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Clustering on Multi-Layer Graphs via Subspace
Analysis on Grassmann Manifolds
Xiaowen Dong, Pascal Frossard, Pierre Vandergheynst and Nikolai Nefedov

Abstract—Relationships between entities in datasets are often
of multiple nature, like geographical distance, social relationships,
or common interests among people in a social network, for
example. This information can naturally be modeled by a set
of weighted and undirected graphs that form a global multi-
layer graph, where the common vertex set represents the entities
and the edges on different layers capture the similarities of the
entities in term of the different modalities. In this paper, we
address the problem of analyzing multi-layer graphs and propose
methods for clustering the vertices by efficiently merging the
information provided by the multiple modalities. To this end, we
propose to combine the characteristics of individual graph layers
using tools from subspace analysis on a Grassmann manifold. The
resulting combination can then be viewed as a low dimensional
representation of the original data which preserves the most im-
portant information from diverse relationships between entities.
We use this information in new clustering methods and test our
algorithm on several synthetic and real world datasets where we
demonstrate superior or competitive performances compared to
baseline and state-of-the-art techniques. Our generic framework
further extends to numerous analysis and learning problems that
involve different types of information on graphs.

Index Terms—Multi-layer graphs, subspace representation,
Grassmann manifold, clustering.

I. INTRODUCTION

GRAPHS are powerful mathematical tools for modeling
pairwise relationships among sets of entities; they can

be used for various analysis tasks such as classification or
clustering. Traditionally, a graph captures a single form of
relationships between entities and data are analyzed in light
of this one-layer graph. However, numerous emerging appli-
cations rely on different forms of information to characterize
relationships between entities. Diverse examples include hu-
man interactions in a social network or similarities between
images or videos in multimedia applications. The multimodal
nature of the relationships can naturally be represented by a
set of weighted and undirected graphs that share a common
set of vertices but with different edge weights depending on
the type of information in each graph. This can then be repre-
sented by a multi-layer or multi-view graph which gathers all
sources of information in a unique representation. Assuming
that all the graph layers are informative, they are likely to
provide complementary information and thus to offer richer
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cessing Laboratories (LTS4/LTS2), École Polytechnique Fédérale de Lau-
sanne (EPFL), Lausanne, Switzerland (e-mail: xiaowen.dong@epfl.ch; pas-
cal.frossard@epfl.ch; pierre.vandergheynst@epfl.ch).

N. Nefedov is with Signal and Information Processing Laboratory, Eid-
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(a) (b)

Fig. 1. (a) An illustration for a three-layer graph G, whose three layers
{Gi}3i=1 share the same set of vertices but with different edges. (b) A
potential unified clustering {Ck}3k=1 of the vertices based on the information
provided by the three layers.

information than any single layer taken in isolation. We thus
expect that a proper combination of the information contained
in the different layers leads to an improved understanding of
the structure of the data and the relationships between entities
in the dataset.

In this paper, we consider a M -layer graph G with individ-
ual graph layers Gi = {V,Ei, ωi}, i = 1, . . . ,M , where V
represents the common vertex set and Ei represents the edge
set in the i-th individual graph Gi with associated edge weights
ωi. An example of a three-layer graph is shown in Fig. 1 (a),
where the three graph layers share the same set of 12 vertices
but with different edges (we assume unit edge weights for
the sake of simplicity). Clearly, different graph layers capture
different types of relationships between the vertices, and our
objective is to find a method that properly combines the
information in these different layers. We first adopt a subspace
representation for the information provided by the individual
graph layers, which is inspired by the spectral clustering
algorithms [1], [2], [3]. We then propose a novel method
for combining the multiple subspace representations into one
representative subspace. Specifically, we model each graph
layer as a subspace on a Grassmann manifold. The problem
of combining multiple graph layers is then transformed into
the problem of efficiently merging different subspaces on a
Grassmann manifold. To this end, we study the distances
between the subspaces and develop a new framework to merge
the subspaces where the overall distance between the repre-
sentative subspace and the individual subspaces is minimized.
We further show that our framework is well justified by results
from statistical learning theory [4], [5]. The proposed method
is a dimensionality reduction algorithm for the original data;
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it leads to a summarization of the information contained in the
multiple graph layers, which reveals the intrinsic relationships
between the vertices in the multi-layer graph.

Various learning problems can then be solved using these
relationships, such as classification or clustering. Specifically,
we focus in this paper on the clustering problem: we want
to find a unified clustering of the vertices (as illustrated in
Fig. 1 (b)) by utilizing the representative subspace, such that
it is better than clustering achieved on any of the graph
layers Gi independently. To address this problem, we first
apply our generic framework of subspace analysis on the
Grassmann manifold to compute a meaningful summarization
(as a representative subspace) of information contained in
the individual graph layers. We then implement a spectral
clustering algorithm based on the representative subspace. Ex-
periments on synthetic and real world datasets demonstrate the
advantages of our approach compared to baseline algorithms,
like the summation of individual graphs [6], as well as state-
of-the-art techniques, such as co-regularization [7]. Finally, we
believe that our framework is beneficial not only to clustering,
but also to many other data processing tasks based on multi-
layer graphs or multi-view data in general.

This paper is organized as follows. We first review the
related work and summarize the contribution of the paper in
Section II. In Section III, we describe the subspace repre-
sentation inspired by spectral clustering, which captures the
characteristics of a single graph. In Section IV, we review
the main ingredients of Grassmann manifold theory, and
propose a new framework for combining information from
multiple graph layers. We then propose our novel algorithm for
clustering on multi-layer graphs in Section V, and compare its
performance with other clustering methods on multiple graphs
in Section VI. Finally, we conclude in Section VII.

II. RELATED WORK

In this section we review the related work in the literature.
First, we describe briefly graph-based clustering algorithms,
with a particular focus on the methods that have subspace
interpretations. Second, we summarize the previous works
built upon subspace analysis and the Grassmann manifold
theory. Finally, we report the recent progresses in the field
of analysis of multi-layer graphs or multi-view data.

Clustering on graphs has been studied extensively due to its
numerous applications in different domains. The works in [8],
[9] have given comprehensive overviews of the advancements
in this field over the last few decades. The algorithms that
are based on spectral techniques on graphs are of particular
interest, typical examples being spectral clustering [1], [2], [3]
and modularity maximization via spectral method [10], [11].
Specifically, these approaches propose to embed the vertices of
the original graph into a low dimensional space, usually called
the spectral embedding, which consists of the top eigenvectors
of a special matrix (graph Laplacian matrix for spectral cluster-
ing and modularity matrix for modularity maximization). Due
to the special properties of these matrices, clustering in such
low dimensional spaces usually becomes trivial. Therefore,
the corresponding clustering approaches can be interpreted

as transforming the information on the original graph into
a meaningful subspace representation. Another example is
the Principal Component Analysis (PCA) interpretation on
graphs described in [12], which links the graph structure to
a subspace spanned by the top eigenvectors of the graph
Laplacian matrix. These works have inspired us to consider
the subspace representation in Section III.

In the past few decades, subspace-based methods have
been widely used in classification and clustering problems,
most notably in image processing and computer vision. In
[13], [14], the authors have discovered that human faces can
be characterized by low-dimensional subspaces. In [15], the
authors have proposed to use the so-called “eigenfaces” for
recognition. Inspired by these works, researchers have been
particularly interested in data where data points of the same
pattern can be represented by a subspace. Due to the growing
interests in this field, there is an increasingly large number
of works that use tools from the Grassmann manifold theory,
which provides a natural tool for subspace analysis. In [16],
the authors have given a detailed overview of the basics of the
Grassmann manifold theory, and developed new optimization
techniques on the Grassmann manifold. In [17], the author has
presented statistical analysis on the Grassmann manifold. Both
works study the distances on the Grassmann manifold. In [18],
[4], the authors have proposed learning frameworks based on
distance analysis and positive semidefinite kernels defined on
the Grassmann manifold. Other recent representative works
include the studies in [19], [20] where the authors have pro-
posed to find optimal subspace representation via optimization
on the Grassmann manifold, and the analysis in [21] where
the authors have presented statistical methods on the Stiefel
and Grassmann manifolds for applications in vision. Similarly,
the work in [22] has proposed a novel discriminant analysis
framework based on graph embedding for set matching, and
the authors in [23] have presented a subspace indexing model
on the Grassmann manifold for classification. However, none
of the above works considers datasets represented by multi-
layer graphs.

At the same time, multi-view data have attracted a large
amount of interest in the learning research communities.
These data form multi-layer graph representations (or multi-
view representations), which generally refer to data that can
be analyzed from different viewpoints. In this setting, the
key challenge is to combine efficiently the information from
multiple graphs (or multiple views) for learning purposes. The
existing techniques can be roughly grouped into the following
categories. First, the most straightforward way is to form a
convex combination of the information from the individual
graphs. For example, in [24], the authors have developed a
method to learn an optimal convex combination of Laplacian
kernels from different graphs. In [25], the authors have pro-
posed a Markov mixture model, which corresponds to a convex
combination of the normalized adjacency matrices of the
individual graphs, for supervised and unsupervised learning. In
[26], the authors have presented several averaging techniques
for combining information from the individual graphs for
clustering. Second, following the intuitive approaches in the
first category, many existing works aim at finding a unified
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representation of the multiple graphs (or multiple views), but
using more sophisticated methods. For instances, the authors
in [6], [27], [28], [29], [30], [31] have developed several
joint matrix factorization approaches to combine different
views of data through a unified optimization framework, where
the authors in [32] have proposed to find a unified spectral
embedding of the original data by integrating information
from different views. Similarly, clustering algorithms based
on Canonical Correlation Analysis (CCA) first project the data
from different views into a unified low dimensional subspace,
and then apply simple algorithms like single linkage or k-
means to achieve the final clustering [33], [34]. Third, unlike
the previous methods that try to find a unified representa-
tion before applying learning techniques, another strategy in
the literature is to integrate the information from individual
graphs (views) directly into the optimization problems for
the learning purposes. Examples include the co-EM clustering
algorithm proposed in [35], and the clustering approaches
proposed in [36], [7] based on the frameworks of co-training
[37] and co-regularization [38]. Fourth, particularly in the
analysis of multiple graphs, regularization frameworks on
graphs have also been applied. In [39], the authors have
presented a regularization framework over edge weights of
multiple graphs to compute an improved similarity graph
of the vertices (entities). In [29], [40], the authors have
proposed graph regularization frameworks in both vertex and
graph spectral domain to combine individual graph layers.
Finally, other representative approaches include the works in
[41], [39] where the authors have defined additional graph
representations to incorporate information from the original
individual graphs, and the works in [42], [43], [44], [45] where
the authors have proposed ensemble clustering approaches
by integrating clustering results from individual views. From
this perspective, the proposed approach belongs to the second
category mentioned above, where we first find a representative
subspace for the information provided by the multi-layer graph
and then implement the clustering step, or other learning tasks.
We believe that this type of approaches is intuitive and easily
understandable, yet still flexible and generic enough to be
applied to different types of data.

To summarize, the main differences between the related
work and the contributions proposed in this paper are the fol-
lowing. First, the research work on Grassmann manifold theory
has been mainly focused on subspace analysis. The subspace
usually comes directly from the data but are not linked to
graph-based learning problems. Our paper makes the explicit
link between subspaces and graphs, and presents a fundamen-
tal and intuitive way of approaching the learning problems
on multi-layer graphs, with help of subspace analysis on the
Grassmann manifold. Second, we show the link between the
projection distance on the Grassmann manifold [16], [18] and
the empirical estimate of the Hilbert-Schmidt Independence
Criterion (HSIC) [5]. Therefore, together with the results in
[4], we are able to offer a unified view of concepts from three
different perspectives, namely, the projection distance on the
Grassmann manifold, the Kullback-Leibler (K-L) divergence
[46] and the HSIC [5]. This helps to understand better the
key concept of distance measure in subspace analysis. Finally,

using our novel layer merging framework, we provide a simple
yet competitive solution to the problem of clustering on multi-
layer graphs. We also discuss the influence of the relationships
between the individual graph layers on the performance of
the proposed clustering algorithm. We believe that this is
helpful towards the design of efficient and adaptive learning
algorithms.

III. SUBSPACE REPRESENTATION FOR GRAPHS

In this section, we describe a subspace representation for
the information provided by a single graph. The subspace
representation is inspired by spectral clustering, which studies
the spectral properties of the graph information for partitioning
the vertex set of the graph into several distinct subsets.

Let us consider an weighted and undirected graph G =
(V,E, ω)1, where V = {vi}ni=1 represents the vertex set and
E represents the edge set with associated edge weights ω,
respectively. Without loss of generality, we assume that the
graph is connected. The adjacency matrix W of the graph
is a symmetric matrix whose entry Wij represents the edge
weight if there is an edge between vertex vi and vj , or 0
otherwise. The degree of a vertex is defined as the sum of the
weights of all the edges incident to it in the graph, and the
degree matrix D is defined as the diagonal matrix containing
the degrees of each vertex along its diagonal. The normalized
graph Laplacian matrix L is then defined as:

L = D−
1
2 (D −W )D−

1
2 . (1)

The graph Laplacian is of broad interests in the studies of
spectral graph theory [47]. Among several variants, we use
the normalized graph Laplacian defined in Eq. (1), since its
spectrum (i.e., its eigenvalues) always lie between 0 and 2, a
property favorable in comparing different graph layers in the
following sections. We consider now the problem of clustering
the vertices V = {vi}ni=1 of G into k distinct subsets such
that the vertices in the same subset are similar, i.e., they
are connected by edges of large weights. This problem can
be efficiently solved by the spectral clustering algorithms.
Specifically, we focus on the algorithm proposed in [2], which
solves the following trace minimization problem:

min
U∈Rn×k

tr(U ′LU), s.t. U ′U = I, (2)

where n is the number of vertices in the graph, k is the
target number of clusters, and (·)′ denotes the matrix transpose
operator. It can be shown by a version of the Rayleigh-Ritz
theorem [3] that the solution U to the problem of Eq. (2)
contains the first k eigenvectors (which correspond to the
k smallest eigenvalues) of L as columns. The clustering of
the vertices in G is then achieved by applying the k-means
algorithm [48] to the normalized row vectors of the matrix
U 2. As shown in [3], the behavior of spectral clustering
can be explained theoretically with analogies to several well-
known mathematical problems, such as the normalized graph-
cut problem [1], the random walk process on graphs [49], and

1We use the notation G for a single graph exclusively in this section.
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problems in perturbation theory [50], [51]. This algorithm is
summarized in Algorithm 1.

Algorithm 1 Normalized Spectral Clustering [2]
1: Input:
W : the n× n weighted adjacency matrix of graph G
k: target number of clusters

2: Compute the degree matrix D and the normalized graph
Laplacian matrix L = D−

1
2 (D −W )D−

1
2 .

3: Let U ∈ Rn×k be the matrix containing the first k
eigenvectors u1, . . . , uk of L (solution of (2)). Normalize
each row of U to get Unorm.

4: Let yj ∈ Rk (j = 1, . . . , n) be the j-th row of Unorm.
5: Cluster yj in Rk into k clusters C1, . . . , Ck using the k-

means algorithm.
6: Output:
C1, . . . , Ck: the cluster assignment

We provide an illustrative example of the spectral clustering
algorithm. Consider a single graph in Fig. 2 (a) with ten
vertices that belong to three distinct clusters (i.e., n=10 and
k=3). For the sake of simplicity, all the edge weights are set
to 1. The low dimensional matrix U that solves the problem
of Eq. (2), which contains k orthonormal eigenvectors of the
graph Laplacian L as columns, is shown in Fig. 2 (b). The
matrix U is usually called the spectral embedding of the
vertices, as each row of U can be viewed as the set of coordi-
nates of the corresponding vertex in the k-dimensional space.
More importantly, due to the properties of the graph Laplacian
matrix, such an embedding preserves the connectivity of the
vertices in the original graph. In other words, two vertices that
are strongly connected in the graph are mapped to two vectors
(i.e., rows of U ) that are close too in the k-dimensional space.
As a result, a simple k-means algorithm can be applied to the
normalized row vectors of U to achieve the final clustering of
the vertices.

Inspired by the spectral clustering theory, one can define
a meaningful subspace representation of the original vertices
in a graph by its k-dimensional spectral embedding, which is
driven by the matrix U built on the first k eigenvectors of
the graph Laplacian L. Each row being the coordinates of the
corresponding vertex in the low dimensional subspace, this
representation contains the information on the connectivity
of the vertices in the original graph. Such information can
be used for finding clusters of the vertices, as shown above,
but it is also useful for other analysis tasks on graphs. By
adopting this subspace representation that “summarizes” the
graph information, multiple graph layers can naturally be
represented by multiple such subspaces (whose geometrical
relationships can be quite flexible). The task of multi-layer
graph analysis can then be transformed into the problem of
effective combination of the multiple subspaces. This is the
focus of the next section.

2The necessity for row normalization is discussed in [3] and we omit this
discussion here. However, the normalization does not change the nature of
spectral embedding, hence, it does not affect our derivation later.

(a) (b)

Fig. 2. An illustration of spectral clustering. (a) A graph with three clusters
(color-coded) of vertices; (b) Spectral embedding of the vertices computed
from the graph Laplacian matrix. The vertices in the same cluster are mapped
to coordinates that are close to each other in R3.

IV. MERGING SUBSPACES VIA ANALYSIS ON THE
GRASSMANN MANIFOLD

We have described above the subspace representation for
each graph layer in the multi-layer graph. We discuss now
the problem of effectively combining multiple graph layers
by merging multiple subspaces. The theory of Grassmann
manifold provides a natural framework for such a problem.
In this section, we first review the main ingredients of the
Grassmann manifold theory, and then move onto our generic
framework for merging subspaces.

A. Ingredients of Grassmann manifold theory

By definition, a Grassmann manifold G(k, n) is the set of
k-dimensional linear subspaces in Rn, where each unique
subspace is mapped to a unique point on the manifold. As
an example, Fig. 3 shows two 2-dimensional subspaces in
R3 being mapped to two points on G(2, 3). The advantage
of using tools from Grassmann manifold theory is thus two-
fold: (i) it provides a natural representation for our problem:
the subspaces representing the individual graph layers can be
considered as different points3 on the Grassmann manifold;
(ii) the analysis on the Grassmann manifold permits to use
efficient tools to study the distances between points on the
manifold, namely, distances between different subspaces. Such
distances play an important role in the problem of merging
the information from multiple graph layers. In what follows,
we focus on the definition of one particular distance measure
between subspaces, which will be used in our framework later
on.

Mathematically speaking, each point on G(k, n) can be
represented by an orthonormal matrix Y ∈ Rn×k whose
columns span the corresponding k-dimensional subspace in
Rn; it is thus denoted as span(Y ). For example, the two
subspaces shown in Fig. 3 can be denoted as span(Y1)
and span(Y2) for two orthonormal matrices Y1 and Y2. The
distance between two points on the manifold, or between two
subspaces span(Y1) and span(Y2), is then defined based on a
set of principal angles {θi}ki=1 between these subspaces [52].
These principal angles, which measure how the subspaces are
geometrically close, are the fundamental measures used to
define various distances on the Grassmann manifold, such as

3We assume that the Laplacian matrices of any pair of the two layers in
the multi-layer graph have different sets of top eigenvectors. In this case,
subspace representations for all the layers will be different from each other.
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Fig. 3. An example of two 2-dimensional subspaces span(Y1) and
span(Y2) in R3, which are mapped to two points on the Grassmann manifold
G(2, 3).

the Riemannian (geodesic) distance or the projection distance
[16], [18]. In this paper, we use the projection distance, which
is defined as:

dproj(Y1, Y2) = (

k∑
i=1

sin2θi)
1
2 , (3)

where Y1 and Y2 are the orthonormal matrices represent-
ing the two subspaces under comparison4. The reason for
choosing the projection distance is two-fold: (i) the projection
distance is defined as the `2-norm of the vector of sines of
the principal angles. Since it uses all the principal angles,
it is therefore an unbiased definition. This is favorable as
we do not assume any prior knowledge on the distribution
of the data, and all the principal angles are considered to
carry meaningful information; (ii) the projection distance can
be interpreted using a one-to-one mapping that preserves
distinctness: span(Y )→ Y Y ′ ∈ Rn×n. Note that the squared
projection distance can be rewritten as:

d2proj(Y1, Y2) =

k∑
i=1

sin2θi

= k −
k∑

i=1

cos2θi

= k − tr(Y1Y1′Y2Y2′)

=
1

2
[2k − 2tr(Y1Y1

′Y2Y2
′)]

=
1

2
[tr(Y1

′Y1) + tr(Y2
′Y2)− 2tr(Y1Y1

′Y2Y2
′)]

=
1

2
||Y1Y1′ − Y2Y2′||2F , (4)

where the third equality comes from the definition of the
principal angles and the fifth equality uses the fact that
Y1 and Y2 are orthonormal matrices. It can be seen from
Eq. (4) that the projection distance can be related to the
Frobenius norm of the difference between the mappings of
the two subspaces span(Y1) and span(Y2) in Rn×n. Because
the mapping preserves distinctness, it is natural to take the
projection distance as a proper distance measure between
subspaces. Moreover, the third equality of Eq. (4) provides an
explicit way of computing the projection distance between two
subspaces from their matrix representations Y1 and Y2. We are

4In the special case where Y1 and Y2 represent the same subspace, we have
dproj(Y1, Y2) = 0.

going to use it in developing the generic merging framework
in the following section.

To summarize, the Grassmann manifold provides a natural
and intuitive representation for subspace-based analysis (as
shown in Fig. 3). The associated tools, namely the principal
angles, permit to define a meaningful distance measure that
captures the geometric relationships between the subspaces.
Originally defined as a distance measure between two sub-
spaces, the projection distance can be naturally generalized to
the analysis of multiple subspaces, as we show in the next
section.

B. Generic merging framework

Equipped with the subspace representation for individual
graphs and with a distance measure to compare different
subspaces, we are now ready to present our generic framework
for merging the information from multiple graph layers. Given
a multi-layer graph G with M individual layers {Gi}Mi=1,
we first compute the graph Laplacian matrix Li for each
Gi and then represent each Gi by the spectral embedding
matrix Ui ∈ Rn×k from the first k eigenvectors of Li, where
n is the number of vertices and k is the target number of
clusters. Recall that each of the matrices {Ui}Mi=1 defines
a k-dimensional subspace in Rn, which can be denoted as
span(Ui). The goal is to merge these multiple subspaces in
a meaningful and efficient way. To this end, our philosophy
is to find a representative subspace span(U) that is close to
all the individual subspaces span(Ui), and at the same time
the representation U preserves the vertex connectivity in each
graph layer. For notational convenience, in the rest of the
paper we simply refer to the representations U and Ui as the
corresponding subspaces, unless indicated specifically.

The squared projection distance between subspaces defined
in Eq. (4) can be naturally generalized for analysis of mul-
tiple subspaces. More specifically, we can define the squared
projection distance between the target representative subspace
U and the M individual subspaces {Ui}Mi=1 as the sum of
squared projection distances between U and each individual
subspace given by Ui:

d2proj(U, {Ui}Mi=1) =

M∑
i=1

d2p(U,Ui)

=

M∑
i=1

[k − tr(UU ′UiUi
′)]

= kM −
M∑
i=1

tr(UU ′UiUi
′). (5)

The minimization of the distance measure in Eq. (5) enforces
the representative subspace U to be close to all the individual
subspaces {Ui}Mi=1 in terms of the projection distance on
the Grassmann manifold. At the same time, we want U to
preserve the vertex connectivity in each graph layer. This
can be achieved by minimizing the Laplacian quadratic form
evaluated on the columns of U , as also indicated by the
objective function in Eq. (2) for spectral clustering. Therefore,
we finally propose to merge multiple subspaces by solving the
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following optimization problem that integrates Eq. (2) and Eq.
(5):

min
U∈Rn×k

M∑
i=1

tr(U ′LiU) + α[kM −
M∑
i=1

tr(UU ′UiUi
′)],

s.t. U ′U = I,

(6)

where Li and Ui are the graph Laplacian and the subspace
representation for Gi, respectively. The regularization param-
eter α balances the trade-off between the two terms in the
objective function.

The problem of Eq. (6) can be solved in a similar man-
ner as Eq. (2). Specifically, by ignoring constant terms and
rearranging the trace form in the second term of the objective
function, Eq. (6) can be rewritten as

min
U∈Rn×k

tr[U ′(

M∑
i=1

Li − α
M∑
i=1

UiUi
′)U ], s.t. U ′U = I.

(7)
It is interesting to note that this is the same trace minimization
problem as in Eq. (2), but with a “modified” Laplacian:

Lmod =

M∑
i=1

Li − α
M∑
i=1

UiUi
′. (8)

Therefore, by the Rayleigh-Ritz theorem, the solution to the
problem of Eq. (7) is given by the first k eigenvectors of
the modified Laplacian Lmod, which can be computed using
efficient algorithms for eigenvalue problems [53], [54].

In the problem of Eq. (6) we try to find a representative
subspace U from the multiple subspaces {Ui}Mi=1. Such a
representation not only preserves the structural information
contained in the individual graph layers, which is encouraged
by the first term of the objective function in Eq. (6), but also
keeps a minimum distance between itself and the multiple
subspaces, which is enforced by the second term. Notice that
the minimization of only the first term itself corresponds to
simple averaging of the information from different graph lay-
ers, which usually leads to suboptimal clustering performance
as we shall see in the experimental section. Similarly, imposing
only a small projection distance to the individual subspaces
{Ui}Mi=1 does not necessarily guarantee that U is a good
solution for merging the subspaces. In fact, for a given k-
dimensional subspace, there are infinitely many choices for the
matrix representation, and not all of them are considered as
meaningful summarizations of the information provided by the
multiple graph layers. However, under the additional constraint
of minimizing the trace of the quadratic term U ′LiU over all
the graphs (which is the first term of the objective function in
Eq. (6)), the vertex connectivity in the individual graphs tends
to be preserved in U . In this case, the smaller the projection
distance between U and the individual subspaces, the more
representative it is for all graph layers.

C. Discussion of the distance function

Interestingly, the choice of projection distance as a similarity
measure between subspaces in the optimization problem of
Eq. (6) can be well justified from information-theoretic and

statistical learning points of view. The first justification is
from the work of Hamm et al. [4], in which the authors have
shown that the Kullback-Leibler (K-L) divergence [46], which
is a well-known similarity measure between two probability
distributions in information theory, is closely related to the
squared projection distance. More specifically, the work in
[4] suggests that, under certain conditions, we can consider a
linear subspace Ui as the “flattened” limit of a Factor Analyzer
distribution pi [55]:

pi : N (ui, Ci), Ci = UiUi
′ + σ2ID, (9)

where N stands for the normal distribution, ui ∈ Rn is the
mean, Ui ∈ Rn×k is a full-rank matrix with n > k > 0 (which
represents the subspace), σ is the ambient noise level, and In
is the identity matrix of dimension n. For two subspaces Ui

and Uj , the symmetrized K-L divergence between the two
corresponding distributions pi and pj can then be rewritten
as:

dKL(p1, p2) =
1

2σ2(σ2 + 1)
(2k − 2tr(UiUi

′UjUj
′)), (10)

which is of the same form as the squared projection distance
when we ignore the constant factor (see Eq. (4)). This shows
that, if we take a probabilistic view of the subspace representa-
tions {Ui}Mi=1, then the projection distance between subspaces
can be considered consistent with the K-L divergence.

The second justification is from the recently proposed
Hilbert-Schmidt Independence Criterion (HSIC) [5], which
measures the statistical dependence between two random vari-
ables. Given KX1

,KX2
∈ Rn×n that are the centered Gram

matrices of some kernel functions defined over two random
variables X1 and X2, the empirical estimate of HSIC is given
by

dHSIC(X1,X2) = tr(KX1KX2). (11)

That is, the larger the dHSIC(X1,X2), the stronger the statistical
dependence between X1 and X2. In our case, using the
idea of spectral embedding, we can consider the rows of
the individual subspace representations Ui and Uj as two
particular sets of sample points in Rk, which are drawn from
two probability distributions governed by the information on
vertex connectivity in Gi and Gj , respectively. In other words,
the sets of rows of Ui and Uj can be seen as realizations of
two random variables Xi and Xj . Therefore, we can define the
Gram matrices of linear kernels on Xi and Xj as:

KXi
= (Ui

′)
′
(Ui
′) = UiUi

′,

KXj
= (Uj

′)
′
(Uj
′) = UjUj

′. (12)

By applying Eq. (11), we can see that:

dHSIC(Xi,Xj) = tr(KXi
KXj

)

= tr(UiUi
′UjUj

′)

= k − d2proj(Ui, Uj). (13)

This shows that the projection distance between subspaces Ui

and Uj can be interpreted as the negative dependence between
Xi and Xj , which reflect the information provided by the two
individual graph layers Gi and Gj .
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Therefore, from both information-theoretic and statistical
learning points of view, the smaller the projection distance
between two subspace representations Ui and Uj , the more
similar the information in the respective graphs that they
represent. As a result, the representative subspace (the solution
U to the problem of Eq. (6)) can be considered as a subspace
representation that “summarizes” the information from the
individual graph layers, and at the same time captures the
intrinsic relationships between the vertices in the graph. As
one can imagine, such relationships are of crucial importance
in our multi-layer graph analysis.

In summary, the concept of treating individual graphs as
subspaces, or points on the Grassmann manifold, permits
to study the desired merging framework in a unique and
principled way. We are able to find a representative subspace
for the multi-layer graph of interest, which can be viewed as
a dimensionality reduction approach for the original data. We
finally remark that the proposed merging framework can be
easily extended to take into account the relative importance
of each individual graph layer with respect to the specific
learning purpose. For instance, when prior knowledge about
the importance of the information in the individual graphs
is available, we can adapt the value of the regularization
parameter α in Eq. (6) to the different layers such that
the representative subspace is closer to the most informative
subspace representations.

V. CLUSTERING ON MULTI-LAYER GRAPHS

In Section IV, we introduced a novel framework for merging
subspace representations from the individual layers of a multi-
layer graph, which leads to a representative subspace that
captures the intrinsic relationships between the vertices of the
graph. This representative subspace provides a low dimen-
sional form that can be used in several applications involving
multi-layer graph analysis. In particular, we study now one
such application, namely the problem of clustering vertices in
a multi-layer graph. We further analyze the behavior of the
proposed clustering algorithm with respect to the properties
of the individual graph layers (subspaces).

A. Clustering algorithm

As we have already seen in Section III, the success of the
spectral clustering algorithm relies on the transformation of
the information contained in the graph structure into a spectral
embedding computed from the graph Laplacian matrix, where
each row of the embedding matrix (after normalization) is
treated as the coordinates of the corresponding vertex in a
low dimensional subspace. In our problem of clustering on
a multi-layer graph, the setting is slightly different, since we
aim at finding a unified clustering of the vertices that takes
into account information contained in all the individual layers
of the multi-layer graph. However, the merging framework
proposed in the previous section can naturally be applied
in this context. In fact, it leads to a natural solution to the
clustering problem on multi-layer graphs. In more details,
similarly to the spectral embedding matrix in the spectral
cluttering algorithm, which is a subspace representation for

one individual graph, our merging framework provides a
representative subspace that contains the information from the
multiple graph layers. Using this representation, we can then
follow the same steps of spectral clustering to achieve the
final clustering of the vertices with a k-means algorithm. The
proposed clustering algorithm is summarized in Algorithm 2.

Algorithm 2 Spectral Clustering on Multi-Layer graphs (SC-
ML)

1: Input:
{Wi}Mi=1: n×n weighted adjacency matrices of individual
graph layers {Gi}Mi=1

k: target number of clusters
α: regularization parameter

2: Compute the normalized Laplacian matrix Li and the
subspace representation Ui for each Gi.

3: Compute the modified Laplacian matrix Lmod =∑M
i=1 Li − α

∑M
i=1 UiUi

′.
4: Compute U ∈ Rn×k that is the matrix containing the first
k eigenvectors u1, . . . , uk of Lmod. Normalize each row
of U to get Unorm.

5: Let yj ∈ Rk (j = 1, . . . , n) be the j-th row of Unorm.
6: Cluster yj in Rk into C1, . . . , Ck using the k-means

algorithm.
7: Output:
C1, . . . , Ck: The cluster assignment

It is clear that Algorithm 2 is a direct generalization of
Algorithm 1 in the case of multi-layer graphs. The main in-
gredient of our clustering algorithm is the merging framework
proposed in Section IV, in which information from individual
graph layers is summarized, prior to the actual clustering
process (i.e., the k-means step) is implemented. This provides
an example that illustrates how our generic merging framework
can be applied to specific learning tasks on multi-layer graphs.

B. Analysis of the proposed algorithm

We now analyze the behavior of the proposed clustering
algorithm under different conditions. Specifically, we first
outline the link between subspace distance and clustering
quality, and then compare the clustering performances in
two scenarios where the relationships between the individual
subspaces {Ui}Mi=1 are different.

As we have seen in Section IV, the rows of the subspace
representations {Ui}Mi=1 can be viewed as realizations of
random variables {Xi}Mi=1 governed by the graph information.
At the same time, spectral clustering directly utilizes Ui for the
purpose of clustering. Therefore, {Xi}Mi=1 can be considered
as random variables that control the cluster assignment of the
vertices. In fact, it has been shown in [3] that the matrix Ui is
closely related to the matrix that contains the cluster indicator
vectors as columns. Since the projection distance can be
understood as the negative statistical dependence between such
random variables, the minimization of the projection distance
in Eq. (6) is equivalent to the maximization of the dependence
between the random variable from the representative subspace
U and the ones from the individual subspaces {Ui}Mi=1. The
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Fig. 4. A 3-layer graph with unit edge weights for toy example 1. The colors
indicate the groundtruth clusters.

TABLE I
ANALYSIS OF TOY EXAMPLE 1.

(a) clustering performances for toy example 1

(b) subspace distances for toy example 1

optimization in Eq. (6) can then be seen as a solution that tends
to produce a clustering with the representative subspace that is
consistent with those computed from the individual subspace
representations.

We now discuss how the relationships between the individ-
ual subspaces possibly affect the performance of our clustering
algorithm SC-ML. Intuitively, since the second term of the
objective function in Eq. (6) represents the distance between
the representative subspace U and all the individual subspaces
{Ui}Mi=1, it tends to drive the solution towards those subspaces
that themselves are close to each other on the Grassmann
manifold. To show it more clearly, let us consider two toy
examples. The first example is illustrated in Fig. 4, where we
have a 3-layer graph with the individual layers G1, G2 and G3

sharing the same set of vertices. For the sake of simplicity, all
the edge weights are set to one. In addition, three groundtruth
clusters are indicated by the colors of the vertices. Table I (a)
shows the performances of Algorithm 1 with individual layers
as well as Algorithm 25 for the multi-layer graph, in terms
of Normalized Mutual Information (NMI) [56] with respect
to the groundtruth clusters. Table I (b) shows the projection
distances between various pairs of subspaces. It is clear that
the layers G1 and G2 produce better clustering quality, and that
the distance between the corresponding subspaces is smaller.
However, the vertex connectivity in layer G3 is not very
consistent with the groundtruth clusters and the corresponding
subspace is further away from the ones from G1 and G2. In
this case, the solution found by SC-ML is enforced to be
close to the consistent subspaces from G1 and G2, hence
provides satisfactory clustering results (NMI = 1 represents
perfect recovery of groundtruth clusters). Let us now consider
a second toy example, as illustrated in Fig. 5. In this example
we have two layers G2 and G3 with relatively low quality
information with respect to the groundtruth clustering of
the vertices. As we see in Table II (b), their corresponding

Fig. 5. A 3-layer graph with unit edge weights for toy example 2. The colors
indicate the groundtruth clusters.

TABLE II
ANALYSIS OF TOY EXAMPLE 2.

(a) clustering performances for toy example 2

(b) subspace distances for toy example 2

subspaces are close to each other on the Grassmann manifold.
The most informative layer G1, however, represents a subspace
that is quite far away from the ones from G2 and G3. At the
same time, we see in Table II (a) that the clustering results are
better for the first layer than for the other two less informative
layers. If the quality of the information in the different layers
is not considered in computing the representative subspace,
SC-ML enforces the solution to be closer to two layers
of relatively lower quality, which results in unsatisfactory
clustering performance in this case.

The analysis above implies that the proposed clustering
algorithm works well under the following assumptions: (i) the
majority of the individual subspaces are relatively informa-
tive, namely, they are helpful for recovering the groundtruth
clustering, and (ii) they are reasonably close to each other on
the Grassmann manifold, namely, they provide complementary
but not contradictory information. These are the assumptions
made in the present work. As we shall see in the next section,
these assumptions seem to be appropriate and realistic in real
world datasets. If it is not the case, one may assume that
a preprocessing step cleans the datasets, or at least provides
information about the reliability of the information in the
different graph layers.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the SC-
ML algorithm presented in Section V on several synthetic
and real world datasets. We first describe the datasets that we
use for the evaluation, and then explain the various clustering
algorithms that we adopt in the performance comparisons. We
finally present the results in terms of three evaluation criteria
as well as some discussions.

5We choose the value of the regularization parameter that leads to the best
possible clustering performance. More discussions about the choices of this
parameter are presented in Section VI.



9

A. Datasets

We adopt one synthetic and two real world datasets with
multi-layer graph representation for the evaluation of the
clustering algorithms. We give a brief overview of the datasets
as follows.

The first dataset that we use is a synthetic dataset, where
we have three point clouds in R2 forming the English letters
“N”, “R” and “C” (shown in Fig. 6). Each point cloud is
generated from a five-component Gaussian mixture model with
different values for the mean and variance of the Gaussian
distributions, where each component represents a class of 500
points with specific color. A 5-nearest neighbor graph is then
constructed for each point cloud by assigning the weight of
the edges connecting two vertices (points) as the reciprocal of
the Euclidean distance between them. This gives us a 3-layer
graph of 2500 vertices, where each graph layer is from a point
cloud forming a particular letter. The goal with this dataset is
to recover the five clusters (indicated by five colors) of the
2500 vertices using the three graph layers constructed from
the three point clouds.

The second dataset contains data collected during the Lau-
sanne Data Collection Campaign [57] by the Nokia Research
Center (NRC) in Lausanne. This dataset contains the mobile
phone data of 136 users living and working in the Lake
Léman region in Switzerland, recorded over a one-year period.
Considering the users as vertices in the graph, we construct
three graphs by measuring the proximities between these users
in terms of GPS locations, Bluetooth scanning activities and
phone communication. More specifically, for GPS locations
and bluetooth scans, we measure how many times two users
are sufficiently close geographically (within a distance of
roughly 1 km), and how many times two users’ devices have
detected the same bluetooth devices, respectively, within 30-
minute time windows. Aggregating these results for a one-
year period leads to two weighted adjacency matrices that
represent the physical proximities of the users measured with
different modalities. In addition, an adjacency matrix for
phone communication is generated by assigning edge weights
depending on the number of calls between any pair of two
users. These three adjacency matrices form a 3-layer graph of
136 vertices, where the goal is to recover the eight groundtruth
clusters that have been constructed from the users’ email
affiliations.

The third dataset is a subset of the Cora bibliographic
dataset6. This dataset contains 292 research papers from
three different fields, namely, natural language processing,
data mining and robotics. Considering papers as vertices in
the graph, we construct the first two graphs by measuring
the similarities among the title and the abstract of these
papers. More clearly, for both title and abstract, we represent
each paper by a vector of non-trivial words using the Term
Frequency-Inverse Document Frequency (TF-IDF) weighting
scheme, and compute the cosine similarities between every
pair of vectors as the edge weights in the graphs. Moreover,
we add a third graph which reflects the citation relationships
among the papers, namely, we assign an edge with unit weight
between papers A and B if A has cited or been cited by B.

Fig. 6. Three five-class point clouds in R2 forming English letters “N”, “R”
and “C”.

This results in a 3-layer graph of 292 vertices, and the goal
in this dataset is to recover the three clusters corresponding to
the different fields the papers belong to.

To visualize the graphs in the three datasets, the spy plot
of the adjacency matrices of the graphs are shown in Fig. 7
(a), (b) and (c) for the synthetic, NRC and Cora dataset,
respectively, where the orderings of the vertices are made
consistent with the groundtruth clusters7. A spy plot is a global
view of a matrix where every non-zero entry in the matrix
is represented by a blue dot (without taking into account
the value of the entry). As shown in these figures, we see
clearly the clusters in the synthetic and Cora datasets, while
the clusters in the NRC dataset are not very clear. The reason
for this is that, in the NRC dataset, the email affiliations used
to create the groundtruth clusters only provides approximative
information.

B. Clustering algorithms

We now explain briefly the clustering algorithms in our
comparative performance analysis along with some imple-
mentation details. We adopt three baseline algorithms as well
as a state-of-the-art technique, namely the co-regularization
approach introduced in [7]. As we shall see, there is an inter-
esting connection between this approach and the proposed al-
gorithm. First of all, we describe some implementation details
of the proposed SC-ML algorithm and the co-regularization
approach in [7]:
• SC-ML: Spectral Clustering on Multi-Layer graphs, as

presented in Section V. The implementation of SC-
ML is pretty straightforward, and the only parameter
to choose is the regularization parameter α in Eq. (6).
In our experiments, we choose the value of α through
multiple empirical trials and report the best clustering
performance. Specifically, we choose α to be 0.64 for
the synthetic dataset and 0.44 for both real world datasets.
We will discuss the choice of this parameter later in this
section.

• SC-CoR: Spectral Clustering with Co-Regularization
proposed in [7]. We follow the same practice as in [7]
to choose the most informative graph layer to initialize

6Available online at “http://people.cs.umass.edu/∼mccallum/data.html” un-
der category “Cora Research Paper Classification”.

7The adjacency matrix for GPS proximity in the NRC dataset is thresholded
for better illustration.

http://people.cs.umass.edu/~mccallum/data.html
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(a)

(b)

(c)

Fig. 7. Spy plots of three adjacency matrices in (a) the synthetic dataset, (b) the NRC dataset, and (c) the Cora dataset.

the alternating optimization scheme in SC-CoR. The
stopping criteria for the optimization process is chosen
such that the optimization stops when changes in the
objective function are smaller than 10−5. Similarly, we
choose the value of the regularization parameter α in SC-
CoR through multiple empirical trials and report the best
clustering performance. As in [7], the parameter α is fixed
in the optimization steps for all graph layers.

Next, we introduce three baseline comparative algorithms
that work as follows:

• SC-Single: Spectral Clustering (Algorithm 1) applied on
a single graph layer, where the graph is chosen to be the
one that leads to the best clustering results.

• SC-Sum: Spectral clustering applied on a global matrix
W that is the summation of the normalized adjacency
matrices of the individual layers:

W =

M∑
i=1

D
− 1

2
i WiD

− 1
2

i . (14)

• SC-KSum: Spectral clustering applied on the summation

K of the spectral kernels [6] of the adjacency matrices:

K =

M∑
i=1

Ki with Ki =

d∑
m=1

uimuim
′, (15)

where n is the number of vertices, d� n is the number of
eigenvectors used in the definition of the spectral kernels
Ki, and uim represents the m-th eigenvector of the
Laplacian Li for graph Gi. To make it more comparable
with spectral clustering, we choose d to be the target
number of clusters in our experiments.

C. Results and discussions

We evaluate the performance of the different clustering
algorithms with three different criteria, namely Purity, Nor-
malized Mutual Information (NMI) and Rand Index (RI) [56].
The results are summarized in Table III (a), (b) and (c) for
the synthetic, NRC and Cora dataset, respectively. For each
scenario, the best two results are highlighted in bold fonts.
First, as expected, we see that the clustering performances
for the synthetic and Cora datasets are higher than that
for the NRC dataset, which indicates that the latter one is
indeed more challenging due to the approximative groundtruth
information. Second, it is clear that SC-ML and SC-CoR
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT CLUSTERING ALGORITHMS ON (A) THE SYNTHETIC DATESET, (B) THE NRC DATASET, AND (C) THE CORA

DATASET.

(a)

(b)

(c)

generally outperform the baseline approaches for the three
datasets. More specifically, although both SC-Sum and SC-
KSum indeed improve the clustering quality compared to
clustering with individual graph layers, they only provide
limited improvement, and the potential drawback for both of
the summation methods is that they can be considered as
similar to building a simple average graph for representing
the different layers of information. Therefore, depending on
data characteristics in specific datasets, this might smooth out
the particular information provided by individual layers, and
thus penalize the clustering performance. In comparison, SC-
ML and SC-CoR always achieve significant improvements in
the clustering quality compared to clustering using individual
graph layers.

We now take a closer look at the comparisons between
SC-ML and SC-CoR. Although the latter is not developed
from the viewpoint of subspace analysis on the Grassmann
manifold, it can actually be interpreted as a process in which
individual subspace representations are updated based on the
same distance analysis as in our framework. In this sense,
SC-CoR uses the same distance as ours to measure sim-
ilarities between subspaces. The merging solution however
leads to a different optimization problem than that of Eq.
(6), which is based on a slightly different merging philos-
ophy. Specifically, it enforces the information contained in
the individual subspace representations to be consistent with
each other. An alternating optimization scheme optimizes,
at each step, one subspace representation, while fixing the
others. This can be interpreted as a process in which one
subspace at each step becomes closer to other subspaces in
term of the projection distance on the Grassmann manifold.
Upon convergence, all initial subspaces are “brought” closer

to each other and the final subspace representation from the
most informative graph layer is considered as the one that
combines information from all the graph layers efficiently. Two
illustrations of SC-CoR and SC-ML are shown in Fig. 8 (a)
and (b), respectively. Therefore, on the one hand, results for
both approaches demonstrate the benefit of using our distance
analysis on the Grassmann manifold for merging information
in multi-layer graphs. Indeed, for both approaches, since the
distances between the solutions and the individual subspaces
are minimized without sacrificing too much of the information
from individual graph layers, the resulting combinations can
be considered as good summarizations of the multiple graph
layers. On the other hand, however, SC-ML differs from SC-
CoR mainly in the following aspects. First, the alternating
optimization scheme in SC-CoR focuses only on optimizing
one subspace representation at each step, and it requires a
sensible initialization to guarantee that the algorithm ends up
at a good local minimum for the optimization problem; it
also does not guarantee that all the subspace representations
converge to one point on the Grassmann manifold (it uses
the final update of the most informative layer for clustering)8.
In contrast, SC-ML directly finds a single representation
through a unique optimization of the representative subspace
with respect to all graph layers jointly, which does not need
alternating optimization steps and careful initializations. These
are the possible reasons that explain why SC-ML performs
better than SC-CoR in our experiments, as we can see in
Table III. Second, it is worth noting that, from a computational
point of view, the optimization process involved in SC-ML is
much simpler than that in SC-CoR. Specifically, the iterative
nature of SC-CoR requires solving an eigenvalue problem for
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(a) (b)

Fig. 8. Illustrations of graph layer merging. (a) Co-regularization [7]: iterative update of the individual subspace representations. The upper index [N ]
represents the number of iterative steps on each individual subspace representation. The final update of the subspace representation for the most informative
graph (U [N ]

1 , shown as a star) is considered as a good combination; (b) Proposed merging framework: the representative subspace (U , shown as a star) is
found in one step.

Fig. 9. Performances of SC-ML and SC-CoR under different values of parameter α in the corresponding implementations.

MN times, where M and N are the number of individual
graphs and the number of iterations needed for the algorithm
to converge, respectively. In contrast, since SC-ML aims at
finding a globally representative subspace without modifying
the individual ones, it needs to solve an eigenvalue problem
only once.

Finally, we discuss the influence of the choice of the
regularization parameter α on the performance of SC-ML.
In Fig. 9, we compare the performances of SC-ML and SC-
CoR in terms of NMI under different values of parameter α
in the corresponding implementations. As we can see, in our
experiments, SC-ML achieves the best performances when α
is chosen between 0.4 and 0.6, and it outperforms SC-CoR for
a large range of α for the synthetic and NRC datasets. For the
Cora dataset, the two algorithms achieve the same performance
at different values of α, but SC-ML permits a larger range of
parameter selection. Furthermore, it is worth noting that the
optimal values for α in SC-ML lie in similar ranges across
different datasets, thanks to the adoption of the normalized
graph Laplacian matrix whose spectral norm is upper bounded
by 2. In summary, this shows that the performance of SC-ML
is reasonably stable with respect to the parameter selection.

VII. CONCLUSIONS

In this paper, we provide a framework for analyzing in-
formation provided by multi-layer graphs and for clustering
vertices of graphs in rich datasets. Our generic approach
is based on the transformation of information contained in
the individual graph layers into subspaces on the Grassmann
manifold. The estimation of a representative subspace can then
be essentially considered as the problem of finding a good

8In [7], the authors have also proposed a “centroid-based co-regularization
approach” that introduces a consensus representation. However, such a rep-
resentation is still computed via an alternating optimization scheme, which
needs a sensible initialization and keeps the same iterative nature.

summarization of multiple subspaces using distance analysis
on the Grassmann manifold. The proposed approach can be
applied to various learning tasks where multiple subspace
representations are involved. Under appropriate and realistic
assumptions, we show that our framework can be applied
to the clustering problem on multi-layer graphs and that it
provides an efficient solution that is competitive to the state-of-
the-art techniques. Finally, we mention the following research
directions as interesting and open problems. First, the subspace
representation inspired by spectral clustering is not the only
valid representation for the graph information. As suggested
by the works in [10], [11], the eigenvectors of the modularity
matrix of the graph can also be used as low dimensional
subspace representation for the information contained in the
graph. Therefore, an interesting problem is to find the most
appropriate subspace representation for the data available,
either they are graphs or of some more general forms. Second,
we believe that better clustering performance can be achieved
if prior information on the data is available, in particular about
the consistency of the information in the different graph layers.
These problems are however left for future studies.
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