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1. Introduction

The topology of a given space characterizes the proximity between
data and plays a vital role in pattern recognition. Pattern analysis takes
place in the context of data lying in some inherentgeometrical structure.
Simply ignoring the geometrical aspect, or naively treating the space as
Euclidean, may cause undesired effects. Fortunately, there have been
increasing efforts applied to pattern analysis on matrix manifolds. The
aim of this article is to review some common matrix manifolds and
summarize their applications as they relate to computer vision.

Despite the import of thegeometry to thedata, traditional approaches
often quantify data in a vector space. This assumption may not always
be valid for images [1]. To account for the geometry of the images,
manifold learning techniques like ISOmetric Mapping (ISOMAP) [2] and
Local Linear Embedding (LLE) [3] were introduced. These methods learn
a mapping from the ambient space to the intrinsic space so that nearby
points remain near each other after a projection. Although manifold
learning can be effective inmodeling the intrinsic structure of amanifold,
they require a large amount of densely sampled training data; such rich
training data may not be available for some real-world applications.

Another school of thought is to represent images in an underlying
parametrized space. This gives rise to the representation of matrix
manifolds. While ISOMAP and LLE model a manifold through training
data, the use of matrix manifolds derives from the properties of
differential geometry. In particular, data may be viewed as elements
in some parameter space in which the idiosyncratic aspects of the
geometry of the data can be characterized using algebraic operations.
In fact, image data are often seen as the orbit of elements under the
action of matrix manifolds, e.g. rotation group. Matrix manifolds may
be the natural representation for some computer vision applications.
In the present paper, the advances in this manifold representation
arereviewed; the matrix manifolds of interest are Lie groups, Stiefel,
Grassmann, and Riemannian manifolds.

The concept of matrixmanifolds dates back to the 19th century [4],
slowly gaining attention in the mathematics, physics, and other
scientific communities. As we proceed in the computer age, more and
more abstract concepts are found newly valuable in various
applications, focusing particularly on matrix manifolds in this paper.
Because matrix manifolds have proven to be instrumental in
computer vision, we will summarize their applications to face
recognition, action classification, clustering, visual tracking, and
motion grouping and segmentation in Section 3. Before we survey
these applications, a brief overview of matrix manifolds is given in
Section 2. Finally, discussion and summary are provided in Section 4.

2. Matrix manifolds

The geometry of non-Euclidean spaces gives rise to the notion of
manifolds. This section provides a brief summary of the matrix
manifolds discussed in this paper. Details and rigorous treatments on
these subjects can be found in [5–10].

2.1. Lie groups

A Lie group is both a group and a smooth manifold. A group G is
defined as a nonempty set together with a binary operation ∘ satisfying
the following axioms:

• Closure: If gi, gj ∈ G, then, gi ∘ gj ∈ G.
• Associativity: If gi, gj, gk ∈ G, then, (gi ∘ gj) ∘ gk=gi ∘ (gj ∘ gk).

http://dx.doi.org/10.1016/j.imavis.2011.08.002
mailto:lui@cs.colostate.edu
http://dx.doi.org/10.1016/j.imavis.2011.08.002
http://www.sciencedirect.com/science/journal/02628856
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• Identity: If gi, e∈G, then gi e=e gi=gi.
• Inverse: If gi, e∈G, then gi ∘ gi−1=gi

−1 ∘ gi=e.

The Z; +ð Þ is an example of a group under a group action,
multiplication.

A smooth manifold is a pair (M;F) where M is a set and F is a
differentiable structure of M. The differentiable structure provides a
mechanism thatM is entirely covered by a collection of charts {(U ,ϕ)}
called atlas where ϕ is a bijective map of U∈M such that ϕ :U→V.
Here, U is an open subset inM and V is an open subset inRn. Formally,
the smooth atlas satisfies

• ∪αUα=M,
• ϕα : Uα→Vα∈Rn (homeomorphic),
• For any intersectingpair of opensets, there existsΦβα:=ϕβ∘ϕα

−1∈C∞.

The notion of smooth atlas is further depicted in Fig. 1. Themaximal
atlas of a setM is the differentiable (smooth) structure onM. As such,
the topology induced by F is Hausdorff, second countable, and locally
Euclidean. A Lie group is defined as the connected elements of a
continuous group with an analytic group action (differentiable
mapping). A matrix Lie group G is the group of nonsingular matrices
with a smoothmanifold structure so that every element in the group is
closed under a group action ((X, Y)↦XY: G×G↦G) and has an inverse
(X↦X−1: G↦G) where the group action is a smooth map.

A set of orthogonal matrices denoted as O(n) is an example of a
matrix Lie group. It is known that orthogonal matrices could have a
determinant of either+1 or−1, however they are not connected on a
manifold. Thus, a special subgroup of orthogonal matrices whose
determinant is equal to +1 is usually specified. Formally, let SO(n) be
a set of n×n orthogonal matrices defined as:

SO nð Þ = Y∈Rn×n : YTY = I; det Yð Þ = 1
n o

ð1Þ

The additional determinant constraint (det=1) ensures that all
matrices in this group are rotationmatrices. This set ofmatrices is called
a special orthogonal group which is also an example of Lie groups.

2.1.1. Lie algebra
Geometrically, Lie groups can be locally considered equivalent to a

vector space in Rn. Any element in a Lie group can construct a tangent
space. In particular, the tangent space at the identity forms a Lie algebra.
Fig. 1. The notion of smooth atlas: 1) ThemanifoldM can be covered by a collection of charts {
there exists a composite map between different open subsets in Rn when there is an interse
Formally, a Lie algebra is a vector space together with a map such that
elements in theLie algebra are closedunder theLiebracket ([A,B]=AB−
BA) and satisfy the Jacobi identity ([A, [B, C]]+[B, [C, A]]+[C, [A, B]]=0).

Taking a special orthogonal group as an illustration, the Lie algebra
of SO(n) is denoted as so(n). Let Y be an n×nmatrix parametrized by
a curve f(t) in SO(n) such that f(0)= I, and f ' (0)=Δ. When we
differentiate the expression, f(t)Tf(t)= I, with respect to t using the
product rule, we have

f tð ÞT f 0 tð Þ + f 0 tð ÞT f tð Þ = 0 ð2Þ

At t=0, we have Δ+ΔT=0. We can see that Δ is skew symmetric
(ΔT=−Δ) and it is closed in the Lie algebra under the Lie bracket.
Thus, the space of a Lie algebra of SO(n) is a set of skew symmetric
matrices expressed as:

so nð Þ = Δ∈Rn×n : Δ + ΔT = 0
n o

: ð3Þ

Aknownexampleof a Lie groupandaLie algebra is the2Daffinegroup

where
cos θð Þ
sin θð Þ
0

− sin θð Þ
cos θð Þ
0

0
0
1

2
4

3
5 ∈SO(3) and

0 −θ 0
θ 0 0
0 0 0

2
4

3
5 ∈so(3).

Hence, SO(3) is the natural state space for the rigid motion in Rn.

2.1.2. Exponential mapping
While a Lie group and a Lie algebra have different geometric

structures, there exists a map connecting these two spaces called the
exponential map, exp:g→G where G is a Lie group and g is its Lie
algebra. For v∈g, we have exp(v)=γ(1) where γ : R→G is the one-
parameter subgroup of G. The exponential map also establishes
diffeomorphism of an open neighborhood V of 0 in g onto an open
neighborhood U of e (the identity element) in G.

Examples of exponential maps include the Euclidean space; that is
exp(v)=v where G is Rn. In the matrix Lie group, we can define the
matrix exponential for any square matrix as the following power series.

exp Δð Þ = ∑
∞

k−0

Δk

k!
= 1 + Δ +

Δ2

2!
+ ⋅⋅⋅ ð4Þ
(U ,ϕ)}; 2) there exists a bijectivemapϕ froman open set ofU to an open set of V inRn; 3)
ction between open subsets on M.
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Eq. (4) reveals that exp(0) is equal to the identity matrix I, and the
exponential map yields absolute convergence for each matrix.
Additionally, if f(t)=exp(tΔ), we can see that f ' (0)=Δ and f(0)= I.
From Eqs. (1,3,4), we can see that exp(Δ) is orthogonal if and only if Δ
is skew-symmetric.

2.1.3. Logarithmic mapping
The inverse mapping from G to g is called the logarithmic map.

In particular for the orthogonal group, the logarithmic map,
log:SO(n)↦so(n), is defined as the power series.

log Yð Þ = ∑
∞

k−1

−1ð Þk−1 Y−Ið Þk
k

= Y−Ið Þ− Y−Ið Þ2
2

+
Y−Ið Þ3
3

−⋅⋅⋅ ð5Þ

The series described in Eq. (5)would only convergewhen ∥Y− I∥b1;
thus, the logarithmic map is defined around the neighborhood of the
identity matrix I. The exponential and logarithmic mappings provide a
diffeomorphism (a bijective smooth function with a smooth inverse
function) between an open neighborhood of 0 in the Lie algebra and the
neighborhood near identity in the Lie group. Fig. 2 gives a pictorial
summary of a Lie group, a Lie algebra, exponential and logarithmic
mappings.

2.1.4. The Baker–Campbell–Hausdorff formula
The exponential functionmaps an element from the Lie algebra to its

corresponding group element. Matrices from the Lie algebra may serve
as exponential coordinates, i.e., Y=exp(A). Since matrix multiplication
is the group action in the matrix group, we need to consider the
multiplication in exponential coordinates. For commutative groups, we
have AB=BA implying that the exponential function satisfies exp(A)
exp(B)=exp(A+B). However, this identity does not hold for non-
commutative groups.

For non-commutative groups, it is possible to formulate exp(A)
exp(B)=exp(C), then the matrix C can be rewritten as log(exp(A)
exp(B)). From Eqs. (4) and (5), we have

C = ∑
∞

k=1

−1ð Þk−1

k
∑
∞

i=0

Ai

i!

 !
∑
∞

j=0

Bj

j!

 !
−I

( )k

= A + B +
1
2

A;B½ � + O A;Bj j3
� �

ð6Þ

where [A, B] is the Lie bracket which serves as a commutator
operation; this series is called the Baker–Campbell–Hausdorff (BCH)
formula [7]. Consequently, one may express exp(A)exp(B) as
exp(BCH(A, B)); in practice, it is common to use the first order term
from the BCH formula from Eq. (6).
Fig. 2. An example of a special orthogonal group: mappings between a Lie group and a
Lie algebra using the exponential and logarithmic maps.
2.2. Stiefel manifolds

A Stiefel manifold V n,p is a set of of n×p orthonormal matrices
endowed with a Riemannian structure. V n,p can be considered a
quotient space of O(n) so we can identify an isotropy subgroup H of

O(n) expressed as
Ip 0
0 Qn−p

� �
: Qn−p∈O n−pð Þ

� �
where the isotropy

subgroup keeps the element unchanged.
To represent V n,p as a quotient group, letW be an element of O(n)

such that W can be factorized into [Y|Y⊥] where Y∈Rn×p and
Y⊥∈Rn× n−pð Þ is the orthogonal complement of Y. Then, each point on
a Stiefel manifold corresponds to an equivalence class ⌊Y⌋with respect

to the equivalence relation Y jY⊥½ � Ip
0

0
Qn−p

� �
: Qn−p∈O n−pð Þ

� �
: As

such, W1∼W2⇔W1=W2h where W1 and W2∈O(n), and h∈H.
Because the equivalence class only concerns the first p columns of a
matrix, an element on a Stiefel manifold is defined as:

V n;p = fY∈Rn×p : YTY = Ipg: ð7Þ

Hence, V n, p is viewed as O(n)/H = O(n)/O(n−p). From a group
theory point of view, O(n) is a Lie group and O(n−p) is its subgroup
so thatO(n)/O(n−p) represents the orbit space. In other words, V n, p

is the quotient group of O(n) by O(n−p).

2.3. Grassmann manifolds

AGrassmannmanifold Gn,p is a set of p-dimensional linear subspaces
of Rn. Similar to Stiefel manifolds, a Grassmann manifold can also be
identified as a quotient space of O(n) and its isotropy subgroup

composes all elements of Qp
0

0
Qn−p

� �
: Qp∈O pð Þ;Qn−p∈O n−pð Þ

� �

Thus, we have Y jY⊥½ � Qp 0
0 Qn−p

� �
= Y Qp jY⊥Qn−p
� 	

and the equiva-

lence class consists of a p×p orthogonal matrix Qp mapping one point
onto the other. Considering the first p columns, the entire equivalence
class can be represented as the subspace spanned by the columns of a
given matrix Y defined as:

Yb c = YQp : Qp∈O pð Þ
n o

: ð8Þ

The quotient representation of Grassmannmanifolds is expressed as
Gn,p=O(n)/(O(p)×O(n−p)). Using the quotient group of Stiefel
manifolds, we can state Grassmann manifolds more concisely as Gn,p=
V n,p/O(p). Putting it differently, the set of all orbits of V n,p under the
group action O(p) is a point on Gn,p. This quotient representation of
Grassmann manifolds establishes two matrices as being from the same
equivalence class if their columns span the same p dimensional
subspace, W1∼W2⇔span(W1)=span(W2).

The key distinctions between Stiefel and Grassmann manifolds are
the order and the choice of basis. Because of the equivalence relation,
there is no unique order or basis of a matrix representing an element
from a Grassmann manifold. On the other hand, the order of the basis
is important for the elements on Stiefel manifolds.

2.4. Riemannian manifolds

In the Riemannian framework, the tangent space TxM at each point
x of a manifoldM is endowed with a smooth inner product b ⋅, ⋅N x. In
addition, a local coordinate x=(x1, x2, …, xn) on an open set U of M
induces a basis

∂
∂x =

∂
∂x1 ;

∂
∂x2 ;…;

∂
∂xn


 �
of the tangent space. The

Riemannianmetric can thenbe expressed as gij jx = <
∂
∂xi ;

∂
∂xj > from

the tangent vectors. The component gij|x forms a matrix Gx so that

image of Fig.�2
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gij jx = <
∂
∂xi ;

∂
∂xj > =

∂
∂xi

 �T

Gx
∂
∂xj

 �

. The matrix Gx is the local

representation of the Riemannian metric in the chart x. As such, Gx is

viewed as a point in a vector bundle of U × R
n n+1ð Þ

2 locally because Gx

only has
n n + 1ð Þ

2
unique entries; it is symmetric positive definite at

every point on the manifold denoted as Symn
+. Formally, we have

Symþ
n = fY∈Rn×n : YT = Y ;Y > 0g ð9Þ

where YN0 indicates xTYxN0 for any x∈Rn ∖ {0}. Furthermore, the
space of Symn

+ is an open convex cone so that X+ tY∈Symn
+ for tN0

given X, Y∈Symn
+. The simplest example of a Riemannian manifold is

the Euclidean space where the inner product is Rn × Rn≃TRn.
Once the Riemannian metric is specified, the Riemannian distance

on a connected Riemannian manifold can be expressed in a closed
form. In particular, one may induce an affine-invariant metric so that
points in Symn

+ are invariant under the action of the isotropy subgroup
and the quotient representation is expressed as Symn

+=GLn
+/O(n).

Also, the exponential and logarithmic mappings on Symn
+ can be

efficiently computed using spectral decomposition. For details on
these computations see [11].

Riemannianmanifolds arenot limited to Symn
+. The generalization of

a Riemannian manifold is a semi-Riemannian manifold (pseudo-
Riemannian manifold) where the Riemannian metric Gx does not need
to be positive definite. Instead, Gx is a smoothly varying symmetric
bilinear form on the tangent space and non-degenerate, i.e., gij|x≠0. In
addition, the tangent space TxM can be factorized to P⊕N such that g is
positive definite on P and negative definite on N.

Finally, the Riemannian metric can be inherited naturally from the
embedded space. The Stiefel manifold and the Grassmann manifold
are considered the Riemannian submanifold and the Riemannian
quotient manifold, respectively.

3. Computer vision on matrix manifolds

Matrix manifolds have been exploited in many computer vision
applications. The following subsections summarize these applications
including face recognition, action recognition, clustering, visual
tracking, and motion grouping and segmentation.
Table 1
The use of matrix manifolds for face recognition.

Authors & reference Year Data source

Liu et al. [12] 2004 Still imagery
Yan and Tang [13] 2006 Still imagery
Lin et al. [14] 2006 Still imagery
Cheng et al. [15,16] 2006 Image set
Hamm and Lee [17,18] 2008 Image set, video
Pham and Venkatesh [19] 2008 Still imagery
Wang et al. [20] 2008 Video
Turaga et al. [21] 2008 Video
Tron and Vidal [22] 2008 Still imagery
Pang et al. [23] 2008 Still imagery
Zhao et al. [24] 2008 Still imagery
Lui et al. [25] 2008 Image set
Lui and Beveridge [26] 2008 Still imagery
Lui et al. [27] 2009 Still imagery
Beveridge et al. [28] 2009 Image set
Wang and Shi [29] 2009 Image set
Yu et al. [30] 2009 3D range imager
Sirvalingam et al. [31] 2010 Still imagery
Park and Savvides [32] 2011 Still imagery
Harandi et al. [33] 2011 Image set, video
Turaga et al. [34] Appear Image set, video
3.1. Face recognition

While Riemannian manifolds characterize a smooth inner product
as a point in a vector bundle, Grassmann and Stiefel manifolds provide
a geometric structure for subspaces. These manifolds have been
utilized as a basis for face recognition in the context of still imagery,
videos (a stream of face imagery), image-sets (a set of images
collected from different times), and 3D imagery. These efforts are
summarized in Table 1.

Optimization methods are often employed in conjunction with
projection pursuit for machine learning and pattern recognition
applications. Liu et al. [12] exploited discriminant analysis for face
recognition using a learned projection to mapimages to a lower
dimensional space where the projection was viewed as an element on
a Grassmann manifold. The gradient flow on the Grassmann manifold
was approximated and the locally optimal projection was found using
gradient directed search. Lin et al. [14] proposed a Maximum Effective
Information (MEI) criterion maximizing mutual information for face
recognition. Because the MEI imposed the homogeneity condition, it
gave rise to rotation invariance. The projection matrix was then
optimized on a Grassmann manifold using the conjugate gradient
method.

Fisher's Linear Discriminant Analysis (LDA) may be the most
widely used framework for pattern recognition. Hammand Lee [17,18]
extended the set-based LDA to use kernel functions in Grassmannian.
The projection metric and the Binet–Cauchy metric induced the
Grassmann kernels. The LDA with Grassmann kernels was then
introduced and applied to face recognition, outperforming some
earlier techniques for image-setmatching likeMSM and DCCA [35,36].
Wang and Shi [29] attempted to kernelize geodesic distances from
Grassmannian, i.e. arc-length and chordal distance. Nevertheless,
experiments concluded that kernel PCA followed by the Grassmann
discriminant analysis [17] has performed better than the kernelized
geodesic distances in face recognition. Recently, Park andSavvides [32]
have extended the use of Grassmann kernels to multilinear tensor
representation. Harandi et al. [33] exploited discriminant analysiswith
graph embedding on Grassmann manifolds for face recognition from
videos. The proposed Grassmannian kernel further improved the
performance in image-set matching.

Mathematically, LDA can be formulated as a trace quotient problem
with the solutionobtained fromageneralizedeigenvaluedecomposition.
Yan and Tang [13] showed that the optimal solution to the trace quotient
problem was constrained to lie on a Grassmann manifold. Specifically,
Manifold Dataset

Grassmann CMU-PIE, ORL
Grassmann CMU-PIE, XM2VTS, AR
Grassmann FERET, XM2VTS, PURDUE
Grassmann CMU-PIE
Grassmann YaleB, Extended YaleB
Stiefel CMU-PIE, YaleB, FERET
Grassmann Honda/UCSD, CMU-MoBo
Grassmann Honda/UCSD
SE(3) Weizmann
Symn

+ AR, FERET
Riemannian FRGC Exp 4
Grassmann FRGC Exp 4
Grassmann FERET
Stiefel CMU-PIE, YaleB, Extended YaleB
Grassmann CMU-PIE, YaleB
Grassmann CMU-PIE

y Riemannian UND Biometrics Database
Symn

+ FERET
Grassmann CMU-PIE, Extended YaleB
Grassmann CMU-PIE, BANCA, CMU-MoBo
Grassmann CMU-PIE, MBGC
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the derivative of the trace quotient problem was equivalent to the
projectionon thehorizontal spaceon theGrassmannmanifoldwhere the
projectionvectorswere theeigenvectors of aweighteddifferencematrix.

Whereas discriminant analysis learns a projection that maximizes
the trace quotient, multivariate regression learns a projection by
fitting the class labels in a regression space. Pham and Venkatesh [19]
applied a lasso regression for face recognition. The loss function was
formulated as a quadratic function with an L1 norm regularization
which was used to avoid over-fitting with small training size. Dual
projections were employed by the regression process. While one was
used for dimension reduction, the other was utilized to fit the
projected data to the labels. Since the projection matrix was
constrained to be orthogonal, it was found via the steepest descent
method on a Stiefel manifold.

It is known that a set of convex objects under a fixed pose with a
Lambertian reflectance surface forms a convex subspace called the
illumination cone. Since illumination cones reside in a vector space, they
can be approximated as points on Grassmann manifolds. Cheng et al.
[15] studied face recognition using image-sets which were collected
from various fixed pose illumination variants. The image-set classifica-
tionwas performedusing the truncated [15] and smallest [28] canonical
angles. This study was further extended to low resolution imagery in
illumination spaces [16] and unconstrained image-sets [25].

Video provides a convenient way to collect image-sets. Turaga et al.
[21] performed video-based face recognitionwhere the appearancewas
obtained from theparameter of theAutoRegressive andMovingAverage
(ARMA) model and represented as an element in Grassmannian.
Procrustes and kernel distances were employed for classification. This
work was extended to the tangent space where data were mapped to
the tangent space centered at theKarchermeanand theGaussianfitwas
applied to the projected data for face recognition [34]. Tron and Vidal
[22] performed face recognition using a sensor networkwhere the state
of each camera is a pose residing on a special Euclidean group SE(3)
(SO 3ð Þ × R3). Neighboring cameras were used in joint estimation for
face poses; as such, the global Karcher mean for the face pose was
estimated.

Image-sets or videos can be naturally represented on special
manifolds; however, they may not be available in some applications.
To embed a single image on special manifolds, Lui et al. [27] employed
a statistical illuminationmodel to relight a single image to a set offixed
pose illumination variants. The relighted illumination variants were
then projected on the tangent space on a Stiefel manifold. Because the
order of the data plays an important role on Stiefel manifolds, the
relighted illumination variants were more discriminative on Stiefel
manifolds than Grassmann manifolds. To further relax the fixed pose
constraint, Lui and Beveridge [26] employed affine transformations to
sample the image manifold and selected a local neighborhood to form
a tangent space. Due to a vector space structure in tangent spaces, they
were embedded on a Grassmann manifold for face recognition.

While the geodesic distance can be computed based on the intrinsic
geometry of a Grassmann manifold, heuristics have been applied to
Table 2
The use of matrix manifolds for action recognition.

Authors & Reference Year Model

Veeraraghavan et al. [39] 2005 ARMA+DTW
Turaga et al. [40] 2007 Cascade ARMA
Turaga et al. [21,34] 2008 ARMA+Procrustes
Turaga and Chellappa [41] 2009 TV-LDS+DTW
Veeraraghavan et al. [42] 2009 DTW
Li and Chellappa [43] 2010 SIS+Alignment
Chaudhry and Ivanova [44] 2010 Spectral Hashing
Guo et al. [45,46] 2010 Covariance descriptor+Sparsity
Lui et al. [47] 2010 Product Manifold
Lui and Beveridge [48] 2011 Tangent Bundle
Abdelkader et al. [49] 2011 Markov Chain
modify the use of canonical angles. Wang et al. [20] proposed the use of
the weighted average between the exemplar distance and the variation
distance as a manifold-to-manifold distance measure. The exemplar
distance was defined as the correlation between the orthogonal
exemplar samples and the variation distance was defined as using
canonical angles from a subset of images based on local linearity.

Riemannian manifolds have also been studied for face recognition.
The applications span both 2D and 3D imagery. Pang et al. [23]
represented a face as a set of gabor features whose covariance matrix
was expressed on Symn

+. Zhao et al. [24] performed unsupervised
manifold learning on semi-Riemannian manifolds. The tensor metric
was determined by discretized Laplacian smoothing and nullity of the
semi-Riemannian space. Sirvalingam et al. [31] applied sparse
decomposition to reformulate a symmetric positive definite matrix
as a linear combination of a dictionary atoms. As a consequence, this
led to a convex determinant maximization problem solved by an
interior point method. On the other hand, Yu et al. [30] considered 3D
range imagery and represented a three-dimensional vector on a unit
sphere of S2 which is a Riemannian space. The logarithmic map was
then applied to transform points to a tangent plane TpS

2 for
discriminant analysis.

Age estimation and expression recognition from facial images are
emerging areas in computer vision. Turaga et al. [37] showed that the
geodesic velocity from an average face to the estimated face can be
used for age estimation. Specifically, the space of landmarks was
interpreted as a Grassmann manifold and all points on the manifold
were projected onto the tangent space at the intrinsic mean. As such,
the velocity of geodesic flows was used in regression for age
estimation. Taheri et al. [38] performed facial expression analysis on
the Grassmannmanifold. To cope with facial deformation, the velocity
vectors from different facial action units were transformed to the
neutral face by applying parallel transport. Each action unit template
was then modeled as a Gaussian distribution for expression analysis.

3.2. Action recognition

The characterization of human activities and actions using matrix
manifolds has been a recent focus in the computer vision community as
summarized inTable 2.Humanactions canbe represented as a sequence
of silhouettes. Veeraraghavan et al. [39] modeled human shapes on a
shape manifold where sequences were first normalized using Dynamic
TimeWarping (DTW). A sequence of shape changes was then extracted
from the tangent space and an ARMAmodel was exploited to learn the
dynamics of the human movement. The space spanned by the
parameters of the linear dynamic system was identified as an element
on a Grassmann manifold. This ARMA representation of human activity
was further extended to clustering [40]. The cascade of ARMA models
was viewed as a regular expression grammar, and grammatical
inference was applied to action recognition.

Turaga et al. [21,34] investigated statistical modeling and Procrustes
representation on special manifolds for human activity recognition. In
Manifold Dataset

Shape+Grassmann CMU Activity, MOCAP
Grassmann UMD Common Activity
Grassmann+Stiefel IXMAS
Grassmann UMD Common Activity
Shape UMD Common Activity, IXMAS, USF Gait
Stiefel USF Gait, KTH
Riemannian KTH
Symn

+ Weizmann Action, KTH
Grassmann Cambridge-Gesture, KTH
Grassmann Cambridge-Gesture, KTH, UCF Sport
Symn

+ UMD Common Activity, UMD Body Gesture
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this work, the Procrustes distance characterized by the kernel density
function was used to compare two subspaces on a Stiefel manifold. The
trajectories on a Grassmannmanifold were also exploited using human
activities modeled by Time-Varying Linear Dynamic Systems (TV-LDS).
DTW was utilized to normalize two sequences of actions. Recently,
Abdelkader et al. [49] modeled the contour shape as a point in a shape
space of closed curves associated with Riemannian geometry. The
trajectory on the shape space was characterized by a Markovian
graphical model and used for action classification.

While ARMA models extract shapes and dynamics from the
observability matrix, appearance, horizontal motion, and vertical
motion can be directly obtained via a modified High Order Singular
ValueDecomposition (HOSVD). Lui et al. [47]modeled the appearance,
horizontal motion, and vertical motion on three factor manifolds
(Grassmannian) since they are orthogonal matrices. The geodesic
distance on the product manifold formed by combining the three
factor manifolds was used for action classification. The use of tensor
decomposition was further demonstrated in conjunction with a
tangent bundle on a Grassmann manifold [48]. Since the logarithmic
map is a diffeomorphic function, it was applied to charting the
manifold totangent spaces. Consequently, the tangent vectors on three
tangent spaces associated with appearance, horizontal and vertical
motions were exploited for action recognition. The introduction of a
tangent bundle facilitates the integration with other classifiers
because tangent spaces are Euclidean.

Spatio-temporal alignment is a key step for appearance-based action
classification. Veeraraghavan et al. [42] studied the rate-invariant
temporal alignment for human activities. In this work, rate variation
within a fixed time intervalwasmodeled as a diffeomorphism such that
time warping functions can be represented as a temporal affine
transformation. Li and Chellappa [43] employed Sequential Importance
Sampling (SIS) on a Stiefel manifold for spatio-temporal alignment. The
alignment parameters were divided into spatial and temporal spaces
viewed as submanifolds. The parameter estimation was considered an
optimization problem through SIS.

Another school of thought for action classification is in the use of
feature-based methods. Feature-based methods compute a covariance
descriptor from a set of image features. The covariance descriptor is a
symmetric positive definite matrix which can be viewed as an inner
producton the tangent spaceof Symn

+; asa result, covariancedescriptors
are the natural elements on a Riemannianmanifold. Instead of adopting
Riemannian manifolds, Guo et al. [45,46] employed the matrix
logarithm to map the covariance descriptor to the vector space. A
sparse linear representationwas then applied to encode the actions. The
approximate nearest neighbor search on Riemannianmanifolds [44,50]
and Grassmann manifolds [50] was also investigated.

3.3. Clustering

Grouping similar patterns into a cluster or computing data
centroids is an important process in unsupervised learning. While
the concept of averaging in non-Euclidean spaces can be generally
Table 3
The use of matrix manifolds for clustering.

Authors & reference Year Method

Govindu [53] 2004 Intrinsic average
Tuzel et al. [54] 2005 Mean-shift
Subbarao and Meer [55,56] 2006 Mean-shift
Begelfor and Werman [57] 2006 Karcher mean
Gruber and Theis [58] 2006 Closed-form
Cetingul and Vidal [59] 2009 Mean-shift
Sirvalingam et al. [60] 2009 Constrained K-means
O'Hara et al. [61] 2011 Agglomerate
Turaga et al. [34] appear Karcher mean
characterized as the Karcher mean computation [51] or the rotation
group SO(3) averaging [52], many variants have been derived for
myriad applications. We first summarize the clustering methods on
matrix manifolds in Table 3.

Since the parameters of rigid motions can be characterized as
elements of orthogonal groups, motion estimation can naturally be cast
on SO(3). Govindu [53] exploited this characteristic and iteratively
computed the motion average on the Lie-algebra. Because of the closed
form expression of the Baker–Campbell–Hausdorff (BCH) formula, the
intrinsic averaging was performed on the Lie algebra without
exponential and logarithm mappings, resulting in a faster calculation.

Tuzel et al. [54] incorporated Lie groups with the Mean-Shift (MS)
algorithm for 3D motion estimation. The motion parameters repre-
sented on a Lie group were estimated via mode finding on the
sampled distribution. The kernel density function was expressed
using an intrinsic distance through the BCH formula. Themodes of the
underlying distribution were then computed iteratively. Subbarao
and Meer [55,56] expressed the MS algorithms on Lie groups and
Grassmann manifolds. This method computed the mean shift as
weighted tangent vectors on tangent spaces and projected it back to
the manifold via the exponential map. On the other hand, Cetingul
and Vidal [59] proposed an alternative method for the nonlinear MS
algorithms on Stiefel and Grassmann manifolds. These nonlinear MS
methods avoided the involvement of tangent spaces; in other words,
no exponential map was needed. The kernel density functions were
estimated on the manifolds so the modes of a distribution were
located intrinsically through iterative optimization.

Gruber and Theis [58] derived a clustering algorithm using the
Chordal distance (Projection F-norm) on Grassmann manifolds. The
clustering processingwas shown to be a linear optimization problemon
a convex set with the centroid being pseudo orthogonal; consequently,
the optimum clusters can be located at the corners of the convex set.

The use of Riemannian manifolds for clustering has also received
attention. Arsigny et al. [62] introduced an efficientway for computing
the geometric mean on Symn

+ where the space of log-Euclidean was
considered. Sirvalingam et al. [60] investigated the use of covariance
descriptors for clusteringwithmetric learning. Since the tensormetric
on Symn

+ is symmetric positive definite, it can be represented as a class
of Mahalanobis distances. As such, thetensor metric was determined
by minimizing the LogDet divergence under linear constraints. The
clustering was performed using the pairwise constrained K means
algorithm.

Begelfor andWerman [57] investigated three clustering algorithms
on Grassmann manifolds including k-means, mean shift, and average
link methods. The authors reported that the clustering algorithms on
Grassmannmanifolds yielded lower classification errors and increased
robustness to the presence of noise when compared with methods
operating in Euclidean space. The aspect of open-ended clustering for
human actions where the number of clusters was unknown was also
investigated using bag-of-feature and product manifold methods in
[61]. The product manifold representation was found to be superior,
particularly when the activities consisted of gross motions.
Manifold Dataset

Lie group Proprietary
Lie group Proprietary
Grassmann Proprietary
Grassmann Proprietary
Grassmann Proprietary
Stiefel, Grassmann ETH-80, Hopkins-155
Symn

+ Proprietary
Grassmann UCSD-Expression, Cambridge-Gesture, KTH
Grassmann USF-Figure-Skating



Table 5
The use of matrix manifolds for motion grouping and segmentation.

Authors & reference Year Manifold

Horn [88] 1990 Lie group
Taylor and Kriegman [89] 1995 Lie group
Ma et al. [90,91] 1998 Lie group
Belta and Kumar [92] 2002 Lie group
Subbarao and Meer [93] 2006 Grassmann
da Silva and Costeria [94] 2008 Grassmann
Lin et al. [95,96] 2009 Lie group
Li and Chellappa [97] 2010 Lie group
Mégret et al. [98] 2010 Lie group
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3.4. Visual tracking

In recent years, many visual tracking algorithms have benefited
frommatrix manifold representations. Table 4 provides a summary of
visual tracking on matrix manifolds.

Rigid body tracking can be formulated and parametrized through a
set of three dimensional matrices in which the parameter space forms a
Lie group. Drummond and Cipolla [63–65] expressed the differentiation
of eachmode of an affine transformation as a generator of the Lie group.
As a consequence, local transformations near the identity formed the
basis for the Lie algebra; the exponential mapwas applied to project the
resulting transformation back to the group. Bayro-Corrochano and
Ortegón-Aguilar [67] also related the group action as the composition of
the transformations. The transformations were then represented as a
weighted sum of the generators followed by the exponential map.
Particle filtering has also been implemented on the affine group for
visual tracking [74–76,79].

Subspace methods are frequently employed for visual tracking.
Wang et al. [69] viewed online face tracking as a subspace tracking
problem from a Grassmann manifold with the projection matrix
varying over time. At each time step, the principal components of
appearancewere obtained fromaGrassmannmanifoldwhile a particle
filterwas used to track the object. Thedirection of themovement of the
subspace was then updated using a Kalman filter and mapped back to
the Grassmann manifold using the exponential map. An efficient
method for subspace tracking using particle filtering on Grassmann
manifolds was studied in [81].

The use of Riemannian geometry [66,68,70–73,77,78,80] for visual
tracking has also been studied in recent years. The common theme of
these approaches is using covariance descriptors to characterize
object appearances where covariance matrices are computed from a
set of image features. By imposing a meaningful inner product on the
tangent spaces of Symn

+, the space of covariance matrices becomes a
Riemannian manifold. The representation of a covariance descriptor
on a Riemannian manifold has also been applied to pedestrian
detection [82–84], head pose detection [85], and stereomatching [86].
The covariance feature sets for face recognition and pedestrian were
evaluated in [87].
3.5. Motion grouping and segmentation

Motion estimation is one of the pioneering applications using
matrix manifolds because rigid motions can be represented by
orthogonal groups. A summary of this work is given in Table 5.

Horn [88] first explicitly considered the orthogonal constraint from
the properties of differential geometry whenmeasuring the orientation
between cameras. Taylor and Kriegman [89] also estimated the camera
rotational error from rotationmatrices characterized as points inSO(3).
Table 4
The use of matrix manifolds for visual tracking.

Authors & reference Year

Drummond et al. [63–65] 1999
Porikli et al. [66] 2006
Bayro-Corrochano and Ortegón-Aguilar [67] 2007
Tuzel et al. [68] 2008
Wang et al. [69] 2008
Li et al. [70,71] 2008
Wu et al. [72] 2008
Palaio and Batisa [73] 2008
Kwon et al. [74,75] 2009
Porikli and Pan [76] 2009
Wang et al. [77,78] 2009
Li et al. [79] 2010
Ding et al. [80] 2010
As such, the optimization applied in these methods was unconstrained
in the underlying space. Ma et al. [90,91] formulated the motion
recoveryproblembyusing the epipolar constraint xT2 T̂Rx1 = 0where x1
and x2 were the image points, and R and T̂ were the essential matrices.
Froma geometric point of view,R∈SO(3) and T̂∈so 3ð Þ reside on the Lie
group and Lie algebra, and the product of these spaces is a product of
Stiefel manifolds. The use of a Lie group for trajectory generation from
rigid bodieswas also investigated in [92]where theoptimal trajectory in
the ambient space was first constructed followed by a projection on the
Euclidean group.

Analyzing a group of motion in videos gives rise to many visual
applications, such as video surveillance and weather modeling. A
group of motion known as visual flow can be considered a dynamic
flow and parametrized in geometric transforms. Lin et al. [95]
employed a 2D affine transformation to model the motion patterns.
The flow process was parametrized using the Lie algebra represen-
tation such that the intermediate transformations along the geodesic
path remained in the subgroup.

Li and Chellappa [97] expressed the group motion as a driving
force represented by an affine group. The affine group is essentially a
Lie group. To assimilate the nonlinear nature of a Lie group, the
driving force was mapped to a Lie algebra so that linear dependence
between location and velocity was captured. The temporal sequence
was then parametrized in the Cartesian product space between the
driving force and the effective area.

The Lie algebraic representation of dynamic flows casts flow
modeling as parameter estimation. Instead of matrix parametrization,
Lin et al. [96] directly estimated the visual flow by decomposing the
image differences based on infinitesimal generators. The infinitesimal
generator of each flowwas represented as a linear combination of the
motion patterns. The authors reported that the frame differencingwas
more reliable with smooth textures.

Motion grouping has been viewed as subspace segmentation.
Subbarao and Meer [93] considered subspace estimation using m-
estimators. The parameters of the m-estimators were tracked using a
conjugate gradient algorithm on a Grassmann manifold. Newton's
Model Manifold

Optimization Lie group
Exhaustive search Lie group
Optimization Lie group
Multiscale Lie group
Kalman Filter+Particle filter Grassmann
Particle filter Symn

+

Particle filter Symn
+

Particle filter Symn
+

Particle filter Lie group
Particle filter Lie group
Particle filter Symn

+

Particle filter Lie group
Particle filter Symn

+
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method was also applied to find the subspace with the maximum
number of inliers in Grassmannian formotion grouping [94]. Recently,
Mégret et al. [98] reformulated the Lucas-Kanade alignment algorithm
on Lie groups using bidirectional composition where both the image
and the template were warped incrementally. The compositional
increment was parametrized in the Lie algebra.

4. Discussion and summary

When a pattern can be characterized by a state which is a natural
element in a particular manifold, there is a connection between the
pattern space and the underlying group structure. We can then
parametrize the underlying space via algebraic entitiesrather than
directly on the patterns. The group element acts as an operator in the
space making some attribute in the space invariant. Algebraic
characterization of the geometry plays the key role inmatrixmanifolds.

In computer vision, we relate visual data to a particular matrix
manifold through the invariance imposed on the data. In some
applications, the characteristics of visual patternsmay be described by
some transformation whose state transition is governed by a group
action. We may then exploit the parameter in the transformation
space. Because group elements are closed under a group action, the
constraint imposed on the data is automatically maintained.

A Grassmann manifold parametrizes the set of all p-dimensional
subspaces in Rn so that every point in a Grassmann manifold is
rotation invariant. That is, rotating the column space of a matrix by
multiplying an orthogonal matrixon the right such that the imposed
data (a matrix in this case) are invariant to the linear span of the data.
On the other hand, the isotropy subgroup of a Stiefel manifold puts a
constraint on the order of the matrix. That constraint should be an
important consideration when choosing a Stiefel manifold for a
particular application.

A metric space may also be geometric invariant. Affine invariance
can be imposed to the tensor metric of a Riemannian manifold. In
particular, there exists a map f :Symn

+→Symn
+ which is an isometry (a

distance preserving map) for symmetric positive definite matrices.
From the quotient representation of Symn

+=GLn
+/O(n), this gives the

invariance to the distance metric, i.e., dist(U∑UT)=dist(∑) where
U∈O(n) and ∑∈Symn

+.
In summary, geometry may be the most fundamental basis in

pattern analysis. Matrix manifolds provide a natural way to
characterize some visual objects. There are many emerging computer
vision applications on the horizon. It can be advantageous to exploit
the underlying geometry of the data. There has been a recent interest
in associating matrix manifolds with statistical learning theory
[99,100]. Since computer vision is intimately related to machine
learning, there may be potential impacts of investigating this area.

Matrix manifolds were developed more than a century ago but are
still relatively new in the computer vision community. They are well-
defined, rich, andelegant. The strides ofmatrixmanifold representations
will likely produce dividends.
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