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DYNAMICAL LOW-RANK APPROXIMATION∗
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Abstract. For the low-rank approximation of time-dependent data matrices and of solutions to
matrix differential equations, an increment-based computational approach is proposed and analyzed.
In this method, the derivative is projected onto the tangent space of the manifold of rank-r matrices at
the current approximation. With an appropriate decomposition of rank-r matrices and their tangent
matrices, this yields nonlinear differential equations that are well suited for numerical integration.
The error analysis compares the result with the pointwise best approximation in the Frobenius
norm. It is shown that the approach gives locally quasi-optimal low-rank approximations. Numerical
experiments illustrate the theoretical results.
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1. Introduction. Low-rank approximation of unbearably large system matrices
is a basic model reduction technique in many application areas, such as image com-
pression, linear dynamical systems, regularization methods for ill-posed problems, and
latent semantic indexing in information retrieval. In the present paper, we consider
the task of computing low-rank approximations to matrices A(t) ∈ R

m×n depending
smoothly on a real parameter, henceforth referred to as time t. At any time t, a best
approximation to A(t) of rank r is a matrix X(t) in the manifold Mr = Mm×n

r of
rank-r matrices that satisfies

X(t) ∈ Mr such that ‖X(t) −A(t)‖ = min!(1.1)

This is formulated for a matrix norm, which we choose as the Frobenius norm in the
following. The problem is solved by a singular value decomposition (SVD) of A(t),
truncating all singular values after the r largest ones. When the matrix is so large
that a complete SVD is not feasible, a standard approach to obtaining an approximate
solution is based on the Lanczos bidiagonalization process with A(t) [15].

Here, we consider instead the low-rank approximation Y (t) ∈ Mr determined
from the condition that for every t the derivative Ẏ (t), which is in the tangent space
TY (t)Mr, be chosen as

Ẏ (t) ∈ TY (t)Mr such that ‖Ẏ (t) − Ȧ(t)‖ = min!(1.2)

This is complemented with an initial condition, ideally Y (t0) = X(t0). For given
Y (t), the derivative Ẏ (t) is obtained by a linear projection, though onto a solution-
dependent vector space. Problem (1.2) yields an initial value problem of nonlinear
ordinary differential equations on Mr, which becomes numerically efficiently accessi-
ble after choosing a suitable factorization of rank-r matrices.
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There are several independent reasons that make the approach to low-rank ap-
proximation via (1.2) attractive:

(a) Problem (1.2) and its solution algorithm depend on the increments Ȧ(t) in-
stead of the complete data matrix A(t). This appears to be an essential
benefit in processes where Ȧ(t) is much sparser than A(t), e.g., in series of
moving images or in time-varying term-document matrices in information
retrieval (updates are usually small compared to the whole encyclopedia).

(b) Solving the differential equations corresponding to (1.2) requires only multi-
plications of Ȧ(t) with matrices having few (r) columns, but no decomposi-
tions of matrices of the size of A, except for the low-rank approximation to
the initial data A(t0).

(c) The differential equations for Y (t) yield a smooth low-rank approximation.
This is not assured when computing a pointwise best approximation, which
is not unique in general.

(d) Since the problem (1.2) of determining Ẏ (t) for given Y (t) is linear, the ap-
proach extends more easily than (1.1) to structured low-rank approximation,
where Mr is replaced by some submanifold.

(e) In contrast to (1.1), the approach (1.2) extends to the situation where A(t) is
not a given matrix but the unknown solution of a master equation, a matrix
differential equation Ȧ = F (A). In this case, Ȧ(t) in (1.2) is simply replaced
by the approximation F (Y (t)), so that the defect in the differential equation
is minimized:

Ẏ (t) ∈ TY (t)Mr such that ‖Ẏ (t) − F (Y ((t))‖ = min!(1.3)

Some comments and references to these aspects are in order: (a) and (b) are related to
updating problems for low-rank approximations [3, 17], and item (c) to smooth decom-
positions of matrices, in particular to smooth SVD and the corresponding differential
equations [1, 4, 7, 13, 16]. Item (d) refers to structured low-rank approximation as
considered in [5, 6] for time-independent matrices. Item (e) and its generalization to
low-rank approximation of tensors have a surprisingly long history in quantum me-
chanics: in 1930, Dirac [8] proposed to approximate the solution of the time-dependent
Schrödinger equation, the multivariate wave function ψ(x1, . . . , xd, t), by a rank-1 ap-
proximation, namely an (antisymmetrized) tensor product φ1(x1, t) . . . φd(xd, t), and
derived differential equations for the functions φk from a variational principle anal-
ogous to (1.3), which is now known as the Dirac–Frenkel time-dependent variational
principle in the chemical physics literature; see the historical references [8, 9] and, e.g.,
[2, 12]. Since the 1990s, the numerical approach of approximating the wave function by
linear combinations of tensor products obeying differential equations derived from the
Dirac–Frenkel principle (the multiconfiguration time-dependent Hartree or MCTDH
method) has been used with great success for computations in quantum molecular
dynamics [2]. It was, in fact, our work on variational approximations in quantum
dynamics that led us to consider the dynamical low-rank matrix approximation (1.2),
which does not appear to have been used or studied previously.

In the present paper we formulate the differential equations determining the so-
lution of (1.2) and study the approximation properties of this approach, comparing
the deviation from the best approximation, Y (t)−X(t), with the best-approximation
error X(t) −A(t).

In section 2, we describe decompositions of rank-r matrices and their tangent
matrices, and we derive differential equations for the factors that define the rank-r
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approximation Y (t). These differential equations are used for the numerical solution
of the problem. In section 3 we illustrate the approach and the behavior of the
dynamical low-rank approximation (1.2) by numerical experiments.

The analysis of the approximation properties of (1.2) turns out to be more de-
manding than the formal similarity of (1.1) and (1.2) would suggest. In section 4 we
give a preparatory result on orthogonal projections onto tangent spaces of Mr. The
approximation properties of (1.2) are then studied in section 5 under the assumption
that A(t) is a perturbation to a matrix of rank ≤ r. We first give near-optimality
results when the effective rank of A(t) is equal to r (Theorems 5.1 and 5.2), and
then extend the result to the case where r in (1.2) is larger than the effective rank
(Theorem 5.3). A further approximation result concerns systems without gaps in the
distribution of the singular values (Theorem 5.5). Before turning to these approxi-
mation results, however, it should be noted that Y (t) cannot always be expected to
remain close to X(t). This is already seen from the example of finding a rank-1 approx-
imation to diag(e−t, et), where starting from t0 < 0 yields X(t) = Y (t) = diag(e−t, 0)
for t < 0, but Y (t) = diag(e−t, 0) and X(t) = diag(0, et) for t > 0. The best ap-
proximation X(t) here has a discontinuity at t = 0, caused by a crossing of singular
values of which one is inside and the other outside the approximation. Our results
show, however, that Y (t) yields a near-optimal approximation on intervals where a
good smooth approximation exists.

In section 6 we consider the following extensions of the basic approach:
• Regularization: the inverses of ill-conditioned matrices in the differential

equations are replaced by regularized inverses.
• Stabilization: the differential equations are stabilized in order to drive the

dynamical approximation toward the best approximation.
• Structured low-rank approximation: as an example we consider the problem

of approximation by rank-r orthogonal projections.
• Matrix differential equations: we extend the method and the approximation

results to the low-rank approximation (1.3) to solutions of matrix differential
equations Ȧ = F (A).

The present paper deals with theoretical aspects of the dynamical low-rank ap-
proximation. Our very promising first experiences in using this technique for appli-
cations ranging from the compression of time-varying term-document matrices and
of series of images to the computation of blow-up in reaction-diffusion equations are
reported in [14].

Notation. Throughout the paper, ‖ · ‖ is the Frobenius norm,

‖A‖ =

⎛
⎝∑

i,j

a2
ij

⎞
⎠

1/2

,

and 〈·, ·〉 denotes the corresponding inner product, 〈A,B〉 = tr (ATB) =
∑

i,j aijbij .
We make frequent use of the inequality ‖AB‖ ≤ ‖A‖2 · ‖B‖ and occasionally of
‖A‖2 ≤ ‖A‖, where ‖ · ‖2 is the spectral norm.

2. Differential equations for low-rank approximation.

2.1. Decompositions of rank-r matrices and of their tangent matrices.
Every real rank-r matrix of dimension m× n can be written in the form

Y = USV T ,(2.1)
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where U ∈ R
m×r and V ∈ R

n×r have orthonormal columns, i.e.,

UTU = Ir, V TV = Ir(2.2)

(with the identity matrix Ir of dimension r), and S ∈ R
r×r is nonsingular. The SVD

yields S diagonal, but here we will not assume a special form of S. The representation
(2.1) is not unique: replacing U by Ũ = UP and V by Ṽ = V Q with orthogonal

matrices P,Q ∈ R
r×r, and correspondingly S by S̃ = PTSQ, yields the same matrix

Y = USV T = Ũ S̃Ṽ T .

As a substitute for the nonuniqueness in the decomposition (2.1), we will use a
unique decomposition in the tangent space. Let Vm,r denote the Stiefel manifold of
real m× r matrices with orthonormal columns. The tangent space at U ∈ Vm,r is

TUVm,r = {δU ∈ R
m×r : δUTU + UT δU = 0} = {δU ∈ R

m×r : UT δU ∈ so(r)},

where so(r) denotes the space of skew-symmetric real r × r matrices. Consider the
extended tangent map of (S,U, V ) �→ Y = USV T ,

R
r×r × TUVm,r × TV Vn,r → TY Mr × so(r) × so(r),

(δS, δU, δV ) �→ (δUSV T + UδSV T + USδV T , UT δU, V T δV ).

This linear map is an isomorphism, since it is readily seen to have zero null-space,
and since the dimensions of the vector spaces on both sides agree.

Hence, every tangent matrix δY ∈ TY Mr is of the form

δY = δUSV T + UδSV T + USδV T ,(2.3)

where δS ∈ R
r×r, and δU ∈ TUVm,r and δV ∈ TV Vn,r. Moreover, δS, δU, δV are

uniquely determined by δY if we impose the orthogonality constraints

UT δU = 0, V T δV = 0.(2.4)

With the identity matrices Im, In of dimensions m and n, respectively, we define by

PU = UUT , PV = V V T , P⊥
U = Im − PU , P⊥

V = In − PV(2.5)

the orthogonal projections onto the spaces spanned by the columns of U and V , and
onto their orthogonal complements, respectively. Now, (2.3) and (2.4) yield

δS = UT δY V,

δU = P⊥
U δY V S−1,(2.6)

δV = P⊥
V δY TUS−T .

Formulas (2.3) and (2.6) establish an isomorphism between the subspace

{(δS, δU, δV ) ∈ R
r×r × R

m×r × R
n×r : UT δU = 0, V T δV = 0}

and the tangent space TY Mr.
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2.2. The differential equations for the factors. The minimization condition
(1.2) on the tangent space is equivalent to an orthogonal projection: find Ẏ ∈ TY Mr

(we omit the argument t) satisfying

〈Ẏ − Ȧ, δY 〉 = 0 for all δY ∈ TY Mr.(2.7)

From the viewpoint of numerical analysis, this is a Galerkin condition on the tangent
space TY Mr. With this formulation we derive differential equations for the factors in
the representation (2.1).

Proposition 2.1. For Y = USV T ∈ Mr with nonsingular S ∈ R
r×r and with

U ∈ R
m×r and V ∈ R

n×r having orthonormal columns, condition (1.2) or (2.7) is
equivalent to Ẏ = U̇SV T + UṠV T + USV̇ T , where

Ṡ = UT ȦV,

U̇ = P⊥
U ȦV S−1,(2.8)

V̇ = P⊥
V ȦTUS−T ,

with the orthogonal projections P⊥
U = Im − UUT and P⊥

V = In − V V T .

Proof. For u ∈ R
m, v ∈ R

n, and B ∈ R
m×n, we use the identity

〈uvT , B〉 = uTBv.

In view of (2.4) we require UT U̇ = V T V̇ = 0 along the solution trajectory in order to
define a unique representation of Ẏ . We first substitute δY = uiv

T
j , for i, j = 1, . . . , r,

into (2.7), where ui, vj denote the columns of U, V , respectively. This is of the
form (2.3) with δU = δV = 0 and one nonzero element in δS. In this way we find
Ṡ = UT ȦV. Similarly, choosing δY =

∑r
j=1 δu sijv

T
j , i = 1, . . . , r, where δu ∈ R

m

is arbitrary with UT δu = 0, we obtain the stated differential equation for U , and
likewise for δY =

∑r
j=1 ujsjiδv

T with V T δv = 0 the differential equation for V .

Note that with Λ = UT ȦV , the differential equations can be rewritten as

Ṡ = Λ,

U̇S = ȦV − UΛ,(2.9)

V̇ ST = ȦTU − V ΛT .

The matrices U and V retain orthonormal columns when the initial values have this
property: since UT U̇ = 0, we have d

dtU
TU = U̇TU + UT U̇ = 0, and similarly for V .

The differential equations (2.8) are related to differential equations for other
smooth matrix decompositions, in particular the smooth SVD; see [7, 16]. Unlike
the differential equations for singular values given there, no singularities appear in
(2.8) at points where singular values of Y (t) coalesce. Equations (2.8) are in close
relationship with the MCTDH equations [2], specialized to matrices instead of multi-
variate functions and stripped of the Schrödinger equation context.

In the numerical integration of (2.8), the step size control should be based on
the local error in the low-rank approximation Y = USV T , not on the local error in
its factors (this makes a marked difference when S has small singular values). The
orthogonality of the columns of U and V can be preserved in the numerical integration
by the methods described, e.g., in [10, Chapter IV].
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Fig. 3.1. Size of the matrix elements for t = 0, 0.2, . . . , 1, first example, ε = 1e− 3.

3. Numerical experiments. In this section we illustrate the behavior of the
dynamical low-rank approximation method by three numerical examples. In all ex-
periments, we have chosen the step sizes in the numerical integration of the differential
equations (2.8) small enough that the error of the numerical integration is negligible
as compared with the error of the low-rank approximation.

First example. We consider a model problem which was constructed in the fol-
lowing way: first, a 10× 10 matrix of random numbers between 0 and 0.5 was added
to the unit matrix of the same size, giving a matrix with singular values of magni-
tude ≈ 1. Subsequently, this matrix was added as the leading 10 × 10 block to a
100 × 100 matrix with random entries between 0 and 1 multiplied by a perturbation
parameter ε, yielding a matrix A1. Another matrix A2 built in the same way, multi-
plied by exp(t), was added for t ∈ [0, 1]. Finally, to eliminate the possibility that this
particular structure of the matrix might have an influence on our results, we applied
a time-dependent transformation by orthogonal matrices (which does not alter the
singular values, but the left and right singular vectors), which were created by solving
initial value problems Q̇i = TiQi (i = 1, 2) with skew-symmetric Ti and initial values
equal to identity. To illustrate the structure of the resulting matrices,

A(t) = Q1(t)(A1 + etA2)Q2(t)
T ,

we show, in Figure 3.1, the size of the matrix entries for values t = 0, 0.2, 0.4, 0.6, 0.8, 1,
with the perturbation parameter ε = 1e − 3. At t = 0 the large entries are located
in a corner according to the construction of the test example, and afterwards the
orthogonal transformations spread these large matrix elements such that the size of
matrix entries is approximately the same all over.

Figure 3.2 shows the time evolution of the errors ‖Y −X‖, ‖Y −A‖ and the best-
approximation error ‖X − A‖ over the interval [0, 1] for ε = 1e − 3. When we vary
the order of magnitude of the perturbation ε, we observe that the size of the error
of the approximation Y defined by (1.2) as compared with the best approximation
X from (1.1) is proportional to the error of the best approximation. In Table 3.1,
the results are given for ε = 1e − 1, . . . , 1e − 5 at time t = 1, where the maximum
errors on the interval [0, 1] occur. When the parameter ε is decreased by an order
of magnitude, ‖X − A‖ decreases proportionally, and ‖Y − X‖ and ‖Y − A‖ show
the same behavior. We show the errors in the Frobenius norm, and additionally the
norm of S−1. We observe that for an approximation of rank r = 10, ‖S−1‖ does not
increase significantly when ε decreases.
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Fig. 3.2. Errors as a function of t, for r = 10 (left) and r = 20 (right).

Table 3.1

First example, r = 10.

ε ‖X −A‖ ‖Y −X‖ ‖Y −A‖ ‖S−1‖
1e−1 7.3762e+00 1.1808e+01 1.3478e+01 7.9878e−01
1e−2 9.3381e−01 5.1817e+00 5.2203e+00 1.4487e+00
1e−3 1.8293e−01 1.1450e−01 2.1549e−01 2.6232e+00
1e−4 1.8310e−02 1.1368e−02 2.1550e−02 2.6232e+00
1e−5 1.8312e−03 1.7596e−03 2.5395e−03 2.6230e+00

Table 3.2

First example, r = 20.

ε ‖X −A‖ ‖Y −X‖ ‖Y −A‖ ‖S−1‖
1e−1 6.0335e+00 1.2500e+01 1.3094e+01 1.5749e+00
1e−2 6.1246e−01 9.7993e−01 1.0885e+00 1.3569e+01
1e−3 6.1280e−02 9.1726e−02 1.0354e−01 1.3474e+02
1e−4 6.1282e−03 9.0416e−03 1.0298e−02 1.2940e+03

We repeat the same experiments with r = 20, which is larger than the effective
rank 10 of the matrices that are to be approximated; see Table 3.2. We observe
that ‖S−1‖ grows rapidly with ε in this case. However, the approximation quality is
not negatively affected. Rather, the approximation error is smaller than in the case
r = 10, especially for larger ε, since more singular values are taken into account. The
approximation of the dominant singular values and vectors does not suffer from the
bad overall conditioning introduced by the small, insignificant contributions. For small
ε, a similar error behavior as in the case r = 10 is observed. We have not included
the values for still smaller ε, because there the numerical integrator is forced to take
very small step sizes. In this way the large norm of S−1 does have an influence on the
numerical solution. This unfavorable effect can be avoided by using the regularization
of section 6.

Second example. This example demonstrates a scenario which may cause a failure
of the dynamical low-rank approximation because of a discontinuous best approxima-
tion. If the approximation rank r is chosen too small, then singular values which are
initially small may in the course of time become larger than the singular values that
are actually approximated by the algorithm. Thus, a rather large error compared to
the (then discontinuous) best approximation may result when r is too small and the
parameter t varies in an unfavorably large interval without a restart of the algorithm
by recomputing a best approximation. Figure 3.3 shows such a situation for an exam-
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Fig. 3.3. Second example, singular values for r = 5 and r = 20.
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Fig. 3.4. Second example, singular values for r = 5, algorithm restarted at 20 points.

ple constructed by the same principles as for the example discussed above, yet with a
time-dependence of the form cos(t) for t ∈ [0, 10] and with ε = 1e−1. In both figures,
we compare the r largest singular values of A(t) (computed by SVD in every point
considered) with the singular values of the rank-r approximation matrix Y (t). In all
the figures, the largest singular values computed for the exact matrix are given by a
solid line, while those of the dynamical low-rank approximation (at equidistant out-
put points) are represented by dots. If we choose r = 5, then the algorithm does not
approximate the r largest singular values for all t. Rather, for t ≈ 3, one of the sin-
gular values not included in the approximation becomes largest; see Figure 3.3(left).
However, if we choose r = 20, then all the dominant singular values and vectors are
included in the approximation; see Figure 3.3(right). The correct behavior is captured
with r = 5 if the algorithm is restarted 20 times in the interval (Figure 3.4).

Third example. This example is again constructed similarly to the first exam-
ple, A(t) = Q1(t)e

tDQ2(t)
T ∈ R

100×100, where D is a diagonal matrix with entries
2−i/10, i = 1, . . . , 100, in descending order. In contrast to the first example, however,
there is no distinguishable gap in the set of singular values of A(t). Nonetheless,
the dynamical low-rank approximation yields satisfactory results. In Figure 3.5, the
errors at t = 1 are given for a sequence of approximations of increasing rank r, where
r = 3(3)99. We observe that ‖Y −X‖ tends to zero at the same rate as ‖X −A‖.
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Fig. 3.5. Third example, errors at t = 1 as a function of the rank r of the approximation.

4. Tangent space projection and curvature bounds. In the following two
sections we give an analysis that explains the error behavior observed in the numerical
experiments. We begin with some preparation.

Condition (2.7) can be written as the differential equation on Mr,

Ẏ = P (Y )Ȧ,(4.1)

where P (Y ) is the orthogonal projection onto the tangent space TY Mr. Basic prop-
erties of this projection are formulated in the following two lemmas.

Lemma 4.1. The orthogonal projection onto the tangent space TY Mr at Y =
USV T ∈ Mr is given by

P (Y ) = I − P⊥(Y ) with P⊥(Y )B = P⊥
U BP⊥

V(4.2)

for B ∈ R
m×n.

Proof. Proposition 2.1 yields Ẏ = Ȧ − P⊥
U ȦP⊥

V for Ẏ of (2.7) or equivalently of
(4.1). Since this holds for every matrix Ȧ, the result follows.

Lemma 4.2. Let the rank-r matrix X ∈ Mr be such that its smallest nonzero
singular value satisfies σr(X) ≥ ρ > 0, and let Y ∈ Mr with ‖Y −X‖ ≤ 1

8ρ. Then,
the following bounds hold: for all B ∈ R

m×n,

‖
(
P (Y ) − P (X)

)
B‖ ≤ 8ρ−1 ‖Y −X‖ · ‖B‖2,(4.3)

‖P⊥(Y )(Y −X)‖ ≤ 4ρ−1 ‖Y −X‖2.(4.4)

Proof. (a) For X = U0S0V
T
0 ∈ Mr we have the bound ‖S−1

0 ‖2 ≤ ρ−1. Since we
have, by [11, p. 448],

|σr(Y ) − σr(X)| ≤ ‖Y −X‖2 ≤ ‖Y −X‖,

we obtain for ‖Y −X‖ ≤ 1
8ρ that

σr(Y ) ≥ σr(X) − |σr(Y ) − σr(X)| ≥ 7
8ρ,

and hence Y = U1S1V
T
1 with ‖S−1

1 ‖2 ≤ 8
7ρ

−1.
(b) We decompose the matrices on the straight line connecting X and Y as

X + τ(Y −X) = M(τ) + N(τ) with M(τ) ∈ Mr, N(τ) ⊥ TXMr.

A smooth such decomposition exists at least for small τ , but the arguments below
show that it exists in fact for 0 ≤ τ ≤ 1. We denote

Δ = P (X)(Y −X) ∈ TXMr, with ‖Δ‖ ≤ δ := ‖Y −X‖.
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We then have P (X)(M(τ) −X) = τΔ, which yields

P (X)Ṁ(τ) = Δ.

Since (4.2) gives P (X)Ṁ = Ṁ − P⊥
U0
ṀP⊥

V0
, we obtain PU0Ṁ = PU0Δ and ṀPV0 =

ΔPV0 , which implies

UT
0 Ṁ(τ) = UT

0 Δ, Ṁ(τ)V0 = ΔV0.(4.5)

(c) Using Proposition 2.1 with M(τ) ∈ Mr in the role of A(τ) and Y (τ), we get

M(τ) = U(τ)S(τ)V (τ)T ,

where S,U, V satisfy the differential equations

Ṡ = UT ṀV = UTΔV + (U − U0)
TP⊥

U0
ṀP⊥

V0
(V − V0),

U̇ = P⊥
U ṀV S−1 = P⊥

U ΔV0S
−1 + P⊥

U Ṁ(V − V0)S
−1,(4.6)

V̇ = P⊥
V ṀTUS−T = P⊥

V ΔTU0S
−T + P⊥

V ṀT (U − U0)S
−T .

In the second equalities we have used Ṁ = Δ+P⊥
U0
ṀP⊥

V0
and (4.5), and the fact that

P⊥
U0
U0 = 0 and P⊥

V0
V0 = 0. In addition, we have Ṁ = UṠV T + (U̇S)V T +U(V̇ ST )T ,

and hence

Ṁ = Δ + P⊥
U0

(
(U − U0)Ṡ(V − V0)

T + (U̇S)(V − V0)
T + (U − U0)(V̇ ST )T

)
P⊥
V0
.

(4.7)

We will show that these differential equations have a solution up to τ = 1. As long
as ‖U − U0‖ ≤ 1

4 and ‖V − V0‖ ≤ 1
4 , they give the bounds

‖Ṡ‖ ≤ δ + 1
16‖Ṁ‖, ‖U̇S‖ ≤ δ + 1

4‖Ṁ‖, ‖V̇ ST ‖ ≤ δ + 1
4‖Ṁ‖,

which inserted into the equation for Ṁ yield

‖Ṁ‖ ≤ 2δ and ‖Ṡ‖ ≤ 9
8δ, ‖U̇S‖ ≤ 3

2δ, ‖V̇ ST ‖ ≤ 3
2δ.(4.8)

The bound for Ṡ yields ‖S(τ) − S0‖ ≤ 9
8δ for τ ≤ 1. By the assumption δ ≤ 1

8ρ and
the argument in part (a), we thus obtain ‖S(τ)−1‖2 ≤ 4

3ρ
−1 for τ ≤ 1. From the

bound for U̇S we then have

‖U̇‖ ≤ ‖U̇S‖ · ‖S−1‖2 ≤ 3
2δ ·

4
3ρ

−1 = 2ρ−1δ ≤ 1
4 .(4.9)

The same bound holds for V̇ . These bounds show that the differential equation has
a solution on the whole interval 0 ≤ τ ≤ 1 with

‖S1 − S0‖ ≤ 9
8 δ, ‖U1 − U0‖ ≤ 2ρ−1δ, ‖V1 − V0‖ ≤ 2ρ−1δ.(4.10)

(d) The above bounds give immediately

‖P⊥
U1

− P⊥
U0
‖ ≤ 4ρ−1δ, ‖P⊥

V1
− P⊥

V0
‖ ≤ 4ρ−1δ.(4.11)

Formula (4.2) shows (
P (Y ) − P (X)

)
B = P⊥

U0
BP⊥

V0
− P⊥

U1
BP⊥

V1
,
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which together with (4.11) yields the bound (4.3).
(e) With P⊥

U U = 0 and P⊥
V V = 0 we obtain

P⊥(Y )(Y −X) = P⊥
U1

(U1S1V
T
1 − U0S0V

T
0 )P⊥

V1
= −P⊥

U1
U0S0V

T
0 P⊥

V1

= −P⊥
U1

(U1 − U0)S0(V1 − V0)
TP⊥

V1
.(4.12)

We write

(U1 − U0)S0 =

∫ 1

0

U̇(τ)S0 dτ =

∫ 1

0

U̇(τ)S(τ) dτ −
∫ 1

0

U̇(τ)(S(τ) − S0) dτ,

and hence (4.8) and (4.9) yield

‖(U1 − U0)S0‖ ≤ 2δ.

Using this bound and (4.10) in (4.12) finally gives the bound for P⊥(Y )(Y −X).

5. Approximation properties. We give four results that illustrate different
aspects of the dynamical low-rank approximation problem.

5.1. Local quasi optimality. If the low-rank approximation problem (1.1) has
a continuously differentiable best approximation X(t) ∈ Mr, then the error of (1.2)
can be bounded in terms of the best-approximation error ‖X(t) − A(t)‖. The result
involves a bound on Ȧ(t):

‖Ȧ(t)‖2 ≤ μ for 0 ≤ t ≤ t.(5.1)

(For convenience we choose the initial time t0 = 0.)
Theorem 5.1. Suppose that a continuously differentiable best approximation

X(t) ∈ Mr to A(t) exists for 0 ≤ t ≤ t. Let the rth singular value of X(t) have
the lower bound σr(X(t)) ≥ ρ > 0, and assume that the best-approximation error is
bounded by ‖X(t)−A(t)‖ ≤ 1

16ρ for 0 ≤ t ≤ t. Then, the approximation error of (1.2)
with initial value Y (0) = X(0) is bounded in the Frobenius norm by

‖Y (t) −X(t)‖ ≤ 2β eβt
∫ t

0

‖X(s) −A(s)‖ ds with β = 8μρ−1

for t ≤ t and as long as the right-hand side is bounded by 1
8ρ.

Proof. For the best approximation it must hold that X − A is orthogonal to the
tangent space TXMr, or equivalently,

P (X)(X −A) = 0.

We differentiate this relation with respect to t and denote (P ′(X)·B)Ẋ = d
dtP (X(t))B

to obtain

P (X)(Ẋ − Ȧ) +
(
P ′(X) · (X −A)

)
Ẋ = 0.

Since Ẋ ∈ TXMr, we have P (X)Ẋ = Ẋ, and the equation becomes(
I − P ′(X) · (X −A)

)
Ẋ = P (X)Ȧ.(5.2)

Lemma 4.2 and the condition d := ‖X −A‖ ≤ 1
16ρ yield

‖P ′(X) · (X −A)‖ ≤ 8ρ−1d ≤ 1
2 ,
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and hence (5.2) can be solved for Ẋ to yield

Ẋ = P (X)Ȧ + D with ‖D‖ ≤ 16ρ−1dμ = 2βd.

We subtract this equation from (4.1), that is, Ẏ = P (Y )Ȧ, and integrate from 0 to t.
As long as e := ‖Y −X‖ ≤ 1

8ρ, Lemma 4.2 yields

‖
(
P (Y ) − P (X)

)
Ȧ‖ ≤ 8ρ−1eμ = βe,

and hence we obtain

e(t) ≤ β

∫ t

0

e(s) ds + 2β

∫ t

0

d(s) ds.

The result now follows with the Gronwall inequality.

5.2. A farther-reaching error bound. Smaller errors over longer time inter-
vals are obtained if not only X − A but also its derivative is small. We assume that
A(t) is of the form

A(t) = X(t) + E(t), 0 ≤ t ≤ t,(5.3)

where X(t) ∈ Mr (now this need not necessarily be the best approximation) with

‖Ẋ(t)‖2 ≤ μ,(5.4)

and the derivative of the remainder term is bounded by

‖Ė(t)‖ ≤ ε(5.5)

with a small ε > 0. We assume ε ≤ 1
8μ.

Theorem 5.2. In addition to the above assumptions, suppose that the rth singular
value of X(t) satisfies σr(X(t)) ≥ ρ > 0. Then, the approximation error of (1.2) with
initial value Y (0) = X(0) is bounded in the Frobenius norm by

‖Y (t) −X(t)‖ ≤ 2tε for t ≤ min

(
t,

ρ

4
√

2με

)
.

Proof. We note Ẋ = P (X)Ẋ, rewrite (4.1) as Ẏ = P (Y )Ẋ+P (Y )Ė, and subtract
the two equations. We observe(

P (Y ) − P (X)
)
Ẋ = −

(
P⊥(Y ) − P⊥(X)

)
Ẋ = −P⊥(Y )Ẋ = −P⊥(Y )2Ẋ.

We take the inner product with Y −X to obtain

〈Y −X,
(
P (Y ) − P (X)

)
Ẋ〉 = −〈Y −X,P⊥(Y )Ẋ〉 = −〈P⊥(Y )(Y −X), P⊥(Y )Ẋ〉

= 〈P⊥(Y )(Y −X),
(
P (Y ) − P (X)

)
Ẋ〉.

With Lemma 4.2 and (5.4), (5.5) this yields

〈Y −X, Ẏ − Ẋ〉 = 〈P⊥(Y )(Y −X),
(
P (Y ) − P (X)

)
Ẋ〉 + 〈Y −X,P (Y )Ė〉

≤ 32μρ−2‖Y −X‖3 + ‖Y −X‖ · ε,
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and, on the other hand, we have

〈Y −X, Ẏ − Ẋ〉 =
1

2

d

dt
‖Y −X‖2 = ‖Y −X‖ d

dt
‖Y −X‖.

Taken together, we obtain for e(t) = ‖Y (t) −X(t)‖ the differential inequality

ė ≤ γe2 + ε, e(0) = 0,

with γ = 32μρ−2. Hence, e(t) is majorized by the solution of

ẏ = γy2 + ε, y(0) = 0,

which equals y(t) =
√

ε/γ tan(t
√
γε) and is bounded by 2tε for t

√
γε ≤ 1. Lemma 4.2

remains applicable as long as 2tε ≤ 1
8ρ, which is satisfied on the given interval under

the assumption ε ≤ 1
8μ.

5.3. The case of overapproximation. The time interval in Theorem 5.2 be-
comes tiny when ρ ≤ ε. In that case, the effective rank (ε-pseudorank) of A(t) is
q < r, but the approximation is done by a rank-r matrix Y (t). It is not clear a priori
that Y (t) preserves an effective rank q over longer times. Even if it does, the matrix
S(t) in (2.1) is ill-conditioned, and since its inverse appears in the differential equa-
tions (2.8), one might expect a severe adverse effect on the approximation properties.
Remarkably, this does not happen, as is shown by the following result.

Theorem 5.3. Let (5.3)–(5.5) hold for X(t) ∈ Mq with q < r. Suppose that the
qth singular value of X(t) satisfies σq(X(t)) ≥ ρ > 0. Let the initial value Y (0) ∈ Mr

be Y (0) = X(0) + E0 with ImE0 ⊥ ImX(0) and ImET
0 ⊥ ImX(0)T , and with

‖E0‖ ≤ ε0 ≤ 1
16ρμ

−1ε. Suppose that the differential equation (2.8) has a solution on
the interval 0 ≤ t ≤ t∗. Then, the approximation error of (1.2) is bounded in the
Frobenius norm by

‖Y (t) −X(t)‖ ≤ ε0 + 6tε for t ≤ min

(
t, t∗,

ρ

16μ

)
.

The existence of the solution of the differential equation (2.8) is not ensured over
the whole interval, since S(t) might become singular. The orthogonality condition on
E0 is satisfied if the best rank-r approximation is taken as initial value. However, this
orthogonality condition is not essential. A similar, but less clear-cut estimate holds
whenever Y (0) ∈ Mr is sufficiently close to X(0) ∈ Mq.

The proof of Theorem 5.3 is based on combining the previous proof with the
following two-scale lemma.

Lemma 5.4. Let Y ∈ Mr be written in the form

Y = U

(
S1 0
0 S2

)
V T = U1S1V

T
1 + U2S2V

T
2 ,(5.6)

where U = (U1, U2) and V = (V1, V2) have orthonormal columns. Assume that
the smallest singular value of S1 ∈ R

q×q and the largest singular value of S2 ∈
R

(r−q)×(r−q) satisfy

σmin(S1) ≥ ρ, σmax(S2) ≤ δ with ρ ≥ 2δ.(5.7)
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Then, the solution of the orthogonal projection (2.7) is given as

Ẏ =

2∑
i=1

(
U̇iSiV

T
i + UiṠiV

T
i + UiSiV̇

T
i

)
,(5.8)

where

Ṡ1 = UT
1 ȦV1, Ṡ2 = UT

2 ȦV2,

U̇1S1 = P⊥
U1
ȦV1 + EU ,(5.9)

V̇1S
T
1 = P⊥

V1
ȦTU1 + EV ,

with ‖EU‖ ≤ 2δρ−1‖Ȧ‖ and ‖EV ‖ ≤ 2δρ−1‖Ȧ‖.
The point of the lemma is that for δ  ρ the equations for Ṡ1, U̇1, V̇1 are, up to

the small perturbations EU and EV , the same as those for solving the corresponding
rank-q problem for Yq = U1S1V

T
1 ∈ Mq; see Proposition 2.1. Under conditions (5.3)–

(5.5) with X ∈ Mq, the equation for Ṡ2 has a small right-hand side as long as Y
is close to A or X, and hence S2 remains small. The term U2S2V

T
2 then gives only

a small contribution to Y , no matter what the derivatives of U2 and V2 are. The
equations for U̇2 and V̇2, which have not been stated explicitly, contain in fact S−1

2 ,
which may have an arbitrarily large norm.

Proof of Lemma 5.4. We begin by showing that Ṡi, U̇i, V̇i in (5.8) are uniquely
determined if, instead of (2.4), we impose the constraints (cf. [7])

UT U̇ = H, V T V̇ = K,

with r × r matrices of the block form

H =

(
0 H12

H21 0

)
, K =

(
0 K12

K21 0

)
,

which are skew-symmetric: H12 = −HT
21 and K12 = −KT

21. As in the proof of
Proposition 2.1 we then obtain, instead of (2.8), the equation

UT ȦV = HS + Ṡ + SKT ,(5.10)

which yields Ṡ as the block diagonal of Λ := UT ȦV :

Ṡ1 = UT
1 ȦV1, Ṡ2 = UT

2 ȦV2.

We multiply (5.10) with S−1 from the right and take the symmetric part. Then H
drops out, and we obtain

SKTS−1 + S−TKST =

(
0 B12S

−1
2

S−T
2 B21 0

)
,

where B21 = BT
12 = ΛT

12 + ST
2 Λ21S

−1
1 is bounded by

‖B21‖ ≤ (1 + δρ−1) ‖Ȧ‖ ≤ 3
2‖Ȧ‖.

We multiply the (2,1) block of the above equation with ST
2 from the left and with

S−T
1 from the right to obtain

K21 − (ST
2 S2)K21(S

T
1 S1)

−1 = B21S
−T
1 .
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By condition (5.7), this equation can be uniquely solved for K21 by fixed-point itera-
tion, and

‖K21‖ ≤ 4
3ρ

−1‖B21‖ ≤ 2ρ−1‖Ȧ‖.

As in (2.8), we derive

U̇S = ȦV − UṠ − USKT .

For the first component of U̇ = (U̇1, U̇2) this becomes

U̇1S1 = ȦV1 − U1Ṡ1 + EU = P⊥
U1
ȦV1 + EU

with EU = U2S2K21, which is bounded by ‖EU‖ ≤ δ · 2ρ−1‖Ȧ‖. The equation and
estimate for V̇1 are obtained in the same way.

In the proof of Theorem 5.3 we will actually use a variant of the above result,
which is proved in the same way: if condition (5.7) is replaced by

σmin(S1) ≥ ρ, ‖S2‖ ≤ δ,(5.11)

then Lemma 5.4 holds with the modified bounds

‖EU‖ ≤ 2δρ−1‖Ȧ‖2, ‖EV ‖ ≤ 2δρ−1‖Ȧ‖2.(5.12)

Proof of Theorem 5.3. We write Y in the form (5.6) as

Y = Y1 + Y2 ≡ U1S1V
T
1 + U2S2V

T
2 .

We will estimate e1 = ‖Y1 −X‖ and e2 = ‖Y2‖.
(a) By Lemma 5.4 and (5.3), Y1 satisfies the differential equation

Ẏ1 = Pq(Y1)Ẋ + Pq(Y1)Ė + EUV
T
1 + U1E

T
V ,

where Pq(Y1) denotes the orthogonal projection onto TY1Mq. Comparing this equa-

tion with Ẋ = Pq(X)Ẋ as in the proof of Theorem 5.2, we obtain

e1(t) ≤ 2tη,(5.13)

provided that, up to time t,

d := ‖Pq(Y1)Ė + EUV
T
1 + U1E

T
V ‖ ≤ η.

By (5.5) and (5.12) together with (5.4) we have

d(t) ≤ ε + 5ρ−1μ e2(t).(5.14)

(The factor 5 instead of 4 takes into account that ‖Ȧ‖ ≤ μ+ ε may be slightly larger
than μ of (5.4), and ρ in (5.11) may differ slightly from ρ in the formulation of the
theorem. The bound holds as long as e1 is sufficiently small.)

(b) We have

e2(t) = ‖S2(t)‖ ≤ ε0 +

∫ t

0

‖Ṡ2(s)‖ ds.
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Now,

‖Ṡ2‖ = ‖UT
2 ȦV2‖ = ‖PU2ȦPV2‖ ≤ ‖P⊥

U1
ȦP⊥

V1
‖

= ‖P⊥
q (Y1)Ȧ‖ ≤ ‖P⊥

q (Y1)Ẋ‖ + ε = ‖
(
P⊥
q (Y1) − P⊥

q (X)
)
Ẋ‖ + ε

= ‖
(
Pq(Y1) − Pq(X)

)
Ẋ‖ + ε ≤ 8ρ−1μ e1 + ε,

where we have used Lemma 4.2 and (5.4) in the last inequality. Hence,

e2(t) ≤ ε0 + 8ρ−1μ

∫ t

0

e1(s) ds + tε.(5.15)

(c) With the bound (5.13) this inequality yields

e2(t) ≤ ε0 + 8ρ−1μ t2η + tε.

In view of (5.14), we thus need to choose η and the maximum value of t such that

η ≥ ε + 5ρ−1με0 + 5(ρ−1μt)ε + 40(ρ−1μt)2η.

For ρ−1με0 ≤ 1
16ε and ρ−1μt ≤ 1

16 this is satisfied for η = 2ε. This yields

e1(t) ≤ 4tε, e2(t) ≤ ε0 + 2tε,

which implies the result.

5.4. Systems without gaps between the singular values. The results of
the preceding subsections give satisfactory error bounds when there is a gap in the
distribution of the singular values so that essential and inessential singular values are
widely separated. We now consider a situation where such a gap need not exist, as in
the third numerical example. We make the assumptions of Theorem 5.2 and further
that X(t) ∈ Mr with σr(X(t)) ≥ ρ > 0 has a decomposition

X(t) = U0(t)S0(t)V0(t)
T for 0 ≤ t ≤ t,(5.16)

with nonsingular S0(t) ∈ R
r×r, and with U0(t) ∈ R

m×r and V0(t) ∈ R
n×r having

orthogonal columns, such that the following bounds hold for 0 ≤ t ≤ t :∥∥∥ d

dt
S−1

0 (t)
∥∥∥

2
≤ c1ρ

−1, ‖U̇0(t)‖2 ≤ c2, ‖V̇0(t)‖2 ≤ c2.(5.17)

Under these conditions we can show an O(ε) error over times O(1) even with ρ ∼ ε.
Theorem 5.5. Under the conditions of Theorem 5.2 and with (5.16)–(5.17), the

approximation error of (1.2) with initial value Y (0) = X(0) is bounded by

‖Y (t) −X(t)‖ ≤ 2tε for t ≤ min

(
t,

1

16c
1/2
2

(ρ
ε

)1/2

,
1

8c
1/3
1

(ρ
ε

)2/3

,
1

16

ρ

ε

)
.

Proof. From the proof of Theorem 5.2 we have the equation

〈Y −X, Ẏ − Ẋ〉 = −〈P⊥(Y )(Y −X), P⊥(Y )Ẋ〉 + 〈Y −X,P (Y )Ė〉.(5.18)

For e = ‖Y −X‖ ≤ 1
8ρ, the proof of Lemma 4.2 shows that Y can be decomposed as

Y = U1S1V
T
1 with

‖(U1 − U0)S0‖ ≤ 2e, ‖S0(V1 − V0)
T ‖ ≤ 2e.
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By Lemma 4.1 we can write

P⊥(Y )Ẋ = P⊥
U1

(
U̇0S0V

T
0 + U0Ṡ0V

T
0 + U0S0V̇

T
0

)
P⊥
V1

= P⊥
U1

(
−U̇0S0(V1 − V0)

T + (U1 − U0)S0 · S−1
0 Ṡ0S

−1
0 · S0(V1 − V0)

T

− (U1 − U0)S0V̇
T
0

)
P⊥
V1
.

With (4.4), (5.17), and the above estimate, (5.18) gives the differential inequality, as
long as e ≤ 1

8ρ:

ė ≤ 4ρ−1e
(
2c2e + 4c1ρ

−1e2 + 2c2e) + ε.(5.19)

The error is bounded by 2tε as long as the first term on the right-hand side is bounded
by ε, which is thus satisfied for 16c2ρ

−1(2tε)2 ≤ 1
2ε and 16c1ρ

−2(2tε)3 ≤ 1
2ε. This

holds under the stated bounds for t.

6. Extensions of the basic approach.

6.1. Regularization. Though Theorem 5.3 shows that overapproximation has
no disastrous effect on the approximation properties, it is in fact harmful to the nu-
merical solution of the differential equations (2.8). Near-singularity of S enforces very
small step sizes in numerical integrators, and rounding errors may become important.
The situation is alleviated by replacing S−1 by a regularized inverse, e.g., obtained
from computing an SVD of S ∈ R

r×r and replacing the ith singular value σi by√
σ2
i + ε2. The approximation result of Theorem 5.3 remains valid (with modified

constants), since transformation to the block form (5.8) yields only an O(ε) pertur-
bation in (5.9).

6.2. Stabilization. In order to drive the solution toward the best approxima-
tion, we replace (2.7) by

〈Ẏ − Ȧ, δY 〉 + α〈Y −A, δY 〉 = 0 for all δY ∈ TY Mr(6.1)

with a positive parameter α. This amounts to replacing Ȧ by Ȧ−α(Y −A) in the dif-
ferential equations (2.8) determining Y = USV T . (This approach requires knowledge
of both Ȧ and A and can therefore not be extended to the low-rank approximation of
matrix differential equations as in section 6.4 below.)

The effect of the parameter α is easily seen in the framework of the proof of
Theorem 5.1. With the notation used there, we have the differential equations

Ẏ = P (Y )(Ȧ− α(Y −A)),

Ẋ = P (X)(Ȧ− α(X −A)) + D.

Subtracting the equations yields

Ẏ − Ẋ =
(
P (Y ) − P (X)

)
Ȧ−D

− α(Y −X) + αP⊥(Y )(Y −X) − α
(
P (Y ) − P (X)

)
(X −A).

Taking the inner product with Y − X and using Lemma 4.2 yields the following
differential inequality for e = ‖Y −X‖: with d = ‖X −A‖ and β = 8μρ−1,

ė ≤ βe + 2βd− αe(1 − 1
2βe− βd).(6.2)

The last term is stabilizing, provided that d and e are small enough.



DYNAMICAL LOW-RANK APPROXIMATION 451

6.3. An example of structured low-rank approximation: Approxima-
tion on Grassmann manifolds. We now approximate A(t) ∈ R

n×n not just by
arbitrary rank-r matrices, but by orthogonal projections onto r-dimensional sub-
spaces. We thus replace the manifold Mn×n

r in (1.2) by the submanifold (known
as a Grassmann manifold)

G = Gn,r = {Y ∈ Mn×n
r : Y 2 = Y, Y T = Y }.

A projection Y ∈ G can be written, in a nonunique way, as

Y = UUT with U ∈ Vn,r;

that is, U ∈ R
n×r has orthonormal columns. U is unique up to right-multiplication

with an r × r orthogonal matrix. Tangent matrices in TY G are of the form

δY = δUUT + UδUT with δU ∈ TUVn,r.(6.3)

This representation is unique if we impose the condition UT δU = 0, which yields
δUT = UT δY . The Galerkin condition (2.7) for the manifold G determines Ẏ ∈ TY G
such that

〈Ẏ − Ȧ, δY 〉 = 0 for all δY ∈ TY G.

Substituting (6.3) and using the rules 〈A,B〉 = 〈AT , BT 〉 and 〈A,BCT 〉 = 〈AC,B〉,
this condition becomes, with the condition UT U̇ = 0,

〈U̇ − 1
2 (Ȧ + ȦT )U, δU〉 = 0 for all δU ∈ R

n×r with UT δU = 0.

This gives the differential equation

U̇ = P⊥
U

1
2 (Ȧ + ȦT )U.(6.4)

With the appropriate version of Lemma 4.2 for the orthogonal projection P (Y ) onto
the submanifold G, the approximation estimates corresponding to Theorems 5.1 and
5.2 follow without further ado.

6.4. Minimum defect approximation of matrix differential equations.
For the low-rank approximation to a solution of the matrix differential equation

Ȧ = F (A),(6.5)

condition (1.2) is replaced, at every time t, by

Ẏ ∈ TY Mr such that ‖Ẏ − F (Y )‖ = min!(6.6)

Equivalently, condition (2.7) is replaced by the Galerkin condition

〈Ẏ − F (Y ), δY 〉 = 0 for all δY ∈ TY Mr,(6.7)

and correspondingly, the expression Ȧ is replaced by F (Y ) for Y = USV T in the
differential equations (2.8) for S,U, V .

Theorems 5.1–5.3 extend to the low-rank approximation of matrix differential
equations (6.5). We assume that F has a moderate bound along the approximations,

‖F (X(t))‖ ≤ μ, ‖F (Y (t))‖ ≤ μ for 0 ≤ t ≤ t,(6.8)
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and satisfies a one-sided Lipschitz condition: there is a real λ (positive or negative or
zero) such that

〈F (Y ) − F (X), Y −X〉 ≤ λ ‖Y −X‖2(6.9)

for all matrices X,Y ∈ Mr. We further assume that for the best approximation X(t),

‖F (X(t)) − F (A(t))‖ ≤ L ‖X(t) −A(t)‖ for 0 ≤ t ≤ t,(6.10)

which is in particular satisfied if F is Lipschitz continuous with Lipschitz constant L.
We then have the following extension of the quasi-optimality result of Theorem 5.1.

Theorem 6.1. Suppose that a continuously differentiable best approximation
X(t) ∈ Mr to a solution A(t) of (6.5) exists for 0 ≤ t ≤ t, and assume the bounds
(6.8)–(6.10). Let the rth singular value of X(t) have the lower bound σr(X(t)) ≥ ρ >
0, and assume that the best-approximation error is bounded by ‖X(t) − A(t)‖ ≤ 1

16ρ
for 0 ≤ t ≤ t. Then, the approximation error of (1.2) with initial value Y (0) = X(0)
is bounded in the Frobenius norm by

‖Y (t) −X(t)‖ ≤ (2β + L) e(2β+λ)t

∫ t

0

‖X(s) −A(s)‖ ds with β = 8μρ−1

for t ≤ t and as long as the right-hand side is bounded by 1
8ρ.

Proof. Equation (6.7) rewritten as in (4.1) reads

Ẏ = P (Y )F (Y ).(6.11)

As in the proof of Theorem 5.1, we have the equation

Ẋ = P (X)F (A) + D with ‖D‖ ≤ 2βd

for d = ‖X −A‖. We subtract the two equations, write

P (Y )F (Y ) − P (X)F (A) −D = (P (Y ) − P (X))F (X) + P (X)(F (X) − F (A))

+ (F (Y ) − F (X)) − P⊥(Y )(F (Y ) − F (X)) −D,

and take the inner product with Y −X. With Lemma 4.2 we obtain

〈Ẏ − Ẋ, Y −X〉 ≤ β ‖Y −X‖2 + Ld ‖Y −X‖
+λ ‖Y −X‖2 + β ‖Y −X‖2 + 2βd ‖Y −X‖.

For e = ‖Y −X‖ this gives the differential inequality

ė ≤ (2β + λ)e + (2β + L)d, e(0) = 0,(6.12)

which yields the result.
We refer to [12, Theorem 4.1] for a related quasi-optimality result in a situation

of a linear differential equation with an unbounded operator.
In the differential equation analogue of Theorem 5.2 with the splitting (5.3), we

start from the equations Ẏ − Ẋ = P (Y )F (Y )−P (X)Ẋ and Ẋ = F (A)− Ė, yielding

Ẏ − Ẋ = (P (Y ) − P (X))Ẋ − P⊥(Y )(F (Y ) − F (X))

+ (F (Y ) − F (X)) + P (Y )(F (X) − F (A)) + P (Y )Ė,
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where we now take the inner product with Y −X. If it is additionally assumed that
F has Lipschitz constant L, then this leads to the differential inequality

ė ≤ 4ρ−1(β + L)e2 + λe + Ld + ε, e(0) = 0.(6.13)

With γ̂ = 4ρ−1(β +L) and ε̂ = ε+Lmax0≤t≤t d(t), and with ϕ(x) = (ex − 1)/x, this
yields the error bound

‖Y (t) −X(t)‖ ≤ 2t ϕ(λt) ε̂ for tϕ(λt) ≤ 1
2 (γ̂ε̂)−1/2(6.14)

and as long as t ≤ t and 2tϕ(λt)ε̂ ≤ 1
8ρ.

Theorems 5.3 and 5.5 are extended similarly.

6.5. The special case of linear matrix differential equations. Systems

Ȧ = LA + AR(6.15)

with possibly time-dependent matrices L(t) and R(t) have the solution A(t) ∈ Mr

for initial data A0 = Y0 ∈ Mr. This is seen immediately from Lemma 4.1 and (6.11),
which yield Ẏ = LY + Y R and hence A(t) = Y (t) ∈ Mr. From the differential
equations (2.8), we thus obtain a decomposition of the solution A = USV T with U
and V having orthonormal columns and with the factors satisfying the differential
equations

Ṡ = UTLUS + SV TRV,

U̇ = P⊥
U LU,(6.16)

V̇ = P⊥
V RTV.

A different situation arises for linear problems of the type

Ȧ = LA + AR + B •A,(6.17)

where • denotes the Hadamard (or entrywise) product of matrices. The differen-
tial equations (2.8), with Ȧ replaced by the right-hand side of (6.17) evaluated at
Y = USV T instead of A, determine a low-rank approximation, but the entrywise
multiplication with B(t) in general requires the explicit computation of the entries

of Y . The situation simplifies if B is itself a low-rank matrix B =
∑k

j=1 βjcjd
T
j .

Writing Y =
∑r

i=1 σiûiv̂
T
i (obtained from an SVD of the matrix S of Y = USV T ),

we can use B • Y in the differential equations for S,U, V in the decomposed form

B • Y =

k∑
j=1

r∑
i=1

βjσi(cj • ûi)(dj • v̂i)T ;

cf. [2] for an analogous observation for the potential in the Schrödinger equation.
The dynamical low-rank approximation Y (t) to A(t) of (6.17) can thus be computed
inexpensively if B(t) is of low rank or otherwise approximated by a matrix of low
rank, and in the present paper we have seen how this can be computed.

7. Conclusions and outlook. The dynamical low-rank approximation (1.2),
or equivalently (2.7) or (4.1), becomes an attractive computational approach via the
differential equations (2.8) that determine the factors in the representation (2.1) of the
approximation. The method yields a near-optimal smooth low-rank approximation, as
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is shown in Theorems 5.1, 5.2, 5.3, and 5.5 and observed in numerical experiments. A
direct but very noteworthy extension is the minimum-defect low-rank approximation
(1.3) to solutions of matrix differential equations. Our first numerical experience
in compressing time-varying term-document matrices and series of images, and in
approximating time-dependent PDEs whose solutions are essentially of low rank (e.g.,
smooth with the exception of a few pulses or spikes, as in blow-up problems in reaction-
diffusion equations), is very promising, as reported in [14]. It will be interesting to see
the dynamical low-rank approximation used for large-scale problems in applications,
well beyond the already important area of quantum dynamics, where basic ideas for
this approach originated 75 years ago as a physical model reduction technique.

REFERENCES

[1] M. Baumann and U. Helmke, Singular value decomposition of time-varying matrices, Future
Generation Computer Systems, 19 (2003), pp. 353–361.
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