, while the
QTs, = ( v ) = ( %1 [9 ) —-X(1) vE second deals with computing means and covariances on Grass-
2 0 mann manifolds.
(U 0 (1) v 1. Optimal Component Analysis High dimensionality of ob-
- 0 U, -2(1) 1 served images implies that the task of recognizing objects (from

) - ) ) images) will generally involve excessive memory storage and com-
This decomposition cost9(nk") and may also be viewed (and  putation. It also prohibits effective use of statistical techniques in
computed) as a generalized SVD [6]. Nowis easily recovered  image analysis since statistical models on high-dimensional spaces

by determining® via thearcsin or arccos that is numerically re-  are both difficult to derive and to analyze. This motivates a search
liable given the size of the angle, and evaluatibg= U>0U7 . for representations that can reduce image dimensions or induce
A can be also computed via a numerically more sensitive form representations that are relatively invariant to the unwanted pertur-
A = —YVi57'OU{. Note that if we havé; = 0 (or close to bations. One idea is to project images linearly to some pre-defined
it) then thei-th diagonal element af~'© is set tol in orderto  |ow-dimensional subspace, and use the projected values for ana-
compute the correct values iy lyzing images. For instance, I8tbe ann x k orthogonal matrix
denoting a basis of &-dimensional subspace &f* (n >> k), and
Task 3: Here we are given baseSy and i, for the initial and let I be an image reshaped into anx 1 vector. Then, the vector

final spaces on the geodesic, and the goal is to be sainfile (1) = U”T € R* becomes &-dimensional representation &f
for several values of without explicitly computing the direction  |n this setup, several bases including principal component analysis

matrix A. _ (PCA) and Fisher discriminant analysis (FDA) have widely been

_ From the SVD ofSg'5y = U:I'V{" and Eqn. 2¥(t) = used. Although they satisfy some optimality criteria, they may not

Sol'(t) — DX(t) whereD is as defined earlier. Clearly, we cannot necessarily be optimal for a specific application at hand.

afford to compute all of the large matri? but as before we need We are interested in using linear representations of images in

the directionD in order to have a cost pervalue of O(nk). We recognition of objects from their images, and deffigs) to the

do not haveA so may not use the technique of Task 1. We do, recognition performance on a data set resulting from choaSing

however, haves; = 51Vi. Evaluating the flow at time = 1, we for projecting images int®"* (see [4] for details). We seek optimal

haveS; = Sol'(1) — DX(1), and subspace:S = argmaxg.g , F(S), and utilize the following
D=-Dx(1) =5, —5I(1). algorithm to solve forit.

Now the geodesic flow can be written adi(t) = SoI'(t) +
DO(t), whereQ(t) = (1) S(¢). If 6; is small we set; (t) =
sin(t6;)/sin(0;) ~ t in order to improve numerical reliability.
The computation oD requiresO(nk) and the recurring cost is 1. Calculate the gradient direction matrit(X;) of F using
alsoO(nk). numerical approximations as described in [4].

Algorithm 1 Stochastic Gradient Search Let X (0) € G, be
any initial condition. Set = 0.



2. Generatek(n — k) independent realizationsy;;s, from

standard normal density. Calculate a candidate valie

according to¥ (1) starting fromX in the direction of A+
v DW) (Task 1).

3. ComputeF(Y), F(X¢), and setdF = F(Y) — F(X4).

4. SetX;4+1 = Y with probabilitymin{exp(dF/D;), 1}, else

SetXt+1 = X;.

5. Decrease the temperatufe; to D;1, sett = ¢ + 1, and
go to Step 1.

Shown in Figure 2 are four examples Bf X, ) plotted versus the

timet, each starting from a different initial condition.
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Fig. 2. Plots of F(X%) (top) and geodesic distance & from X,
(bottom) versug for different initial conditions. (a)Xo =PCA,
(b)Xo = ICA. For these curves; = 154 andk = 5.

2. Sample Statistics of SubspacesAny problem of statistical
inference onG,, , requires computation of sample statistics. In
view of the nonlinearity oG, x, it is not straightforward to de-

2. Flow for timee along the geodesic which starts aj and
has velocity vectoB (Task 1). Call the point where you end
up i+, i.e. pi+1 = ¥(e) starting aty; in the direction
given byB.

3. Ifconverged, set = p;. Else sefj = j+1, and go to Step
1.

4. Similar to Step 1, compute the directiaiss for geodesics
from u to S;s. Extract the sub-matriced;s from B;s, and
compute their sample covariance matrix after converting
A;s into column vectors.

4. CONCLUSION

We have presented efficient algorithms for two key tasks in solving
problems on Grassmann manifolds: computation of exponential
map for evaluating geodesics, and computation of its inverse for
direction finding. Our current work focuses on numerical stability

of these algorithms in the context of applications in image analysis.
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