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Learning efficient graph representation is the key to favorably addressing downstream tasks on graphs,
such as node or graph property prediction. Given the non-Euclidean structural property of graphs,
preserving the original graph data’s similarity relationship in the embedded space needs specific tools
and a similarity metric. This paper develops a new graph representation learning scheme, namely
Egg, which embeds approximated second-order graph characteristics into a Grassmann manifold. The
proposed strategy leverages graph convolutions to learn hidden representations of the corresponding
subspace of the graph, which is then mapped to a Grassmann point of a low dimensional manifold
through truncated singular value decomposition (SVD). The established graph embedding approximates
denoised correlationship of node attributes, as implemented in the form of a symmetric matrix
space for Euclidean calculation. The effectiveness of Egg is demonstrated using both clustering and
classification tasks at the node level and graph level. It outperforms baseline models on various
benchmarks.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

As one of the most prominent avenues in geometric deep
earning, graph neural networks (GNNs) have received growing
ttention over the last few years (Bronstein, Bruna, LeCun, Szlam,
Vandergheynst, 2017; Hamilton, 2020; Wu et al., 2020; Zhang,
ui, & Zhu, 2020; Zhou et al., 2020). Common to many GNN-based
redictive tasks, distilling key features and structural information
rom the given graph data stays within the core of designing an
ffective graph representation learning.
Graph convolution (Bruna, Zaremba, Szlam, & Lecun, 2014),

specially graph neural message passing (Gilmer, Schoenholz,
iley, Vinyals, & Dahl, 2017), provides an efficient expression
o the information flow of the underlying graph through ag-
regating regional features over the node neighborhood. For a
et of multiple graphs of varying sizes and topological structure,
mploying arbitrary graph convolutions fails to coincide with the
ize of graph representation. Instead, an appropriate graph pool-
ng scheme is required to establish graph-level representations of
uniform scale. Furthermore, a handful of pooling strategies have
een proposed to scale down the graph embedding by extract-
ng the key components of the graph representation. Depending
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on whether the hidden attributes are coarsened along with the
adjacency matrix, different strategies are categorized as either
global (Wang & Ji, 2020; Xu, Hu, Leskovec, & Jegelka, 2019; Zheng
et al., 2021) or hierarchical pooling (Gao & Ji, 2019; Ma, Wang,
Aggarwal, & Tang, 2019; Zheng, Zhou, Li, Wang, & Gao, 2020).

While each operation designs its unique standard for graph
coarsening and feature extraction, common to all pooling strate-
gies is the requirement of node permutation invariance. When
employing feature extraction, the node order of an undirected
graph must not incline the network to excessively concentrate
on individual attributes. The permutation invariance property is
intuitive in heuristic pooling operations like summation, averag-
ing, and maximization, where the aggregation rules of regional
patterns do not rely on the arrangement of nodes sequence.
One possibility to define a permutation invariant pooling op-
eration on graph topology is to view nodes of a graph as a
set of elements. For instance, Kolouri, Naderializadeh, Rohde,
and Hoffmann (2021) establish the Wasserstein embedding of a
node set under the linear optimal transport framework (Mémoli,
2011). A proper Wasserstein metric is designed to match pairs of
node sets while avoiding a direct node selection criterion, as the
hierarchical pooling schemes.

This work instead studies the expression of the node set of
a graph through manifold learning (Absil, Mahony, & Sepulchre,
2008). Recall that the fundamental assumption of a smooth graph
in the design of graph convolutions is that spatially connected
nodes are likely to share similar characteristics and the nodes
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Fig. 1. Computational principle of the proposed framework Egg. (a) Given a graph Gi , i.e., a set of nodes, the target is to train a model that assigns a label to each
of them. (b) Every Gi rectifies a subspace of its most representative bit on the manifold space, where their geodesic distance is measured by their principal angle.
(c) From the perspective of an orthonormal basis, these subspaces can be embedded as Grassmann points of a Grassmann manifold, where similar points have a
small distance. (d) These Grassmann points support an easy projection operation to the space of symmetric matrices for deep learning tasks, such as classification
and clustering.
o

from the same class are likely to have similar attributes. Naturally,
the hidden representation of an attributed graph creates a sub-
space of lower dimension, or equivalently, a point of a Grassmann
manifold. Consequently, a sophisticated learning task over graphs
of varying size and topology accomplishes its transformation to a
new learning task over Grassmann points of a fixed-dimensional
Grassmann manifold.

We name the above embedding strategy of mapping graphs to
Grassmann points as Embedding Graphs on a Grassmann man-
ifold, or Egg for short. This framework is a generic method to
express graphs with a Grassmann manifold subspace analysis. As
demonstrated in Fig. 1, each representation of node sets estab-
lishes a subspace of indeterminate dimensions. EGG then em-
beds these subspaces to Grassmann points of a Grassmannian
M, where every point is explicitly represented by an orthonor-
mal matrix. Furthermore, these Grassmann points support an
effortless inversion to the Euclidean space through symmetric
projection, where new representations are of the same dimen-
sion, and they are ready for conventional graph classification or
segmentation tasks.

In comparison to existing graph distilling strategies, this new
architecture design is one practice of exploiting principal com-
ponents of graphs from non-linear information transformation.
Each node community formulates a subspace of coarsened and
smoother higher-level expression. While conventional graph ag-
gregation generally requires stacked convolution or pooling lay-
ers to allow non-linear propagation, Egg leverages the truncated
ingular value decomposition (trSVD) to directly compress the
rincipal components and construct the smooth subspace. In
ddition, the projected results from these acquired graph Grass-
ann embeddings approximate the second-order covariance of
ode attributes, which gains more expressive power than typi-
al first-order expression from the conventional aggregation and
istilling operations. Moreover, the proposed Egg for graph-level
asks guarantees the critical property of permutation invariance,
hich is an essential requirement of a qualified graph pooling
esign, yet it has been ignored by many existing methods.
The preliminary idea of the developed framework Egg was

irst introduced in a workshop paper (Zhou, Zheng, Wang, Li,
Gao, 2021). This extension provides abundant details for un-

erstanding the rationale and paradigm of the proposed graph
mbedding scheme. Furthermore, the embedding strategy is ex-
anded from graph pooling applications to more general scenar-
os, where in this complete work we exploit the possibility of
andling lower-level unsupervised learning tasks of node seg-
entation. Additional investigations are addressed to interpret

he learned expression and avoid the black-box model design.
The rest of this paper is organized as follows. Section 2

eviews the previous literature on graph representation learning
nd Grassmann deep learning applications. Section 3 introduces
he Grassmann geometry that is closely related. Section 4 de-

ails the two critical ingredients of analyzing subspaces in a
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Grassmannian. We then demonstrate our methods with two spe-
cific applications: graph classification and node clustering. The
problems are formulated in Section 5, and the empirical perfor-
mances are reported in Section 6. Further investigations on the
significance of Egg are addressed in Section 7.

2. Related work

An attributed undirected graph is denoted as Gi = (Vi, Ei,X i)
f ni := |Vi| nodes and |Ei| edges. The node is featured by X i ∈

Rni×d, and the (weighted) edges for the structure information
are described by an adjacency matrix A ∈ Rni×ni . Since the
graph topology provides additional information, graph represen-
tation learning aims at encoding such a structural expression
to conventional vector representations for deep learning models
that assign labels to instances. A node-level graph learning task
assigns a label {y i} to each node of the graph Gi, while a graph-
level task finds a sequence of N labels {y1, y2, . . . , yN} from a set
of input graphs G = {G1, . . . , GN}. Depending on the nature of
the assigned labels, the learning task can be categorized to either
regression or classification.

Spatial graph convolution. The emerging development of graph
neural networks (GNNs) generates enormous work for graph
representation learning. Typically, the topological embedding is
realized by graph convolutional layers. A spatial-based propaga-
tion rule (Gilmer et al., 2017) leverages proper feature extraction
and aggregation from the central node’s local community or the
neighborhood. The propagation rule can be designed as flexible
as weighted average (Bo, Wang, Shi, & Shen, 2021; He et al.,
2020; Kipf & Welling, 2017), concatenation (Hamilton, Ying, &
Leskovec, 2017; Xu et al., 2018), learnable attention (Kim & Oh,
2021; Veličković et al., 2018; Wang et al., 2019), or other adaptive
choices (Brockschmidt, 2020; Tailor, Opolka, Lio, & Lane, 2021).
To allow a broader receptive field, multiple convolution layers
are frequently stacked for multi-hop neighborhood aggregation.
Nevertheless, the majority of the aggregation rules are carried out
in the first-order space, which omits the second-order covariance
information that can capture insightful non-linear relationships of
the feature attributes (Lin, RoyChowdhury, & Maji, 2015; Wang,
Long, Wang, & Yu, 2017).

Graph pooling and down-sampling. As a graph-level learning task
involves multiple graphs of a diverse number of nodes, it is crucial
for GNNs to unify the dimension of the output graph represen-
tation by pooling operations. For instance, TopKPool (Cǎtǎlina,
Veličković, Jovanović, Kipf, & Liò, 2018) formulates a score func-
tion to rank graph nodes and picks the parent nodes of sub-
graphs from graph clusters to hierarchically coarsen a graph.
Other research enhances the selection efficacy through a care-

fully designed scoring mechanism, such as multilayer perceptron
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MLP) (Lee, Lee, & Kang, 2019) or attention (Knyazev, Taylor,
Amer, 2019; Li, Tarlow, Brockschmidt, & Zemel, 2016). The

uthors of Gao and Ji (2019), Ma et al. (2019), Zheng et al.
2020) extended graph coarsening conventions to different slicing
rinciples, although the role of graph clustering and its influence
n local pooling has been challenged by the literature (Mesquita,
ouza, & Kaski, 2020; Wang & Ji, 2020). Alternatively, global graph
ooling strategies are pumped out in practice with a simpler
esign and comparable performance (Xu et al., 2019; Zheng et al.,
021).

rassmann manifold in deep learning. Grassmann manifolds play
n important role in recommender systems (Boumal & Absil,
015; Dai, Kerman, & Milenkovic, 2012), computer vision (Lui,
012; Minh, Murino, & Minh, 2016) and pattern recognition
Huang, Wang, Shan, & Chen, 2015; Slama, Wannous, Daoudi, &
rivastava, 2015). Grassmann learning exploits subspace-invariant
eatures and harnesses the structural information of sample sets,
hich improves the prediction performance of a model with

ower complexity and higher robustness. Due to these privileges,
he Grassmann manifold is often approached as a tool of nonlin-
ar dimensionality reduction (Dong, Frossard, Vandergheynst, &
efedov, 2014; Koch & Lubich, 2007; Ngo & Saad, 2012; Zhou,
ao, Tran, & Gerlach, 2021) or optimization objectives (Absil,
ahony, & Sepulchre, 2004; Edelman, Arias, & Smith, 1998).
hile direct computations on a Grassmannian can be sophis-

icated, other research investigates pipeline Grassmann points
o a Grassmann learning algorithm, such as Deep Grassmann
etworks (Huang, Wu, & Van Gool, 2018) and Grassmann clus-
ering (Wang, Hu, et al., 2017; Wang, Hu, Gao, Sun, & Yin,
014).

. Grassmann geometry

This section overviews the mathematical formulation of the
rassmann points and Grassmann manifold. We also discuss the
easurement on the geodesic distance for Grassmann points, as
ell as their Euclidean counterparts.

.1. Grassmann manifold

Grassmann manifold is a manifold of matrices of a specific
ank. Each Grassmann point is represented by an orthonormal
atrix, and it corresponds to a subspace of the underlying real
uclidean space. To say it precisely,

efinition 1 (Grassmann Manifold (Absil et al., 2008)). The Grass-
ann manifold M(p,m) (p ≤ m) consists of all p-dimensional
ubspaces of the Euclidean space Rm, i.e.,

(p,m) = {U ⊂ Rm
: U is a subspace, dim(U) = p}.

A particular Grassmann point U ∈ M(p,m) is identified by an
rthonormal matrix U ∈ Rm×p, which is an equivalence class of
ll rank-p matrices that spans U . That is, M(p,m) =

{
span(U ) :

∈ Rm×p,U⊤U = Ip
}
. Furthermore, this subspace is identified

niquely by a projector Π (U ) on U , such that Π (U ) = UU⊤.
he Grassmann manifold is an abstract quotient manifold that
ne can represent in many ways, such as the Lie group the-
ry (Bendokat, Zimmermann, & Absil, 2020; Gallivan, Srivastava,
iu, & Van Dooren, 2003). To best allow convenient algebraic
alculations, this work constructs Grassmann points from the
erspective of projection matrices (Chikuse, 2003).
 s
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3.2. Subspace distance

The distance between two Grassmann points is measured
differently from the conventional Euclidean metric due to the cur-
vature of the Grassmannian. The geodesic distance is thus defined
as the length of the shortest path along the manifold between
two points, which is a function of the principal angles of the
two subspaces or analogously the two Grassmann points, as we
introduce now.

Definition 2 (Principal Angle). Given two Grassmann points U1,U2
M(p,m) and their orthonormal bases U1 = [(u1)1, . . . , (u1)p],
2 = [(u2)1, . . . , (u2)p] ∈ Rm×p, we define their principal angles
≤ θ1 ≤ · · · ≤ θp ≤

π
2 recursively by

cos(θi) = max(u1)⊤i (u2)i
s.t. ∥u1∥2 = ∥u2∥2 = 1, (u1)⊤i (u1)j = (u2)⊤i (u2)j = 0 ∀j < i.

The principal angles describe the smallest p angles between
all possible bases of the two p-dimensional subspaces (U1 and
U2). With a sequence of principal angles Θ = [θ1, . . . , θp],
he geodesic distance between the two Grassmann points is a
unction of the principal angles, i.e., d(U1,U2) = ∥Θ∥2.

In literature, there exist many other measurements to describe
he discrepancy between subspaces, so that a closed-form solu-
ion for optimization on a Grassmann manifold becomes possible.
or example, the projection distance (Chikuse, 2003) embeds a
rassmann manifold M(p,m) into a higher m dimensional Eu-
lidean space in the form of a Symmetric Positive-Definite (SPD)
atrix; the chordal distance and the Procrustes distance (Ye
Lim, 2016) measures the total squared sine angle between

rassmann points, which is usually used for shape analysis. This
ork follows the first measure of the projection distance, which
lso supports kernelized Grassmann learning (Harandi, Salzmann,
ayasumana, Hartley, & Li, 2014) and has been well-explored in
earning low-rank approximation (Dong et al., 2014; Ngo & Saad,
012; Zhou, Gao, et al., 2021) and pattern recognition (Huang
t al., 2015; Slama et al., 2015).

. Grassmannian subspace analysis on graphs

This section provides a guideline for graph smoothing and dis-
illing through node sets embedding to a continuous and smooth
rassmann manifold. As we shall introduce below, our proposed
ethod rectifies graph representations with embedded structure

nformation to a Grassmannian of their feature space at a lower
imension. The Euclidean representations of these Grassmann
nstances from the projection perspective can be considered as
n approximate version of the feature correlations that elimi-
ates unnecessary variances. A Grassmann embedding appends
on-linear smoothing effects to the graph representations that
re usually achieved by stacking up fully-connected layers. The
utput representation meets the key requirements of a standard
raph embedding scheme, and it allows arbitrary computations
dapted to a Euclidean space.

.1. Problem formulation

We begin with a set of hidden representations H = {H1, . . . ,

N} from graph convolutional layers for a given set of N graphs
= {G1, . . . , GN}. Here H i ∈ Rni×m is with respect to ni nodes in

i and a number of m hidden neurons for the last graph convo-
ution operation. The H i for graph-level learning tasks requires a
raph representation that is irrelevant to the node size and has an
dentical dimension to other H ∈ H. Therefore, at the rectification
tep, each graph representation of H to a Grassmann point is
dentified with an orthonormal basis of H , and is aligned to the

ame Grassmannian.
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.2. Manifold rectification

Suppose we have obtained a graph hidden representation H ∈

⊂ Rn×m as well as its row-generated subspace span(H⊤), which
s mentioned can be achieved by employing one or multiple
ayers of graph convolution. Our target is to find a concrete
rassmann representation with most variations of the data. We
haracterize the representation as an orthogonal basis of the
ubspace, which can be rectified in several ways, such as the QR
ecomposition of matrix H⊤, as demonstrated by Huang et al.
2018). Here we consider another classic method of the truncated
ingular value decomposition (SVD) to find the best low-rank
pproximation of the hidden feature space H⊤ in the sense of the
east-squares (Chikuse, 2003).

The preliminary goal of employing the manifold embedding
s to establish a graph representation of a unit dimension k.
e therefore leverage the truncated SVD on H to obtain the
ost representative basis U = [u1, u2, . . . , up] of the subspace
pan(H⊤), i.e.,
⊤

= USV⊤, (1)

here the Grassmann point U = [U ] is an equivalence class of U .
he U ∈ Rm×k is an orthonormal basis with rank(H⊤) = k, 1 ≤

≤ min{m, n}. The diagonal S := Diag([σ1, . . . , σk]) ∈ Rk×k con-
tains k singular values sorted in the descending order, where σl
gives the percentage importance of ul. The corresponding singular
vectors constitute V = [v1, . . . , vk] ∈ Rn×k.

Rather than using the full U ∈ Rm×k, we only preserve the
first p-columns of U (p ≤ k), denoted as U p, to include the most
important p components of the original space H . The subspace
span(U p) composes a Grassmannian U := [U p] in M(p,m). In
practice, it could potentially hurt the expressiveness of graph
embedding for defining an identical relatively small subspace
dimension p for all graphs, since real-world datasets could have
a great number of graphs with a large variation on node sizes
from a few to thousands. Instead, we let p for a Grassmann point
[U d] ∈ M(p,m) be determined by p =

∑k
i=1 1{σi > r}. The

σi corresponds to unit singular values from (1), and r denotes
the global threshold of the percentage importance. However, all
these Grassmann points {U} can be naturally mapped to the
embedded Grassmannian M(pmax,m), with pmax the highest p
ver all Grassmann points, so they are still at the same space with
ccessible geodesic distance.
The embedding operation is compatible to arbitrary hidden

epresentations of H. Intuitively, it regards a (sub)graph with a
et of n attributed nodes as a p-dimensional subspace. While
variant of size n can be observed from different node sets,

he rectified Grassmann points from the underlying embedding
peration are projected to the same Grassmann manifold, where
he geodesic distance of two points reflects the similarity of two
ets, or graph instances in analogue. Such similarity provides a
riterion for distance-based training tasks, such as clustering or
lassification.
The rectification step by the truncated SVD can be considered

s a non-linear transformation of the feature space that extracts
he most powerful subspace expression of the node space and
iew it as a Grassmann point. At this stage, node sets of varying
izes are embedded in a common Grassmann manifold, where
ach of them is represented by a subspace of orthonormal basis
p ∈ Rm×p. While it is feasible to compute the geodesic distance
f Grassmann points, projecting them back to the Euclidean space
s preferred by conventional deep learning modules. We now
ntroduce the projection operation of a Grassmann point to its

ssociated Euclidean representation.
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.3. Projection embedding

The rectification step establishes a set of Grassmann points
U1, . . . ,UN} ⊂ M(p,m) as well as their matrix representation
U1, . . . ,UN} from the orthonormal basis perspective. One can
stablish follow-up learning schemes on {U1, . . . ,UN} with the
rassmann geometry (Absil et al., 2008). Alternatively, the Grass-
ann points can first be projected to the space of symmetric
atrices Sym(m) to allow calculations based on Euclidean space.
efine

: M(p,m) −→ Sym(m), Π (U ) = UU⊤. (2)

The projected representation Sym(m) allows general Euclidean
easures to allow conventional deep learning methods such as

ully-connected layers.
After the rectification and the projection step, the graph latent

epresentation H is transformed to a symmetric positive definite
SPD) matrix Π (U p) = U pU⊤

p . This SPD matrix representation is
n analog to a bilinear mapping, and it captures the second-order
tatistics that better reflects regional features of H (Tuzel, Porikli,
Meer, 2006). Moreover, the rectified representation U from

1) gains robustness as a result of approximating the covariance
atrix U pU⊤

p . This projected Euclidean representation is feasible
or various tasks. For example, in graph property prediction, a
ectorized Π (U p) can be employed as the readout train. We sum-
arize the main steps of the Grassmann embedding in Algorithm
.

.4. Stable SVD for backward propagation

While we package the embedding operations in an end-to-end
earning framework, it is essential to develop a computational
trategy for SVD that is reliable in back-propagation (BP) of deep
eural networks. The rest of this section gives the derivation of
P for the employed truncated SVD, which is numerically stable
specially in the case when the input matrix involves extremely
mall singular values. We denote two orthonormal matrices U ∈
m×k, V ∈ Rn×k, and S = diag(s1, s2, . . . , sk) ∈ Rk×k as the output
f SVD on H⊤ during forward-propagation. To update H⊤ in BP,
ts gradient is calculated by

H⊤ f =

[
U

(
F ◦

[
U⊤U − U

⊤

U
])

S +
(
Im − UU⊤

)
US−1

]
V⊤

+ U
[
S

(
F ◦

[
V⊤V − V

⊤

V
])

V⊤
+ S−1V

⊤ (
In − VV⊤

)]
+ U

(
Ik ◦ S

)
V⊤,

where F ij =
1

s2j −s2i
· 1{i ̸= j} that satisfies the identity F⊤

= −F .

The calculations of F and S−1 are often numerically unstable
due to the possible near-zero singular values. To circumvent this
difficulty, we follow Huang and Van Gool (2017) and introduce
the following trick on S:

Snew
i,i = S i,i · 1{S i,i > ϵ} + ϵ · 1{S i,i ≤ ϵ},

where ϵ is a small number and can usually be set to 10−12. In
practice, we replace S by the modified matrix Snew in BP to avoid
0 values in S .

5. Applications on graph

This section applies the proposed Egg to two distinct graph
learning tasks: node clustering and graph classification. We start
with formulating the two problems to be solved, following the
designed model structure of the two addressed problems.
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Algorithm 1: Egg for graph representation learning

Input : Hidden representation H , dimension p.
utput: A graph representation.
for graph-level tasks): Transpose H to H⊤. // Transpose
ind the p-dimensional low-rank representation of U by (1). // Manifold Rectification
roject U to an SPD matrix (2). // Projection Embedding
q

B
m
2

p

w

5.1. Graph classification

A graph-level representation learning task, such as graph clas-
ification and regression, takes multiple graphs G = {G1, . . . , GN}

s the input to train a feasible model that makes correct assign-
ent y i = g(X i,Ai). The node sizes of different graphs are merely

dentical, and it is the duty of graph pooling to learn from a
idden graph representation H i = f1(X i,Ai) so that the graph
s summarized to hi = f2(H i) with a determined length. The
representation is later employed for label prediction, i.e., y i =

3(hi).
With GNNs, the first step of f1(·) is usually executed by graph

onvolutional layers to extract structure and node features, which
utputs a hidden representation H ∈ Rn×m for an arbitrary graph
f n nodes. A graph pooling strategy is then selected to design a
roper f2(·) that unifies the dimension of representations to all
he graphs. The proposed Egg defines f2(·) by embedding each
to a Grassmann point of M(p,m). Specifically, it calculates
k-dimensional subspace of H⊤ by the truncated SVD. The U

rom (1) denotes a Grassmann point associated with a graph. To
llow Euclidean computations, it can be projected to a symmetric
atrix by (2) and be flattened and sent to a classifier, such as

ully-connected layers. The embedding step is also illustrated in
ig. 1 and Algorithm 1.
The validity of Egg for graph pooling is guaranteed by the two

ssential requirements: uni-size representation and permutation
nvariance, which we shall check now.

roposition 1. Egg always produces a graph embedding g ∈

R
m(m+1)

2 for the node representation matrix H ∈ Rn×m, regardless
f the graph size n.

roof. Given the node representation matrix H ∈ Rn×m of
a graph G with n nodes and m features, the Grassmann graph
embedding gives the output UU⊤, where U ∈ Rm×k with k =

rank(H⊤). Then, the output of Egg for the graph classification
is the flattened representation of the upper triangular matrix
of UU⊤

∈ Rm×m. The length of vector representation is thus
m(m + 1)/2, and it is independent of the graph size n. □

Proposition 2. Egg satisfies the requirement of permutation in-
variance so that it produces the same Grassmann graph embedding
under row permutations of the input node representation matrix.

Proof. Suppose H1 is the node representation matrix of a graph
and let H2 = PH1, where P is a permutation matrix. Then,

H⊤

1 = USV⊤, H⊤

2 = H⊤

1 P
⊤

= USV⊤P⊤.

The Grassmann point for both H1 and H2 can be accessed by the
same matrix U . Hence, the proposed graph embedding method is
permutation invariant. □

5.2. Node clustering

Node-level tasks make predictions on each node v of a single
graph G. For node clustering, the target is to segment the full
graph into a number of subsets, where nodes from the same
326
subset usually have a closer connection to each other, and/or
share similar properties.

A typical approach in literature to solve node clustering prob-
lems is by using Variational Graph Auto-Encoder (VGAE) (Kipf &
Welling, 2016) to generate a latent representation for a graph
and then applying k-means (Lloyd, 1982) for clustering the nodes,
where the VGAE model pursues the optimal variational parame-
ters W that minimize the variational lower bound

L = Eq(Z |X,A)
[
log p(A|Z)] − KL[q(Z |X,A)|p(Z)

]
.

Here q(Z |X,A) is the encoder such that

(Z |X,A) =

N∏
i=1

q(z i|X,A), q(z i|X,A) ∼ N (z i|µi, diag(σ
2
i )).

oth the mean µ and log standard deviation log σ are approxi-
ated by graph convolutional layers, such as GCN (Kipf &Welling,
017). The decoder is defined as

(A|Z) =

N∏
i=1

N∏
j=1

p(Aij|z i, z j), p(Aij = 1|z i, z j) = σ (z⊤

i z j),

here A is with respect to the adjacency matrix, and σ (·) is the
activation function. We take the inference set H := [µ1, . . . ,µm]

∈ Rn×m as the hidden representation of the graph with n nodes of
hidden size m and send it to Egg for Grassmann embedding. The
consequent UU⊤

∈ Rn×n is handled by clustering methods, such
as k-means (Lloyd, 1982), to assign clusters with k set to be the
number of classes of the dataset. Instead of relying on the pair-
wise connection or the feature-space information, Egg leverages
second-order correlations of nodes for a proper segmentation.

6. Experiment

This section evaluates the proposed framework on graph-level
classification tasks as well as node-level clustering tasks. The
former is conducted on six benchmarks of variant graph sizes,
volume, and density, and the latter employs five popular graph
datasets of moderate volume. All benchmark datasets and base-
line methods are publicly available in the PyTorch Geometric
(PYG) (Fey & Lenssen, 2019) library. The implementation of Egg is
published at https://github.com/conf20/Egg. The rest of this sec-
tion lists the experimental setup and analyzes the performance
comparison of the two experiments.

6.1. Ablation study on graph pooling

6.1.1. Setup
We benchmark the performance on five binary classification

and one multi-class classification tasks. The Molhiv (Hu et al.,
2020) is from open graph benchmark, and all other datasets are
provided by TUDataset benchmarks (Morris et al., 2020). The
summary statistics of the six benchmark datasets is provided in
Table 1. Most benchmark datasets preserve their original feature
attributes except for the feature-less dataset Collab, where we
follow Xu et al. (2019) to generate new features with one-hot
encoding of node degrees. Also, virtual nodes (Ishiguro, Maeda,

https://github.com/conf20/Egg
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Table 1
Summary of the datasets for graph property prediction tasks.
Datasets Proteins D&D NCI1 Mutagen Collab Molhiv

# Graphs 1,113 1,178 4,110 4,337 5,000 41,127
# Classes 2 2 2 2 3 2
Min # nodes 4 30 3 30 32 2
Max # nodes 620 5,748 111 417 492 222
Avg # nodes 39 284 30 30 74 26
Avg # edges 73 716 32 31 2,458 28
# Features 3 89 37 14 0 9
Table 2
Performance comparison for graph classification with GCN convolution.

Proteins D&D NCI1 Mutagen Collab Molhiv

TopKPool 73.48±3.57 74.87±4.12 75.11±3.45 79.84±2.46 81.18±0.89 77.11±1.27
SAGPool 75.89±2.91 74.96±3.60 76.30±1.53 79.86±2.36 79.26±5.37 75.36±1.82
EDGEPool 75.60±2.40 67.60±0.51 77.17±1.49 70.34±1.69 75.09±0.81 75.14±1.66
PANPool 72.41±3.58 72.52±4.05 62.82±3.04 70.14±1.85 75.78±2.03 74.18±1.52

SUM 74.91±4.08 78.91±3.37 76.96±1.70 80.69±3.26 80.76±1.56 74.88±2.64
AVG 73.13±3.18 76.89±2.23 73.70±2.55 80.37±2.44 81.24±1.34 77.69±1.17
MAX 73.57±3.94 75.80±4.11 75.96±1.82 78.83±1.70 82.28±2.10 76.95±0.94
Attention 73.93±5.37 77.48±2.65 74.04±1.27 80.25±2.22 81.58±1.72 77.44±1.27

EGG 77.79±2.16 79.10±2.98 77.80±2.01 81.01±1.28 82.94±1.06 76.60±1.10
Table 3
Performance comparison for graph classification with GIN convolution.

Proteins D&D NCI1 Mutagen Collab Molhiv

TopKPool 73.66±6.00 76.40±2.32 77.06±0.90 78.30±1.36 81.40±0.94 78.14±0.62
SAGPool 75.95±4.52 68.94±7.62 76.97±2.94 78.86±1.58 81.76±1.57 75.26±2.29
EDGEPool 75.13±3.62 72.82±1.40 77.79±2.80 81.01±0.82 79.20±1.66 75.30±2.01
PANPool 71.43±2.15 72.75±2.32 71.68±4.45 78.09±1.27 80.22±2.02 77.18±1.13

SUM 78.04±2.30 78.57±1.26 78.83±1.49 81.31±1.10 82.64±0.85 77.41±1.16
AVG 71.70±2.08 74.37±1.32 76.55±1.72 80.97±1.18 83.30±0.77 78.21±0.90
MAX 76.70±1.57 77.31±2.06 79.27±1.38 80.28±0.83 80.94±0.72 78.16±1.33
Attention 75.63±1.13 71.76±3.26 78.22±1.32 78.54±5.37 83.22±0.30 74.44±2.12

EGG 79.80±1.09 81.18±1.14 81.31±1.55 82.53±0.72 81.32±0.68 77.82±0.90
t
{

s
r

6

E
t
t

& Koyama, 2019) are included in Molhiv to enhance the learning
bility, as is suggested by Hu et al. (2020).
To learn the hidden representation of graph topological em-

edding for pooling layers, we consider two variants of GCN (Kipf
Welling, 2017) and GIN (Xu et al., 2019). For the first five

atasets from TU Datasets, we construct three GCN layers for
CI1, and two GCN layers for the other four datasets to encode
raph hidden representation for pooling. Meanwhile, the number
f GIN convolutional layers is set to four with the JKNet (Xu et al.,
018) construction. Both models for the largest dataset Molhiv
se four convolutional layers. The learned hidden representation
s sent to one of the baselines, following a two-layer MLP with
ize 64 and 16, respectively.
A fair comparison of Egg is made against four hierarchi-

al and four global pooling methods. The former includes Top-
Pool (Cǎtǎlina et al., 2018; Gao & Ji, 2019), SAGPool (Lee et al.,
019) EDGEPool (Diehl, 2019; Diehl, Brunner, Le, & Knoll, 2019),
nd PANPool (Ma, Xuan, Wang, Li, & Liò, 2020), and the latter
hooses Attention (Li et al., 2016), Summation, Average and
aximization methods. The official implementation are of all
ight baselines are provided by PyTorch Geometric (Fey &
enssen, 2019).
The models are trained on 80% randomly selected samples of

he datasets, validated on 10% samples, and tested on the left
0% samples. The main hyper-parameters are fine-tuned with
grid search engine, where we are interested in Learning rate

n {5e−3, 1e−3, 5e−4}, L2 weight decay in {5e−3, 1e−3, 5e−4},
nd hidden units in {32, 64} for the convolution layers. For the
ully-connected layer, we search in particular the dropout ratio

n {0, 0.5}. For Egg, we include an extra hyper-parameter of

327
he threshold ratio r in truncated SVD, which is set to one of
0.5, 0.8}. The model stops training whenever the validation loss
tops improving for 20 consecutive epochs, or the training epoch
eaches 200.

.1.2. Result
Table 2 and Table 3 compare the prediction performance of

gg with the eight baselines. Follow the convention, we report
he percentage value of mean test accuracy for the classification
asks with TUDatasets and ROC-AUC score for Molhiv. The mean
performance score are averaged over 10 repetitions with their
standard deviations provided after the ± signs. In general, our
Egg achieves the top score on all the six tasks with a lower
volatility. The advantage is more salient when the hidden rep-
resentation of graphs are embedded by GIN convolutions with
JKNet structure. Egg constructs a feasible global pooling method
that interprets the second-order correlation of the compressed
graph expressions, which are more informative than the first-
order relationships. As this covariance relationship is captured
by a non-linear transformation, i.e., a truncated SVD, one layer
of Egg is generally sufficient for graph distilling tasks, and it
reliefs the burden of the fine-tuning work in training a deep graph
learning model. It should be emphasized that the correlation
analysis of Egg relies on the node attributes. When the input
graph is feature-less, such as Collab, the performance can be
less-promising.

6.2. Node clustering

6.2.1. Setup
The second experiment validates the design of Egg to node
clustering tasks. Five popular benchmarks, including the three
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Table 4
Summary of the datasets for node clustering tasks.

Cora Citeseer Pubmed Wiki-CS Coauthor-CS

# Nodes 2,708 3,327 19,717 11,701 18,333
# Edges 5,429 4,732 44,338 216,123 100,227
# Features 1,433 3,703 500 300 6,805
# Clusters 7 6 3 10 15

citation networks (Cora, Citeseer, Pubmed) (Yang, Cohen, &
Salakhudinov, 2016), Wiki-CS (Mernyei & Cangea, 2020) and
Coauthor-CS (Shchur, Mumme, Bojchevski, & Günnemann, 2018),
are employed to examine the effectiveness of an additional em-
bedding step of Egg. The statistics of the five datasets are sum-
marized in Table 4. In terms of the baseline method, we train
a VGAE model (Kipf & Welling, 2016) to generate the latent
representation H ∈ Rn×m of the graph and then send the H
matrix to k-means (Lloyd, 1982) for clustering. Based on this
baseline architecture, we insert our Egg before the k-means as
n additional step. Specifically, we first send the learned latent
epresentation H to Egg, then perform k-means on the output of
he Egg procedure.

The same structure of the VGAE model is adopted from the
ork by Kipf and Welling (2016), where the encoder is im-
lemented by a two-layer GCN (Kipf & Welling, 2017) and the
ecoder is simply given by an inner product between the la-
ent variables as illustrated in Section 5.2. We train the VGAE
odel for 200 epochs using Adam (Kingma & Ba, 2015) with a

earning rate of 0.01. The dimensions of the hidden layer and the
atent space are set to 32 and 16 in all experiments, respectively.
o obtain the latent representation of nodes, VGAE is trained
n a link prediction task of identifying edges and non-edges.
ollowing Kipf and Welling (2016), we divide the dataset into
he training, validation, and test sets by a random selection of
5%, 5%, and 10% of the total node connections. The positive and
egative edges share the same amount. In terms of evaluation,
e employ the following four metrics to validate the clustering
esults: Accuracy (Acc.), Normalized Mutual Information (NMI),
verage Rand Index (ARI), and Completeness Score (CS).

.2.2. Result
Table 5 reports the experimental results of Egg-enhanced k-

eans with VGAE in node clustering tasks. In addition to the four
valuation metrics, we also attach two additional ratios in the
ame of k-means+EGGx (y), where the first ratio x ∈ (0, 1) is used
o determine the number of most important components p in the
atent space of H ∈ Rn×m we have kept, that is p = ⌈xm⌉. The sec-
nd value y indicates the percentage of the information from the
atent representation H being captured by these p components.

It shows clearly from Table 5 that the Egg0.8-enhanced k-
eans consistently outperforms the plain k-means on all the
atasets in terms of all four metrics. We also observe that Egg0.5
rovides a comparable performance against the baseline, giving
hat the first p = ⌈0.5m⌉ components contain 90% variations of
he graphs’ latent representation. These observations confirm that
gg brings solid performance gains to the node clustering tasks.

. Further investigation

This section validates Egg from three perspectives. The sen-
itivity of the model performance to the newly introduced hy-
erparameter is tested in the first part. We then explore the
xpressiveness of the learned embedding with a t-SNE visual-
zation of the learned hidden representation. In the last sector,
e check the learning behavior of Egg through the loss curve of
raining tasks.
328
Fig. 2. Sensitivity analysis for the threshold information ratio r on PROTEINS.

7.1. Sensitivity to the embedded dimension

As discussed in Section 4, the number of the subspace dimen-
sion p is adaptively selected for each Grassmann point, according
to the global threshold of the percentage importance r . The r
s thus a new hyperparameter for Egg. This section designs a
ensitivity analysis to demonstrate the negligible impact of the
hoice of r on the performance of the Grassmann embedding. The
odel learns a graph classification task on Proteins with both
CN and GIN networks, which architectures and training setups
re detailed in Section 6.1. We report the mean test accuracy
ver 10 repetitive runs. Seven different values of the threshold
atio r is set from 0.3 to 0.9 with step size 0.1. The results are
isualized in Fig. 2, which draws a nearly horizontal trend of the
ean test accuracy movement of Egg with different choices of

he threshold ratio r . This suggests that the considerably wide
hoice of the hyperparameter r does not drastically influence the
erformance of Egg pooling. In fact, we suggest a moderately high
alue of r , such as 0.5, to retain the essential information of a
raph in Grassmann embedding and guarantee a relatively fast
omputational speed of the algorithm at the same time.

.2. Embedding expressiveness

Next, we exploit the expressiveness of the flattened Euclidean
raph embeddings with two-dimensional t-distributed Stochastic
eighbor Embedding (t-SNE). The results are from the 3-class
raph classification task Collab that we conducted in the first
xperiment of Section 6. In Fig. 3, each point denotes a graph
idden representation by Egg, and the three colors indicate one
f the three true labels. For a more clear presentation, we sample
000 instances in random. In the case of the GIN convolution,
utputs from all the four pooling layers are aggregated, due to
he employed JKNet structure. Both Figs. 3(b) and 3(c) suggest a
lear clustering pattern of the pooled graphs.
A similar visualization for the learned representation in node

lustering tasks is displayed in Fig. 4, where the three citation
etworks are trained. Once again, points of different colors are
asically located at distinct corners, which implies that the hid-
en representations from Egg(0.8)+k-means manage to collect a

differentiable pattern for the underlying clustering task.

7.3. Learning behaviors

In the last investigation, we check the training and validation
curves for loss and accuracy in Fig. 5. The results are retrieved
from the graph classification learning task on Proteins with the
same experimental settings in Section 6.1. Here only a single
run results are retrieved due to the employment of the early
stopping criteria, with which every independent run could stop
at a different epoch. Except for the minor volatility after epoch 5
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Table 5
Performance comparison for node clustering. All scores are averaged over 10 repetitions with the scale between 0
and 1. The value after ± is standard deviation.

Method Acc. NMI ARI CS

Co
ra

k-means 0.6137±0.0345 0.4459±0.0190 0.3782±0.0312 0.4351±0.0188
k-means+EGG0.2 (53.16%) 0.5207±0.0553 0.3789±0.0374 0.2967±0.0475 0.3702±0.0360
k-means+EGG0.5 (90.73%) 0.6195±0.0340 0.4345±0.0269 0.3804±0.0434 0.4292±0.0257
k-means+EGG0.8 (98.76%) 0.6388±0.0386 0.4548±0.0158 0.3998±0.0293 0.4591±0.0191

Ci
te
se
er

k-means 0.4347±0.0341 0.1931±0.0343 0.1548±0.0262 0.1942±0.0358
k-means+EGG0.2 (45.28%) 0.4156±0.0409 0.1794±0.0259 0.1527±0.0294 0.1783±0.0254
k-means+EGG0.5 (88.25%) 0.4683±0.0323 0.2098±0.0283 0.1865±0.0301 0.2096±0.0282
k-means+EGG0.8 (97.98%) 0.4698±0.0284 0.2071±0.0235 0.1859±0.0282 0.2107±0.0201

Pu
bm

ed

k-means 0.6469±0.0232 0.2425±0.0233 0.2380±0.0368 0.2393±0.0233
k-means+EGG0.2 (64.98%) 0.6339±0.0193 0.2311±0.0162 0.2196±0.0228 0.2280±0.0163
k-means+EGG0.5 (97.18%) 0.6296±0.0228 0.2394±0.0252 0.2171±0.0302 0.2377±0.0263
k-means+EGG0.8 (99.48%) 0.6521±0.0135 0.2532±0.0201 0.2436±0.0231 0.2521±0.0224

W
ik
i-
CS

k-means 0.4080±0.0371 0.3429±0.0157 0.2156±0.0240 0.3418±0.0153
k-means+EGG0.2 (52.48%) 0.3875±0.0392 0.3207±0.0183 0.2065±0.0276 0.3195±0.0179
k-means+EGG0.5 (93.21%) 0.4103±0.0253 0.3319±0.0132 0.2232±0.0249 0.3307±0.0128
k-means+EGG0.8 (99.43%) 0.4685±0.0210 0.3643±0.0193 0.2423±0.0223 0.3633±0.0181

Co
au

th
or
-C

S k-means 0.6410±0.0171 0.6950±0.0311 0.5442±0.0427 0.6880±0.0300
k-means+EGG0.2 (45.05%) 0.5483±0.0250 0.6095±0.0210 0.4472±0.0269 0.6050±0.0235
k-means+EGG0.5 (92.67%) 0.5878±0.0188 0.6750±0.0150 0.5033±0.0190 0.6735±0.0157
k-means+EGG0.8 (99.68%) 0.6700±0.0201 0.7248±0.0195 0.6150±0.0205 0.7230±0.0193
Fig. 3. The t-SNE visualizations of graph representations produced by Egg pooling on COLLAB with GCN before training; with GCN after training; and with GIN after
raining.
Fig. 4. The t-SNE visualizations of node representations with Egg(0.8)+k-means on Cora, Citeseer and Pubmed.
hat is very likely brought about by stochastic gradients, all the
our training lines validate an efficient convergence of Egg, where
he loss curve stabilizes quickly after a few epochs. The training
rocess is slightly longer for GIN convolution, which is partly due
o the more sophisticated network architecture for the model to
it.

. Discussion and conclusion

This paper develops a Grassmann geometry-based graph em-
edding strategy named Egg. For a given set of hidden fea-
ure subspace of graphs, the proposed method rectifies them
o Grassmann points of a Grassmann manifold to make anal-
sis on them. Through establishing the view of treating graph
329
nodes as a subspace, many new perspectives on formulating
informative graph representations become visible. For example,
this work approximates the covariance relationship of node at-
tributes with non-linearity transformation, which concurrently
offsets the inefficiency of a stack of fully-connected layers and
blurs the minor perturbations of the initial representation. Fur-
thermore, the new framework allows a swift projection from the
manifold space back to the Euclidean space, so that the new rep-
resentation supports common loss designs by Euclidean metrics.
We demonstrate the effectiveness of the embedding framework
with extensive numerical experiments, for both graph-level and
node-level representation learning tasks.
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Fig. 5. Training and Validation learning curves on the Proteins dataset with Egg pooling. The graph convolutional layers are set to GCN and GIN, respectively.
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The proposed Egg has multiple aspects of potential. As said,
it defines a non-linear transformation routine to graph features,
which can be exceptional when working on complex or mas-
sive attributes. Moreover, treating regional graphs as Grassmann
points or other entities from non-Euclidean space brings extra
flexibility to the model design. We believe this idea could moti-
vate more links of graph topological learning and other geometric
learning schemes.
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