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Abstract

Two-stream convolutional networks have shown strong

performance in video action recognition tasks. The key idea

is to learn spatiotemporal features by fusing convolutional

networks spatially and temporally. However, it remains un-

clear how to model the correlations between the spatial and

temporal structures at multiple abstraction levels. First, the

spatial stream tends to fail if two videos share similar back-

grounds. Second, the temporal stream may be fooled if two

actions resemble in short snippets, though appear to be dis-

tinct in the long term. We propose a novel spatiotemporal

pyramid network to fuse the spatial and temporal features

in a pyramid structure such that they can reinforce each

other. From the architecture perspective, our network con-

stitutes hierarchical fusion strategies which can be trained

as a whole using a unified spatiotemporal loss. A series of

ablation experiments support the importance of each fusion

strategy. From the technical perspective, we introduce the

spatiotemporal compact bilinear operator into video analy-

sis tasks. This operator enables efficient training of bilinear

fusion operations which can capture full interactions be-

tween the spatial and temporal features. Our final network

achieves state-of-the-art results on standard video datasets.

1. Introduction

Learning a good video representation is the foundation

of many computer vision tasks, such as action recognition

and video captioning. It goes beyond image analysis and

depends on a joint modeling of both spatial and temporal

cues. Many existing methods [12, 10, 28, 26] are dedicated

to this modeling by taking advantages of Convolutional

Neural Networks (CNN) [16, 13, 23, 27]. However, these

CNN-based methods have not shown an overwhelming per-

formance over other approaches [30, 31] using Fisher Vec-

tor [19], HOF [15], and dense trajectories [30]. One reason

is that these CNN frameworks are not specifically designed

for videos and cannot fully exploit spatiotemporal features.
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Figure 1. An overview of our spatiotemporal pyramid network,

which constitutes a multi-level fusion pyramid of spatial features,

long-term temporal features and spatiotemporal attended features.

In addition to capturing the appearance information us-

ing standard CNN stream, several recent approaches try out

using optical flow data in a second CNN stream to capture

the motion information [22, 37, 6, 38]. However, when tak-

ing a closer look at these models, we observe that for most

misclassification cases, there is usually one stream failing,

while the other remaining correct. Hence, simply averaging

the outputs of the classifier layers is not enough. Instead, we

hope to make the spatial and temporal cues facilitate each

other. This paper presents a novel end-to-end spatiotempo-

ral pyramid architecture, as shown in Figures 1, which can

on one hand boost the accuracy of individual stream and on

the other hand exploits spatiotemporal cues jointly.

From the temporal perspective, since the original opti-

cal flow stream only receives 10 consecutive optical flow

frames, it may be fooled if two actions resemble in such a

short snippet, though distinguish in the long term. A typical

example is Pull-ups and RopeClimbing in UCF101: men in

these two categories could be moving in the same single di-

rection in short snippets. But if we enlarge the time range,

we can easily find that the man in Pull-ups is actually mov-

ing up and down, while the one in RopeClimbing is mov-
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ing straight upwards. To learn more global video features,

we use multi-path temporal subnetworks to sample optical

flow frames in a longer sequence, and explore several fusion

strategies to combine the temporal information effectively.

From the spatial perspective, the original spatial stream

is easily fooled when the backgrounds of two videos are

extremely similar. For instance, it cannot tell FrontCrawl

and BreastStroke apart, because for both categories, the

swimming pool turns out to be the strongest feature. How-

ever, the optical flow network can tell these actions quite

clearly and outperform the spatial stream by at least 5% on

UCF101. Motivated by this, we introduce a spatiotemporal

attention module to extract significant locations on feature

maps of the spatial network. In this process, the temporal

features are exploited as a guidance, which informs the spa-

tial stream where the motion of interest happens.

Besides improving the effectiveness of individual

streams, we explore methods to fuse the spatiotemporal fea-

tures, which enable a joint optimization of the whole ar-

chitecture using a unified spatiotemporal loss function. We

bring in the compact bilinear fusion strategy, which cap-

tures full interactions across spatial and temporal features,

while significantly reduces the number of parameters of tra-

ditional bilinear fusion methods from millions to just sev-

eral thousands. Our experiment results demonstrate that

compact bilinear approximately models the correlations be-

tween each single element of the spatial and temporal fea-

tures, thus yields better performance over its alternatives,

such as concatenation and element-wise sum studied in [6].

Our contributions can be summarized as follows. (a) We

propose a novel deep learning architecture to address the

problems we observe in video representation learning. (b)

We introduce the compact bilinear and spatiotemporal at-

tention methods into video-related tasks and validate their

feasibility in practice. (c) We evaluate our approaches on

standard video datasets UCF101 and HMDB51 and report

significant improvement over the previous state-of-the-art.

2. Related Work

Motivated by the impressive performance of deep learn-

ing on image-related tasks, several recent works try to de-

sign effective CNN-based architectures for video recogni-

tion that jointly model spatial and temporal cues. Before

the blossom of CNN, Ji et al. [10] first exploit consecutive

video frames as inputs and extend the convolutional filters

into temporal domain. Karparthy et al. [12] compare mul-

tiple CNN connectivity methods in time, including late fu-

sion, early fusion and slow fusion. But these approaches

cannot fully utilize motion information, and only yield a

modest improvement over operating on single frames. Tran

et al. [28] train a deeper CNN model called C3D on Sports-

1M. C3D is basically a 3D version of VGGnet [23], con-

taining 3D convolution filters and 3D pooling layers op-

Ours Two-Stream Fusion

Arch. Pyramid Single Conv-Layer

#Loss 1 (End-to-End) 2 (Average)

Spatial Attention Pooling Average Pooling

Temporal Compact Bilinear 3D Max Pooling

Table 1. Differences between our method and state-of-the-art [6].

erating over space and time simultaneously. Noticing that

stacked RGB frames cannot fully exploit temporal cues, Si-

monyan et al. [22] train a second stream of CNN on optical

flow frames and propose a two-stream ensemble network.

Since the optical flow data brings in a significant perfor-

mance gain, it has recently been employed into many other

action recognition methods [2, 5, 25, 29, 34, 37, 26, 33, 6].

However, the original two-stream method [22] has two

main drawbacks: First, it only incorporate 10 consecutive

optical flow frames, so that it cannot capture long-term tem-

poral cues. Second, it cannot learn the subtle spatiotempo-

ral relationships. The spatial (RGB frames) and temporal

(optical flow) streams are trained separately, and the final

predictions are obtained by averaging the outputs of two

classifiers. To mitigate these issues, Ng et al. [37] inves-

tigate several pooling methods as well as the Long Short-

Term Memory (LSTM) [37] to fuse features across a longer

video sequence. Wang et al. [32] model long-term temporal

structures by proposing a segmental network architecture

with sparse sampling. Feichtenhofer et al. [6] study mul-

tiple ways of combining networks both spatially and tem-

porally. They propose a spatiotemporal fusion method and

claim that the two-stream networks should be fused at the

last convolutional layer. Table 1 lists the main differences

between our work and [6]. First and foremost, we propose

a multi-layer pyramid fusion architecture, replacing a 3D

convolutional layer and a pooling layer in [6], to combine

the spatial and temporal features at different abstraction lev-

els. For individual streams, we upgrade the spatial sub-

network by replacing the original average pooling with a

spatiotemporal attention module. This method makes the

network concentrate on significant regions on static frames

with the help of motion cues. Moreover, we introduce the

compact bilinear operator for fusing multi-path optical flow

features temporally. Finally, in training strategy of [6], two

losses are used in their objective function and the final pre-

diction is obtained by averaging the outputs of two streams.

In contrast, our fusion network is trained end-to-end with

one single spatiotemporal loss function. Thus, all streams

are optimized as a whole, resulting in an improved result.

3. Spatiotemporal Pyramid Network

The spatiotemporal pyramid network supports long-term

temporal fusion and a visual attention mechanism. Also, we

propose a new spatiotemporal compact bilinear operator to

enable a unified modeling of various fusion strategies.
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3.1. Spatiotemporal Compact Bilinear Fusion

The fusion of spatial and temporal features in com-

pact representations proves to be the key to learning high-

quality spatiotemporal features for video recognition. A

good fusion strategy should maximally preserve the spatial

and temporal information while maximize their interaction.

Typical fusion methods including element-wise sum, con-

catenation, and bilinear fusion have been extensively evalu-

ated in the convolutional two-stream fusion framework [6].

However, element-wise sum and concatenation do not cap-

ture the interactions across the spatial and temporal features,

so they may suffer form substantial information loss. Bilin-

ear fusion allows all spatial and temporal features in differ-

ent dimensions to interact with each other in a multiplicative

way. Since our spatiotemporal pyramid constitutes spatial

features, temporal features, and their hierarchy, the bilinear

fusion is the only appropriate strategy for our approach.

Specifically, denote by x and y the spatial and temporal

feature vectors respectively, the bilinear fusion is defined as

z = vec(x⊗y), where⊗ denotes the outer product xyT, and

vec denotes the vectorization of a vector. Bilinear fusion

leads to high dimensional representations with million of

parameters, which will make network training infeasible.

To circumvent the curse of dimensionality, we propose

a Spatiotemporal Compact Bilinear (STCB) operator to en-

able various fusion strategies. We transform the outer prod-

uct to a lower-dimensional space which avoids computing

the outer product directly. As suggested by the compact bi-

linear pooling method [7], for a single modality, we adopt

the Count Sketch projection function Φ [1], which projects

a vector v ∈ R
p to v′ ∈ R

d. We initialize two vectors

s ∈ {−1, 1}p and h ∈ {1, . . . , d}p, where s contains ei-

ther 1 or −1 for each index, and h maps each index j in the

input v to an index k in the output v′. Both s and h are ini-

tialized randomly from a uniform distribution and remain

constant for future invocations of Count Sketch. v′ is ini-

tialized as a zero vector. For every entry v(j) its destination

index k = h(j) is looked up by h, and s(j) · v(j) is added

to v′(k). See Algorithm 1 for the details, where m is the

number of feature pathways for compact bilinear fusion.

This procedure enables projecting the outer product of

spatial and/or temporal features into a lower-dimensional

space, which significantly reduces the number of parame-

ters from millions to several thousands. To avoid explicitly

computing the outer product, [20] reveals that the Count

Sketch of the outer product of two vectors can be expressed

as convolution of both Count Sketches: ψ (x⊗ y, h, s) =
ψ (x, h, s)∗ψ (y, h, s), where ∗ is the convolution operator.

Fortunately, the convolution theorem states that convolution

in the time domain is equivalent to element-wise product in

the frequency domain. Thus the convolution x ∗ y can be

rewritten as FFT−1 (FFT (x)⊙ FFT (y)), where⊙ refers to

element-wise product. These ideas are summarized in Al-

gorithm 1, which is based on the Tensor Sketch algorithm

[20]. We invoke the algorithm with m pathways of spatial

and/or temporal features that need to be fused, which en-

ables spatiotemporal fusion into compact representations.

Algorithm 1: STCB: Spatiotemporal compact bilinear

Input: Spatial and/or temporal features {vi ∈ R
pi}mi=1

Output: Fused features Φ({vi}
m
i=1

) ∈ R
d

1 for i← 1 to m do

2 if hi, si not initialized then

3 for j ← 1 to pi do

4 sample hi(j) from {1, . . . , d}
5 sample si(j) from {−1, 1}

6 end

7 v′i = [0, . . . , 0]
8 for j ← 1 to pi do

9 v′i (hi (j)) = v′i (hi (j)) + si (j) · vi (j)
10 end

11 end

12 Φ ({vi}
m

i=1
) = FFT−1 (

⊙m

i=1
FFT (v′i))

13 end

3.2. Temporal Fusion

The original temporal stream takes 10 consecutive op-

tical flow frames as inputs, thus it may make mistakes if

two actions look similar in such short snippets, though dif-

ferentiate in the long term. Therefore, we hypothesize that

learning a more global representation would offer more ac-

curate motion cues for the upper levels of the pyramid net-

work. Specifically, we enlarge the input video chunks by

using multiple CNNs with shared network parameters to

sample the optical flow frames at an interval of τ . Each

chunk covers the previous L/2 and the next L/2 frames as

inputs. For both training and testing, L is fixed to 10, and

τ is randomly selected from 1 to 10, in order to model vari-

able lengths of videos with a fixed number of neurons. For

the fusion method, we exploit STCB and make it support a

scalable number of input feature maps. We show that STCB

is effective not only for spatiotemporal fusion, but also for

temporal combination.

Comparing our method with [6, 32], all these three meth-

ods aim to broaden the input fields across the time domain.

Multiple snippets are fused by 3D pooling in [6] and by

compact bilinear in our work. Another difference between

our method and [6] is that their temporal fusion includes

fusing the features of multiple RGB frames as well, while

we only combine optical flow representations. The reason is

that modeling multiple RGB frames with another loss func-

tion would cause additional overfitting issue in training and

obtain misleading results in testing. More importantly, in

[6, 32], the resulting temporal features are directly fed into

classifiers. In this paper, they are used as input to the next
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Figure 2. The spatiotemporal pyramid network learns spatiotemporal features at multiple abstraction levels, which can be trained end-to-

end as a whole. Optical flow features are first combined across time by a compact bilinear layer. The resulting features then run through

the second compact bilinear layer and a spatiotemporal attention module, determining the salient regions of activities. The final video

representations are obtained by fusing features from the spatial stream, the temporal stream and the attention stream.

fusion stage (attention) in our architecture. We observe that

compact bilinear fusion can preserve the temporal cues to

supervise the spatiotemporal attention module.

3.3. Spatiotemporal Attention

The second level of our spatiotemporal fusion pyramid

is a variant of the attention model, which is originally pro-

posed in multi-modal tasks [36, 35, 18]. We adopt this idea

and extensively apply it to the spatiotemporal scenario, by

taking advantage of the motion information to locate salient

regions on the image feature maps. We implement it on the

last convolutional layers (i.e. inception5b in BN-Inception,

res5c in ResNets and conv5 in VGGnet). For one thing,

the representations of these layers show class-specific mo-

tion variations, while the lower layers capture finer-grained

features of the image, such as edges, corners and textures.

For another thing, we want the attention module to play a

role as a more accurate weighted pooling operation, because

we believe that the original average pooling cannot capture

the salient regions corresponding to the activity information

and may results in information loss.

The spatiotemporal attention module reduces a 1048 ×
7 × 7 feature map in BN-Inception to a 1048 × 1 × 1 fea-

ture vector. But unlike max pooling or average pooling,

the attention pooling has a relatively sophisticated logic and

complicated mechanism. More specifically, for each grid

location on the image feature maps, we use STCB to merge

the spatial feature vector with its temporal counterpart. The

output spatiotemporal representations, implying the corre-

sponding appearance and motion cues, serve as the supervi-

sion of the following attention layers. After that, two convo-

lutional layers are stacked to produce the attention weights

for the feature maps. The size of the first convolutional layer

is 64× 7× 7, while that of the second is 1× 7× 7. At last,

the resulting attention weights are normalized by a softmax

layer, and then combined with the original spatial features

by a weighted pooling layer. The spatiotemporal attention

with STCB makes the spatial stream prone to be abstracted

by the moving objects in the static RGB frames.

Though the attention mechanism has been explored in

action recognition, our work differs from the others, such

as [21] in two folds: (a) our attention is generated by both

spatial-stream and temporal-stream CNNs while the others’

are generated by LSTMs, both to highlight the motion cues

in the spatial representations; (b) we further use optical flow

features as the temporal supervision to the attention module.

3.4. Proposed Architecture

All techniques mentioned above can be integrated under

a pyramid framework. We design our architecture by inject-

ing the proposed fusion layers between the convolutional

and the fully connected layers. Under these circumstances,

we only use the representations of the last convolutional

layer, so that our approach can be extendible for almost all

CNN architectures, including BN-Inception, ResNets and

VGGnet. As a result, we can initialize our network with

models that are well pre-trained on ImageNet [4] before we

fine-tune them on the relatively small video datasets.

We use the STCB technique three times. At the bottom

of the pyramid, multiple optical flow representations across

a longer video sequence are combined by the first STCB

(green layers in Figure 2). By doing this, we obtain more

global temporal features. These features are then fed into

the next fusion level, the spatiotemporal attention subnet-
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work (red layers), where we use another STCB to fuse the

spatial feature maps with the corresponding motion repre-

sentations, and offer the attention cues of salient activities.

At the top of the fusion pyramid, all the three previous out-

comes are used: the original spatial and temporal features

through average pooling, as well as the resulting attended

features through the attention module. They are fused into

a 4096-dimensional vector by a third STCB, and each of

them captures significant information of multiple abstrac-

tion levels in the pyramid. Removing any feature pathway

would result in a decrease in the overall performance.

4. Experiments

This section is organized in accordance with the progress

of our experiments. Initially, we describe the datasets and

training details. Then, we explore the effects of applying

different deep networks as the building blocks of our model,

including VGGnet [23], ResNets [8] and BN-Inception [9].

Next, we evaluate our spatiotemporal pyramid network and

demonstrate its effectiveness by giving ablation results.

Last but not least, we compare our method with the pre-

vious state-of-the-art and analyze its performance by giving

typical examples of correct and incorrect predictions.

4.1. Datasets and Implementations

We train and evaluate our spatiotemporal pyramid net-

work on two standard datasets. The UCF101 dataset [24]

contains 13320 fully-annotated video snippets from 101

action categories. Each snippet lasts 3-10 seconds and

consists of 100-300 frames on average. The HMDB51

dataset [14] contains 6766 videos clips that covers 51 action

categories. For both of them, we follow the provided evalu-

ation protocol and adopt standard training/testing splits.

To verify the pure effectiveness of different pyramid fu-

sion layers, we train a VGG-16 model, a BN-Inception

model and a ResNet-50 model respectively on standard

video datasets. Our models are trained following a multi-

stage training strategy. We initialize the spatial and the tem-

poral subnetworks with models pre-trained on ImageNet.

Then we fine-tune each of them on the target video datasets

and fill these parameters into our final pyramid network. We

follow the cross modality fine-tuning strategy presented in

[32]. After that, we train the entire network on UCF101 or

HMDB51. Here we choose the mini-batch stochastic gra-

dient descent algorithm and set the batch size to 32. More-

over, for VGG-16, we stack the two 4096-dimensional fully

connected layers behind the last STCB layer. We set the

base learning rate to 0.01 and decrease it by a factor of 10

every 10,000 iterations, and the training process stops at it-

eration 30,000. For ResNets, the base learning rate is ini-

tialized as 0.001, reduce by a factor of 10 every 10,000 iter-

ations, and stopped at 20,000. To avoid overfitting, we ran-

domly sample the temporal interval τ from 1 to 10. Also,

we exploit several data augmentation techniques, such as

scale jittering, horizontal flipping and image cropping. De-

tails of these tricks are not in the scope of this paper. All

experiments are implemented with Caffe [11].

4.2. Base Architectures

Deeper CNNs can often lead to better performance in

image recognition tasks [3, 17, 27, 8], since they bring in

great modeling capacity and are capable of learning dis-

criminative representation from raw visual data. The state-

of-the-art two-stream architecture [6] is based on VGG-

16 [23], while Inception with Batch Normalization (BN-

Inception) [9] and Deep Residual Networks (ResNets) [8]

have shown remarkable performance in several challeng-

ing recognition tasks recently. In this work we further ex-

plore the feasibility of ResNets in video analysis tasks. We

take into account a 50-layer ResNet for the sake of com-

putational complexity, as well as a 152-layer ResNet for its

compelling accuracy. All models are pre-trained on the Im-

ageNet [4] and fine-tuned on UCF101 and HMDB51.

Table 2 compares the performance of VGGnet, BN-

Inception and ResNets. Generally, as the number of con-

volutional layers grows, the RGB network benefits most. In

contrast, the performance of the optical flow network de-

creases slightly. There are two reasons. First, the optical

flow data yields a different distribution from RGB, which

weakens the impact of fine-tuning. Second, due to the

limited amount of training samples on UCF101, complex

network structures are prone to over-fitting. BN-Inception

turns out to be the top-performing base architecture.

Model Spatial Temporal Two-Stream [22]

VGG-16 80.5% 85.4% 88.9%

ResNet-50 83.7% 84.9% 90.3%

ResNet-152 84.3% 82.1% 89.8%

BN-Inception 84.5% 87.0% 91.7%

Table 2. Classification accuracy of the two-stream model [22] with

different base architectures on UCF101 (Split 1). All results are

obtained by averaging the outputs of the Softmax layers as [22].

4.3. Spatiotemporal Compact Bilinear Fusion

We explore several strategies for fusing spatial and tem-

poral feature maps. All models but the VGGnet one follow

the same architecture, that the fusion layer is put between

the last convolutional layer (i.e. res5c for ResNets and in-

ception5b for BN-Inception) and the final classifier. Our

experiments show that such a late fusion architecture out-

performs its alternatives in which the fusion layer is moved

forward. It can be explained by that the last convolutional

layer shows class-specific and highly informative features

with significant motion variations.

As shown in Table 3, spatiotemporal compact bilinear
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fusion results in the highest accuracy and improves the per-

formance by around 1.5 points. It is a valuable observation.

Before this, what we know is that compact bilinear pooling

is effective for combining visual representations. But what

we do not know is that the same merit happens between spa-

tial and temporal data. Table 3 also reveals that the output

dimension makes a difference on the performance of spa-

tiotemporal compact bilinear fusion. As it grows, the corre-

lations between the spatial and the temporal representations

(both 1024-dimensional) can be captured more completely,

thus the classification accuracy increases. It is a trade-off

between compression and quality. But larger output dimen-

sion is not always good, since it makes the following fully

connected layers hard to train. We observe that a 4096 out-

put dimension is appropriate for both video datasets.

Fusion Method Accuracy

Average 91.7%

Concatenation 92.4%

Element-wise Sum 92.3%

Compact Bilinear (d = 1024) 92.4%

Compact Bilinear (d = 2048) 92.9%

Compact Bilinear (d = 4096) 93.2%

Compact Bilinear (d = 8192) 93.2%

Table 3. Accuracy of various fusion methods on UCF101 (Split 1).

4.4. Temporal Fusion

Table 4 illustrates the impact of feeding temporal net-

works with longer sequences of optical flow data. Our

model is implemented by making several copies of the in-

dividual network and combining them at the last convolu-

tional layers. We have two observations here. First, among

all these fusion strategies, spatiotemporal compact bilinear

fusion presents the best performance. It is the first time that

compact bilinear fusion is demonstrated effective for merg-

ing multi-path optical flow representations.

Second, these results explain why we design 3 subnet-

works in out final architecture. The columns in Table 4

denotes the number of pathways before the fusion layer.

Among all these models, a 3-path network with spatiotem-

poral compact bilinear fusion outperforms the others. We

shall not cut down or increase the number of subnetworks.

On one hand, the performance of the 3-path model is 2.3

points higher than that of the single-path. On the other hand,

more subnetworks do not mean better results, since in this

situation the spatial and temporal features may not correlate

well with a very long sequence of optical flow data.

4.5. Spatiotemporal Attention

Attention pooling can effectively improve the overall

classification accuracy by guiding the spatial network to

Fusion Method 1-path 3-path 5-path

Concatenation 87.0% 88.4% 88.5%

Element-wise Sum - 87.9% 87.7%

Compact Bilinear - 89.3% 89.2%

Table 4. A comparison of methods for merging multi-path tempo-

ral chunks. The columns represent the number of temporal chunks.

All results are produced on UCF101 with optical flow data only.

attend to significant locations. Our experiments demon-

strate that it can help avoid classification errors especially

resulting from similar or chaotic backgrounds in static video

frames. As shown in Table 5, our best implementation

boosts the performance of the spatial pathway by 2.1 points.

Moreover, this set of experiments testify the value of

compact bilinear fusion again. We initially intend to

use temporal representations solely to generate attention

weights. However, the result turns out to be a little lower

than the original average pooling. We then try to merge tem-

poral and spatial features in advance, while in this scenario

the compact bilinear fusion performs surprisingly well.

Model Spatial Accuracy

Average Pooling 84.5%

Att. Pooling (Temporal Only) 84.3%

Att. Pooling (Concatenation) 83.9%

Att. Pooling (Element-Wise Sum) 83.5%

Att. Pooling (Compact Bilinear) 86.6%

Table 5. The effect of applying attention pooling to the spatial net-

work on UCF101. We feed the attention module with representa-

tions generated by various fusion methods.

4.6. Ablation Results

To testify the individual effect of fusion approaches we

discuss above, we stack them one by one and test the overall

performance. We set the baseline as the original two-stream

CNNs that averages the outputs of the classifier layers.

From Table 6, we observe that our spatiotemporal fusion

method improves the average accuracy by 1.5 points. Fur-

thermore, the proposed multi-path temporal fusion method

results in another 0.4 points performance gain. At last, we

apply spatiotemporal attention pooling and boost the final

result to 94.2%. To sum up, all methods that we propose

prove to be effective for video action recognition.

4.7. Final Results

Final results are obtained by following the testing

scheme described in the standard two-stream method [22].

At first, 10 video snippets are randomly sampled and each

of them contains 3 RGB images along with the correspond-

ing 30 optical flow frames. We then enlarge the training
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Model A B C D

ST Fusion - X X X

Multi-T Fusion - - X X

Attention - - - X

Accuracy 91.7% 93.2% 93.6% 94.2%

Table 6. Ablation results on UCF101 (Split 1). ST Fusion denotes

two-stream spatiotemporal compact bilinear fusion. Multi-T Fu-

sion denotes multi-path temporal fusion. Model A stands for the

original two-stream CNNs, while the others stacks the proposed

approaches one by one. In particular, D is the final architecture.

datasets by cropping the frames and flipping them to avoid

over-fitting. All data belonging to one snippet is fed to the

network to produce an estimate, and the video-level predic-

tion is made by averaging over the 10 snippets.

Method UCF101 HMDB51

Slow Fusion CNN [12] 65.4% -

LRCN [5] 82.9% -

C3D [28] 85.2% -

Two-Stream (AlexNet) [22] 88.0% 59.4%

Two-Stream + LSTM [37] 88.6% -

Two-Stream + Pooling [37] 88.2% -

Transformation [33] 92.4% 62.0%

Two-Stream (VGG-16) [6] 90.6% 58.2%

Two-Stream + Fusion [6] 92.5% 65.4%

TSN (BN-Inception) [32] 94.0% 68.5%

Ours (VGG-16) 93.2% 66.1%

Ours (ResNet-50) 93.8% 66.5%

Ours (BN-Inception) 94.6% 68.9%

Table 7. Performance comparison with the state-of-the-art.

We compare the performance of our final architecture

with the state-of-the-art in Table 7. Our best implementa-

tion based on BN-Inception improves the average accuracy

by 0.6% on UCF101 and 0.4% on HMDB51. Someone may

cast doubt on it and own this performance boost to the very

deep models. To testify that our method is generally effec-

tive, we additionally use the same base architecture (VGG-

16) as the previous two-stream CNNs architectures. Both

based on VGG-16, our result (93.2%) is still competitive

to the original two-stream fusion [6] (92.5%). Again, both

based on BN-Inception, our new result (94.6%) is superior

to the state-of-the-art [32] (94.0%). This result also illus-

trate that our approaches are not any deep-network exclu-

sive, but can be widely applied to many fancy CNN models.

Some representative examples of the classification re-

sults are shown in Figure 4. The first two subplots demon-

strate the effectiveness of the spatiotemporal attention mod-

ule. As mentioned above, the original two-stream network

is easily fooled by common background. For instance, it re-

gards FrontCrawl as BreastStroke, since the swimming pool

appears to be a dominate feature. But in our model, these

spatially ambiguous classes can be separated by exploiting

motion information to extract attended regions of the ac-

tivities. The last two subplots illustrate another strength of

our pyramid network. Thanks to the multi-path temporal

fusion, it produces more global features over longer video

sequences and can easily differentiate actions that look sim-

ilar in short-term snippets but may vary substantially in a

long-term. Additionally, Figure 3 gives typical examples of

categories that are difficult to classify. In the first case, the

network sometimes regards Skiing as SkateBoarding. We

can observe that the main difference of these two classes re-

sides in the scene environment. A possible reason is that

CNN is not robust to the color bias of the image back-

ground. There is no evidence that the attention truly ignores

the background and harms the classification performance.

On the contrary, it offers the fusion pyramid some useful

and additional cues for accurate predictions. If observing

Figure 3 carefully, one can find the confidence of the cor-

rect category (Skiing) has actually increased. This shows

that one component may amend the error of others in the

fusion pyramid. Moreover, the second example indicates

that some categories, like PizzaTossing and Nunchucks, can

only be disambiguated by taking advantage of a fine-grained

recognition. That is to say, detecting the detailed objects in

connection with the on-going actions is also important. The

study towards this issue may reside in our future research.

Furthermore, we adopt t-SNE techniques to visualize

feature vectors that are learned at different levels of the spa-

tiotemporal pyramid, as shown in Figure 5. We observe that

the spatiotemporal attention can indeed improve the feature

quality of the spatial stream, and the spatiotemporal com-

PizzaTossingSkiing

Two-Stream ConvNet

Spatiotemporal Pyramid Network

SkateBoarding

Skiing

MoppingFloor

HandstandWalking

RopeClimbing

Two-Stream ConvNet

Spatiotemporal Pyramid Network

Nunchucks

BlowDryHair

PizzaTossing

BoxingSpeedBag

MoppingFloor

SkateBoarding

HeadMessage

MoppingFloor

Skiing

Lunges

Nunchucks

BlowDryHair

PizzaTossing

JugglingBalls

PlayingVoilin

Figure 3. Examples of categories that are difficult to classify. Even

for misclassification cases, the confidence of the correct category

(green) has increased by our method.
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BlowDryHair PullUpsFrontCrawl BoxingPunchingBag 

Two-Stream ConvNet Two-Stream ConvNetTwo-Stream ConvNet Two-Stream ConvNet

BlowDryHair

BlowDryHair

ShavingBeard

Haircut

ShavingBeard

Spatiotemporal Pyramid Network

Haircut

ApplyEyeMakeup

RopeClimbing

PlayingGuitar

HeadMessage

FrontCrawl

Kayaking

FrontCrawl

BreastStroke

Kayaking

Spatiotemporal Pyramid Network

BreastStroke

CliffDiving

Diving

CliffDiving

Diving

BoxingPunchingBag

BoxingSpeedBag

BlowDryHair

BoxingSpeedBag

BoxingPunchingBag

BlowDryHair

Spatiotemporal Pyramid Network

Nunchucks

JugglingBalls

JugglingBalls

Archery

PullUps

RopeClimbing

RockClimbingIndoor

PullUps

RopeClimbing

Spatiotemporal Pyramid Network

PullUps

BoxingSpeedBag

BoxingPunchingBag

HandstandPushups

WallPushups

RockClimbingIndoor

Figure 4. A comparison of top-5 predictions between the baseline and our pyramid network on UCF-101. The blue bars denote the ground

truth labels, the green bars indicate correct classifications and the red stand for incorrect cases. The length of each bar shows its confidence.

With pyramid network, some errors can be eliminated by taking advantage of image attention (right two), while some other categories can

be disambiguated by fusing long-term temporal features (left two).
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Figure 5. The t-SNE results of 10 classes randomly selected from UCF101. The left figure shows representations of an individual spatial

network; the middle figure is obtained by adding the spatiotemporal attention method on it; and the right one denotes the results of our

final spatiotemporal pyramid architecture. We use features of the classifier layer for all these cases.

pact bilinear fusion at the top of the pyramid can further

increase the discriminative performance.

5. Conclusions

We propose a spatiotemporal pyramid network to com-

bine the spatial and temporal features and make them re-

inforce each other. From the architecture perspective, our

network is hierarchical, consisting of multiple fusion strate-

gies at different abstraction levels. These fusion modules

are trained as a whole to maximally complementing each

other. A series of ablation studies validate the importance of

each fusion technique. From the technical perspective, we

introduce the spatiotemporal compact bilinear operator into

video analysis tasks. This operator can learn element-wise

interactions between the spatial and temporal features. We

extensively show its benefit over other fusion methods, such

as concatenation and element-wise sum. Our spatiotem-

poral pyramid network achieves the state-of-the-art perfor-

mance on UCF101 and HMDB51.
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