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Matrix Completion With Deterministic Pattern: A
Geometric Perspective

Alexander Shapiro, Yao Xie , and Rui Zhang

Abstract—We consider the matrix completion problem with a
deterministic pattern of observed entries. In this setting, we aim to
answer the question: Under what conditions will there be (at least
locally) unique solution to the matrix completion problem, i.e., the
underlying true matrix is identifiable? We answer the question
from a certain point of view and outline a geometric perspective.
We give an algebraically verifiable sufficient condition, which we
call the well-posedness condition, for the local uniqueness of mini-
mum rank matrix completion (MRMC) solutions. It appears that
this condition is basic for the analysis of MRMC, and we show
that, in a sense, the condition is generic. We also argue that the
low-rank approximation approaches are more stable than MRMC
and further propose a sequential statistical testing procedure to de-
termine the “true” rank from observed entries. Finally, we provide
numerical examples aimed at verifying validity of the presented
theory.

Index Terms—Linear algebra, matrices, estimation theory,
mathematical programming, least squares approximation.

I. INTRODUCTION

MATRIX completion (e.g., [1]–[3]) is a fundamental prob-
lem in signal processing and machine learning, which

studies the recovery of a low-rank matrix from an observation
of a subset of its entries. It has attracted a lot attention from
researchers and practitioners and there are various motivating
real-world applications including recommender systems and the
Netflix challenge (see a recent overview in [4]). A popular ap-
proach for matrix completion is to find a matrix of minimal rank
satisfying the observation constraints. Due to the non-convexity
of the rank function, popular approaches are convex relaxation
(see, e.g., [5]) and nuclear norm minimization. There is a rich
literature, both in establishing performance bounds, developing
efficient algorithms and providing performance guarantees. Re-
cently there has also been new various results for non-convex
formulations of matrix completion problem (see, e.g., [6]).
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Existing conditions ensuring recovery of the minimal rank
matrix are usually formulated in terms of missing-at-random
entries and under an assumption of the so-called bounded-
coherence (see a survey for other approaches in [4]; we do not
aim to give a complete overview of the vast literature). These
results are typically aimed at establishing the recovery with
a high probability. In addition, there has been much work on
low-rank matrix recovery (see, e.g., [7], which studies a related
problem: the uniqueness conditions for minimum rank matrix
recovery with random linear measurements of the true matrix;
here the linear measurements correspond to inner product of a
measurement mask matrix with the true matrix, and hence, the
observations are different from that in matrix completion).

With a deterministic pattern of observed entries, a complete
characterization of the identifiable matrix for matrix completion
remains an important yet open question: under what conditions
for the pattern, there will be (at least locally) unique solution?
Recent work [8] provides insights into this problem by studying
the so-called completable problems and establishing conditions
ensuring the existence of at most finitely many rank-r matri-
ces that agree with all its observed entries. A related work [9]
studied this problem when there is a sparse noise that corrupts
the entries. The rank estimation problem has been discussed in
[10], [11], and related tensor completion problem in [12]: the
goal in these works are different though; they aim to find upper
and lower bounds for the true rank, whereas our rank selection
test in Section IV determines the most plausible rank from a
statistical point of view.

In this paper, we aim to answer the question from a some-
what different point of view and to give a geometric perspec-
tive. In particular, we consider the solution of the Minimum
Rank Matrix Completion (MRMC) formulation, which leads to
a non-convex optimization problem. We address the following
questions: (i) Given observed entries arranged according to a
(deterministic) pattern, by solving the MRMC problem, what is
the minimum achievable rank? (ii) Under what conditions, there
will be a unique matrix that is a solution to the MRMC problem?
We give a sufficient condition (which we call the well-posedness
condition) for the local uniqueness of MRMC solutions, and il-
lustrate how such condition can be verified. We also show that
such well-posedness condition in a sense is generic. In addi-
tion, we also consider the convex relaxation and nuclear norm
minimization formulations.

It is well known that matrices of rank r form a smooth
manifold of dimension r(n1 + n2 − r) in the linear space of
n1 × n2 matrices (e.g., [13, Example 2.5.10]). Consequently
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we argue that given m observations of an n1 × n2 matrix, if the
minimal rank r∗ is less than R(n1 , n2 ,m) := (n1 + n2)/2 −
[(n1 + n2)2/4 − m]1/2 , then the corresponding solution is un-
stable in the sense that an arbitrary small perturbation of the
observed values can make this rank unattainable. On the other
hand if r∗ > R(n1 , n2 ,m), then almost surely the solution is
not (even locally) unique (cf., [14]). This indicates that except
on rare occasions, the MRMC problem cannot have both prop-
erties of possessing unique and stable solutions. Consequently,
what makes sense is to try to solve the minimum rank problem
approximately and hence to consider low-rank approximation
approaches (such as an approach mentioned in [4], [15]) as a
better alternative to the MRMC formulation.

We also propose a sequential statistical testing procedure to
determine the ‘true’ rank from noisy observed entries. Such sta-
tistical approach can be useful for many existing low-rank matrix
completion algorithms, which require a pre-specification of the
matrix rank, such as the alternating minimization approach to
solving the non-convex problem by representing the low-rank
matrix as a product of two low-rank matrix factors (see, e.g.,
[4], [16], [17]).

The paper is organized as follows. In the next section, we
introduce the considered setting and some basic definitions. In
Section II we present the problem set-up, including the MRMC,
LRMA, and convex relaxation formulations. Section III contains
the main theoretical results. A statistical test of rank is presented
in Section IV. In Section V we present numerical results related
to the developed theory. Finally Section VI concludes the paper.
All proofs are transferred to the Appendix.

We use conventional notations. For a ∈ R we denote by �a�
the least integer that is greater than or equal to a. By A ⊗ B
we denote the Kronecker product of matrices (vectors) A and
B, and by vec(A) column vector obtained by stacking columns
of matrix A. We use the following matrix identity for matrices
A,B,C of appropriate order

vec(ABC) = (C� ⊗ A)vec(B). (1)

By Sp we denote the linear space of p × p symmetric matrices
and by writing X � 0 we mean that matrix X ∈ Sp is positive
semidefinite. By σi(Y ) we denote the i-th largest singular value
of matrix Y ∈ Rn1 ×n2 . By Ip we denote the identity matrix of
dimension p.

II. MATRIX COMPLETION AND PROBLEM SET-UP

Consider the problem of recovering an n1 × n2 data matrix
of low rank when observing a small number m of its entries,
which are denoted as Mij , (i, j) ∈ Ω. We assume that n1 ≥ 2
and n2 ≥ 2. Here Ω ⊂ {1, ..., n1} × {1, ..., n2} is an index set
of cardinality m. The low-rank matrix completion problem, or
matrix completion problem, aims to infer the missing entries,
based on the available observations Mij , (i, j) ∈ Ω, by using a
matrix whose rank is as small as possible.

Low-rank matrix completion problem is usually studied
under a missing-at-random model, under which the necessary
and sufficient conditions for perfect recovery of the true matrix
are known [18]–[23]. Study of deterministic sampling pattern is
relatively rare. This includes the finitely rank-r completability

problem in [8], which shows the conditions for the deterministic
sampling pattern such that there exists at most finitely many
rank-r matrices that agrees with its observed entries. In this
paper, we study a related but different problem, i.e., when will
the matrix have a unique way to be completed, given a fixed
sampling pattern. This is a fundamental problem related to
the identifiability of a low-rank matrix given an observation
pattern Ω.

A. Definitions

Let us introduce some necessary definitions. Denote by M
the n1 × n2 matrix with the specified entries Mij , (i, j) ∈ Ω,
and all other entries equal zero. Consider Ωc := {1, ..., n1} ×
{1, ..., n2} \ Ω, the complement of the index set Ω, and define

VΩ :=
{
Y ∈ Rn1 ×n2 : Yij = 0, (i, j) ∈ Ωc

}
.

This linear space represents the set of matrices that are filled
with zeros at the locations of the unobserved entries. Similarly
define

VΩ c :=
{
Y ∈ Rn1 ×n2 : Yij = 0, (i, j) ∈ Ω

}
.

By PΩ we denote the projection onto the space VΩ , i.e.,
[PΩ(Y )]ij = Yij for (i, j) ∈ Ω and [PΩ(Y )]ij = 0 for (i, j) ∈
Ωc . By this construction, {M + X : X ∈ VΩ c } is the affine
space of all matrices that satisfy the observation constraints.
Note that M ∈ VΩ and the dimension of the linear space VΩ is
dim(VΩ) = m, while dim(VΩ c ) = n1n2 − m.

We say that a property holds for almost every (a.e.) Mij ,
or almost surely, if the set of matrices Y ∈ VΩ for which
this property does not hold has Lebesgue measure zero in the
space VΩ .

B. Minimum Rank Matrix Completion (MRMC)

Since the true rank is unknown, a natural approach is to find
the minimum rank matrix that is consistent with the observa-
tions. This goal can be written as the following optimization
problem referred to as the Minimum Rank Matrix Completion
(MRMC),

min
Y ∈ Rn 1 ×n 2

rank(Y ) subject to Yij = Mij , (i, j) ∈ Ω. (2)

In general, the rank minimization problem is non-convex and
NP-hard to solve. However, this problem is fundamental to vari-
ous efficient heuristics derived from here. Largely, there are two
categories of approximation heuristics: (i) approximate the rank
function with some surrogate function such as the nuclear norm
function, (ii) or solve a sequence of rank-constrained problems
such as the matrix factorization based method, which we will
discuss below. Approach (ii) requires to specify the target rank
of the recovered matrix beforehand, which we will present a
novel statistical test next.

C. Low Rank Matrix Approximation (LRMA)

Consider the problem

min
Y ∈ Rn 1 ×n 2 , X∈VΩ c

F (M + X,Y ) s.t. rank(Y ) = r, (3)
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where M ∈ VΩ is the given data matrix, and F (A,B) is a dis-
crepancy between matrices A,B ∈ Rn1 ×n2 . For example, let
F (A,B) := ‖A − B‖2

F with ‖Y ‖2
F = tr(Y �Y ) =

∑
i,j Y 2

ij ,
being the Frobenius norm. Define the set of n1 × n2 matrices
of rank r

Mr :=
{
Y ∈ Rn1 ×n2 : rank(Y ) = r

}
(4)

Then (3) becomes the least squares problem

min
Y ∈ Mr

∑

(i,j )∈Ω

(Mij − Yij )
2 . (5)

The least squares approach although is natural, is not the only
one possible. For example, in the statistical approach to Factor
Analysis the discrepancy function is based on the Maximum
Likelihood method and is more involved (e.g., [24]).

D. SDP Formulations: Trace and Nuclear Norm Minimization

An alternative approach to the MRMC problem, which has
been studied extensively in the literature, is the convex relaxation
formulation (e.g., [1], [5]). Let S ⊂ {1, ..., p} × {1, ..., p} be
the symmetric index set corresponding to the index set Ω, i.e.,
(i, n1 + j) ∈ S when 1 ≤ i ≤ n1 , if and only if (i, j) ∈ Ω; and
if (i, j) ∈ S, then (j, i) ∈ S. By Sc ⊂ {1, ..., p} × {1, ..., p}
we denote the symmetric index set complement of S. Define

WS := {X ∈ Sp : Xij = 0, (i, j) ∈ Sc}
and

WSc := {X ∈ Sp : Xij = 0, (i, j) ∈ S}.
Define Ξ ∈ Sp , p = n1 + n2 , a symmetric matrix of the follow-
ing form, that contains the data,

Ξ =
[

0 M
M� 0

]
.

The MRMC problem (2) can be formulated in the following
equivalent form

min
X∈ WSc

rank(Ξ + X) subject to Ξ + X � 0. (6)

Minimization in (6) is performed over matrices X ∈ Sp which
are complement to Ξ in the sense of having zero entries at all
places corresponding to the specified values Mij , (i, j) ∈ Ω.
We consider a more general minimum rank problem of the form
(6) in that we allow the index set S to be a general symmetric
subset of {1, ..., p} × {1, ..., p}, with a given matrix Ξ ∈ WS.
Note that WS ∩ WSc = {0} and WS + WSc = Sp .

As a heuristic it was suggested in [5] to approximate problem
(6) by the following trace minimization problem

min
X∈ WSc

tr(X) subject to Ξ + X � 0, (7)

which is equivalent to the following nuclear norm minimization
problem

min
X

‖X + M‖∗ subject to X ∈ VΩ c . (8)

Problem (7) is a special case of the following general SDP
problem (if we introduce a weight matrix C ∈ WSc ):

min
X∈ WSc

tr(CX) subject to Ξ + X � 0. (9)

The above formulation is a semidefinite programming (SDP)
problem and can be solved efficiently, e.g., by using the sin-
gular value thresholding algorithm [25]. Therefore, it has been
commonly adopted as an approximation to the minimum rank
problem.

Remark II.1: Positive semidefinite matrices of rank r form
a face of Sp of dimension r(r + 1)/2. It follows that problem
(6) has an optimal solution of rank r such that r(r + 1)/2 +
dim(WSc ) ≤ p(p + 1)/2 (cf., [26]). Since p = n1 + n2 and
dim(WSc ) = n1(n1 + 1)/2 + n2(n2 + 1)/2 + n1n2 − m, it
follows that problem (7), and hence the nuclear norm mini-
mization problem (8), has an optimal solution of rank r such
that r(r + 1)/2 ≤ m.

III. MAIN THEORETICAL RESULTS

To gain insights into the identifiability issue of matrix comple-
tion, we aim to answer the following two related questions: (i)
what is achievable minimum rank (the optimal value of problem
(2)), and (ii) whether the minimum rank matrix, i.e., the optimal
solutions to (2), is unique given a problem set-up. These result
will also help to gain insights in the tradeoff in the theoreti-
cal properties of other matrix completion formulations, includ-
ing LRMA and SDP formulations, compared with the original
MRMC formulation.

We show that given m = |Ω| observations of an n1 × n2 ma-
trix: (i) if the minimal rank r∗ is less than R(n1 , n2 ,m) :=
(n1 + n2)/2 − [(n1 + n2)2/4 − m]1/2 , then the correspond-
ing solution is unstable: an arbitrary small perturbation of
the observed values can make this rank unattainable; (ii) if
r∗ > R(n1 , n2 ,m), then almost surely the solution is not (even
locally) unique (cf., [14]). This indicates that except in rare oc-
casions, the MRMC problem cannot have both properties of
possessing unique and stable solutions. Consequently, LRMA
approaches (also used in [4], [15]) could be a better alternative
to the MRMC formulation. Moreover, we argue that the nu-
clear norm minimization approach is not statistically efficient
(Section III-H).

A. Rank Reducibility

We denote by r∗ the optimal value of problem (2). That is,
r∗ is the minimal rank of an n1 × n2 matrix with prescribed
elements Mij , (i, j) ∈ Ω. Clearly, r∗ depends on the index set
Ω and values Mij . A natural question is what values of r∗ can
be attained. Recall that (2) is a non-convex problem and may
have multiple solutions.

In a certain generic sense it is possible to give a lower bound
for the minimal rank r∗. Let us consider intersection of a set
of low-rank matrices and the affine space of matrices satisfying
the observation constraints. Define the (affine) mapping AM :
VΩ c → Rn1 ×n2 as

AM (X) := M + X, X ∈ VΩ c .

As it has been pointed out before, the image AM (VΩ c ) = M +
VΩ c of mapping AM defines the space of feasible points of the
MRMC problem (2). It is well known that Mr is a smooth, C∞,
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manifold with

dim(Mr ) = r(n1 + n2 − r). (10)

It is said that the mapping AM intersects Mr transverally if for
every X ∈ VΩ c either AM (X) �∈ Mr , or AM (X) ∈ Mr and
the following condition holds

VΩ c + TMr
(Y ) = Rn1 ×n2 , (11)

where Y := AM (X) and TMr
(Y ) denotes the tangent space to

Mr at Y ∈ Mr (we will give explicit formulas for the tangent
space TMr

(Y ) in equations (18) and (19) below).
By using a classical result of differential geometry, it is pos-

sible to show that for almost every (a.e.) Mij , (i, j) ∈ Ω, the
mapping AM intersects Mr transverally (this holds for ev-
ery r) (see [14] for a discussion of this result). Transversality
condition (11) means that the linear spaces VΩ c and TMr

(Y )
together span the whole space Rn1 ×n2 . Of course this cannot
happen if the sum of their dimensions is less than the dimension
of Rn1 ×n2 . Therefore transversality condition (11) implies the
following dimensionality condition

dim(VΩ c ) + dim(TMr
(Y )) ≥ dim(Rn1 ×n2 ). (12)

In turn the above condition (12) can be written as

r(n1 + n2 − r) ≥ m, (13)

or equivalently r ≥ R(n1 , n2 ,mm), where

R(n1 , n2 ,m) := (n1 + n2)/2 −
√

(n1 + n2)2/4 − m. (14)

That is, if r < R(n1 , n2 ,m), then the transversality condi-
tion (11) cannot hold and hence for a.e. Mij it follows that
rank(M + X) �= r for all X ∈ VΩ c .

Now if AM intersects Mr transverally at AM (X) ∈ Mr

(i.e., condition (11) holds), then the intersection AM (VΩ c ) ∩
Mr forms a smooth manifold near the point Y := AM (X).
When r > R(n1 , n2 ,m), this manifold has dimension greater
than zero and hence the corresponding rank r solution is not
(locally) unique. This leads to the following (for a formal dis-
cussion of these results we can refer to [14]).

Theorem III.1 (Generic lower bound and non-uniqueness of
solutions): For any index set Ω of cardinality m and almost
every Mij , (i, j) ∈ Ω, the following holds: (i) for every feasible
point Y of problem (2) it follows that

rank(Y ) ≥ R(n1 , n2 ,m), (15)

(ii) if r∗ > R(n1 , n2 ,m), then problem (2) has multiple (more
than one) optimal solutions.

It follows from part (i) of Theorem III.1 that r∗ ≥
R(n1 , n2 ,m) for a.e. Mij . Generically (i.e., almost surely) the
following lower bound for the minimal rank r∗ holds

r∗ ≥ R(n1 , n2 ,m), (16)

and (2) may have unique optimal solution only when r∗ =
R(n1 , n2 ,m). Of course such equality could happen only if
R(n1 , n2 ,m) is an integer number. As Example III.1 below
shows, for any integer r∗ ≤ �√m � satisfying (16), there exists
an index set Ω such that the corresponding MRMC problem
attains the minimal rank r∗ for a.e. Mij . In particular this shows

that the lower bound (16) is tight. When we have a square matrix
n1 = n2 = n, it follows that

R(n, n,m) = n −
√

n2 − m. (17)

For n1 = n2 = n and small m/n2 we can approximate

R(n, n,m) = n
(
1 −

√
1 − m/n2

)
≈ m/(2n).

For example, for n1 = n2 = 1000 and m = 20000 we have
R(n, n,m) = 10.05, and hence the bound (16) becomes r∗ ≥
11. The nuclear norm minimization guarantees to recover a
solution of rank r ≤ 199 (see Remark II.1).

Example III.1 (Tightness of the lower bound for r∗): For r
< min{n1 , n2} consider data matrix M of the following form
M = (M 1

M 2

0
M 3

). Here, the three sub-matrices M1 , M2 , M3 ,
of the respective order r × r, (n1 − r) × r and (n1 − r) ×
(n2 − r), represent the observed entry values. Cardinality m
of the corresponding index set Ω is r(n1 + n2 − r), i.e., here
r = R(n1 , n2 ,m). Suppose that the r × r matrix M1 is non-
singular, i.e., its rows are linearly independent. Then any row
of matrix M2 can be represented as a (unique) linear combi-
nation of rows of matrix M1 . It follows that the corresponding
MRMC problem has (unique) solution of rank r∗ = r. In other
words, the rank of the completed matrix will be equal to r (the
rank of the sub-matrix M1) and there will be a unique matrix
that achieves this rank. Now suppose that some of the entries
of the matrices M2 and M3 are not observed, and hence cardi-
nality of the respective index set Ω is less than r(n1 + n2 − r),
and thus r > R(n1 , n2 ,m). In that case the respective minimal
rank still is r, provided matrix M1 is nonsingular, although the
corresponding optimal solutions are not unique. In particular, if
M = (M 1

0
0
0 ), i.e., only the entries of matrix M1 are observed,

then m = r2 and the minimum rank is r.

B. Uniqueness of Solutions of the MRMC Problem

Following Theorem III.1, for a given matrix M ∈ VΩ and the
corresponding minimal rank r∗ ≤ R(n1 , n2 ,m), the question
is whether the corresponding solution Y ∗ of rank r∗ is unique.
Although, the set of such matrices M is “thin” (in the sense
that it has Lebesgue measure zero), this question of unique-
ness is important, in particular for the statistical inference of
rank (discussed in Section IV). Available results, based on the
so-called Restricted Isometry Property (RIP) for low-rank ma-
trix recovery from linear observations and based on the coher-
ence property for low-rank matrix completion, assert that for
certain probabilistic (Gaussian) models such uniqueness holds
with high probability. However for a given matrix M ∈ VΩ
it could be difficult to verify whether the solution is unique
(some sufficient conditions for such uniqueness are given in
[8, Theorem 2], we will comment on this below.)

Let us consider the following concept of local uniqueness of
solutions.

Definition III.1: We say that an n1 × n2 matrix Ȳ is a locally
unique solution of problem (2) if PΩ(Ȳ ) = M and there is a
neighborhoodV ⊂ Rn1 ×n2 of Ȳ such that rank(Y ) �= rank(Ȳ )
for any Y ∈ V , PΩ(Y ) = M and Y �= Ȳ .
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Fig. 1. Illustration of the well-posedness condition.

Note that rank is a lower semicontinuous function of ma-
trix, i.e., if {Yk} is a sequence of matrices converging to ma-
trix Y , then lim infk→∞ rank(Yk ) ≥ rank(Y ). Therefore local
uniqueness of Ȳ actually implies existence of the neighborhood
V such that rank(Y ) > rank(Ȳ ) for all Y ∈ V , Y �= Ȳ , i.e.,
that at least locally problem (2) does not have optimal solutions
different from Ȳ . The definition (III.1) is closely related to the
finitely rank-r completability condition introduced in [8], which
assumes that the MRMC problem has a finite number of rank r
solutions. Of course if problem (2) has a non locally unique so-
lution of rank r, then the finitely rank-r completability condition
cannot hold.

We now introduce some constructions associated with the
manifold Mr of matrices of rank r. There are several equivalent
forms how the tangent space to the manifoldMr at Y ∈ Mr can
be represented. Let Y = V W� for some matrices V ∈ Rn1 ×r

and W ∈ Rn2 ×r of rank r. Then

TMr
(Y ) =

{
(dV )W� + V (dW )� :

dV ∈ Rn1 ×r , dW ∈ Rn2 ×r
}
. (18)

In an equivalent form this tangent space can be written as

TMr
(Y ) =

{
H ∈ Rn1 ×n2 : FHG = 0

}
, (19)

where F is an (n1 − r) × n1 matrix of rank n1 − r such that
FY = 0 (referred to as a left side complement of Y ) and G
is an n2 × (n2 − r) matrix of rank n2 − r such that Y G = 0
(referred to as a right side complement of Y ). We also use the
linear space of matrices orthogonal (normal) toMr at Y ∈ Mr ,
denoted by NMr

(Y ). By (18) it follows that

NMr
(Y )

=
{
Z ∈ Rn1 ×n2 : Z�Y = 0 and Y Z� = 0

}
.

(20)

Definition III.2 (Well-posedness condition): We say that a
matrix Ȳ ∈ Mr is well-posed, for problem (2), if PΩ(Ȳ ) = M
and the following condition holds

VΩ c ∩ TMr
(Ȳ ) = {0}. (21)

Condition (21) (illustrated in Figure 1) is a natural condition
having a simple geometrical interpretation. Intuitively, it means
that the null space of the observation operator does not have
any non-trivial matrix that lies in the tangent space of low-rank

matrix manifold. Hence, there cannot be any local deviations
from the optimal solution that still satisfy the measurement
constraints. This motivates us to introduce the well-posedness
condition that guarantees a matrix to be locally unique solution.
Note that this is different from the so-called Null Space Property
(NSP) (see, e.g., [27]). Although both the well-posedness and
NSP have a similar geometrical flavor, the NSP is aimed at
ensuring uniqueness of solution of a convex problem, while the
MRMC is essentially a nonconvex construction. For instance,
NSP can be used to guarantee uniqueness of solutions of the
optimization problem minx∈ Rn ‖x‖1 subject to Ax = b, which
can be formulated as a linear programming problem.

Now we can give sufficient conditions for local uniqueness:
Theorem III.2 (Sufficient conditions for local uniqueness):

Matrix Ȳ ∈ Mr is a locally unique solution of problem (2) if
Ȳ is well-posed for (2).

C. Verifiable form of Well-posedness Condition

Below we present an equivalent form of the well-posedness
condition that can be verified algebraically. By Theorem III.2
we have that if matrix Ȳ ∈ Mr is well-posed, then Ȳ is a
locally unique solution of problem (2). Note that condition
(21) implies that dim(VΩ c ) + dim(TMr

(Ȳ )) ≤ n1n2 . That is,
condition (21) implies that r(n1 + n2 − r) ≤ m or equiva-
lently r ≤ R(n1 , n2 ,m). By Theorem III.1 we have that if
r∗ > R(n1 , n2 ,m), then the corresponding optimal solution
cannot be locally unique almost surely. Note that since the space
VΩ is orthogonal to the space VΩ c , by duality arguments condi-
tion (21) is equivalent to the following condition

VΩ + NMr
(Ȳ ) = Rn1 ×n2 . (22)

By using formula (19) it is also possible to write condition
(21) in the following form

{X ∈ VΩ c : FXG = 0} = {0}, (23)

where F is a left side complement of Ȳ and G is a right side
complement of Ȳ . Recall that vec(FXG) = (G� ⊗ F )vec(X).
Column vector of matrix G� ⊗ F corresponding to compo-
nent xij of vector vec(X), is g�j ⊗ fi , where fi is the i-
th column of matrix F and gj is the j-th row of matrix
G. Condition (23) means that the column vectors g�j ⊗ fi ,
(i, j) ∈ Ωc , are linearly independent. It could be noted that
the left and right side complements are not unique. That is,
the left side complement can be changed to QF for an arbi-
trary (n1 − r) × (n1 − r) nonsingular matrix Q, and similarly
the right side complement can be changed to GR for an arbi-
trary (n2 − r) × (n2 − r) nonsingular matrix R. We have that
(GR)� ⊗ (QF ) = (R� ⊗ Q)(G� ⊗ F ). Therefore the condi-
tion for vectors g�j ⊗ fi , (i, j) ∈ Ωc , to be linearly independent
does not depend on a particular choice of the left and right side
complements.

We obtain the following verifiable condition for checking the
well-posedness of a given solution:

Theorem III.3 (Equivalent condition of well-posedness):
Matrix Ȳ ∈ Mr satisfies condition (21) if and only if for any



SHAPIRO et al.: MATRIX COMPLETION WITH DETERMINISTIC PATTERN: A GEOMETRIC PERSPECTIVE 1093

left side complement F and right side complement G of Ȳ , the
column vectors g�j ⊗ fi , (i, j) ∈ Ωc , are linearly independent.

A consequence of Theorem III.3 is that if Ȳ ∈ Mr is well-
posed, then necessarily (n1 − r)(n2 − r) ≥ |Ωc |, since vec-
tors g�j ⊗ fi have dimension (n1 − r)(n2 − r). Since |Ωc | =
n1n2 − m, this is equivalent to r(n1 + n2 − r) ≤ m. That is,
the well-posedness cannot happen if r > R(n1 , n2 ,m). This of
course is not surprising in view of discussion of Section III-A.

Theorem III.3 also implies the following necessary condition
for well-posedness of Ȳ ∈ Mr in terms of the pattern of the
index set Ω, which is related to the completability condition in
[8] that each row and each column has at least r observations. If
matrix Ȳ ∈ Mr is well-posed for problem (2), then at each row
and each column of Ȳ there are at least r elements of the index
set Ω. Indeed, suppose that in row i ∈ {1, ..., n1} there are less
than r elements of Ω. This means that the set σi := {j : (i, j) ∈
Ωc} has cardinality greater than n2 − r. Let F be a left side
complement of Ȳ and G be a right side complement of Ȳ . Since
rows gj of G are of dimension 1 × (n2 − r), we have then that
vectors gj , j ∈ σi , are linearly dependent, i.e.,

∑
j∈ σi

λj gj = 0
for some λj , not all of them zero. Then

∑

j∈ σi

λj (g�j ⊗ fi) =

(
∑

j∈ σi

λj gj

)�

⊗ fi = 0. (24)

This contradicts the condition for vectors g�j ⊗ fi , (i, j) ∈ Ωc ,
to be linearly independent. Similar arguments can be applied
to the columns of matrix Ȳ . This necessary condition for well-
posedness is not surprising since if there is a row with less
than r elements of Ω, then this row in not uniquely defined in
the corresponding rank r solution (cf., [8]). However, although
necessary, the condition for the index set Ω to have at each row
and each column at least r elements is not sufficient to ensure
well-posedness as shown by Theorem III.5 below. Note that by
definition the matrices F and G are of full rank.

D. Generic Nature of the Well-posedness

In a certain sense the well-posedness condition is generic,
as we explain below. Denote by Fr ⊂ Rn1 ×r and Gr ⊂ Rn2 ×r

the respective sets of matrices of rank r. Consider the set Θ :=
Fr × Gr × VΩ c viewed as a subset of Rn1 r+n2 r+n1 n2 −m , and
mapping F : Θ → Rn1 ×n2 defined as

F(θ) := V W� + X, θ = (V,W,X) ∈ Θ.

Note that the sets Gr and Fr are open and connected, and hence
the set Θ is open and connected, and the components of mapping
F(·) are polynomial functions.

Let Δ(θ) be the Jacobian of mapping F. That is, Δ(θ) is
(n1r + n2r + n1n2 − m) × (n1n2) matrix of partial deriva-
tives of F(θ) taken with respect to a specified order of the
components of the corresponding matrices. Let us consider
the following concept associated with rank r and index set Ω
(cf., [28]).

Definition III.3: We refer to

� := max
θ∈ Θ

{
rank

(
Δ(θ)

)}
(25)

as the characteristic rank of mapping F and say that θ ∈ Θ is
a regular point of F if rank

(
Δ(θ)

)
= �. We say that (V,W ) ∈

Fr × Gr is regular if θ = (V,W,X) is regular for some
X ∈ VΩ c .

Since F(V,W, ·) is linear, the Jacobian Δ(V,W,X) is the
same for all X ∈ VΩ c , i.e., Δ(V,W,X) = Δ(V,W,X ′) for
any X,X ′ ∈ VΩ c and (V,W ) ∈ Fr × Gr . Hence if a point
θ = (V,W,X) is regular for some X ∈ VΩ c , then (V,W,X ′)
is regular for any X ′ ∈ VΩ c . Therefore regularity actually is a
property of points (V,W ) ∈ Fr × Gr .

Consider θ = (V,W,X) ∈ Θ and Y = V W�. We have that
rank

(
Δ(θ)

)
= dim

(
V(θ)

)
, where V(θ) denotes the image

of the differential of F(θ). Since the differential d F(θ) =
(dV )W� + V (dW )� + dX and because of (18), the linear
space V(θ) is equal to TMr

(Y ) + VΩ c . It follows that � ≤
f(r,m), where

f(r,m) := dim
(
TMr

(Y )
)

+ dim
(
VΩ c

)

= r(n1 + n2 − r) + n1n2 − m.
(26)

It also follows that rank
(
Δ(θ)

)
= f(r,m) iff condition (21)

holds at Y . In other words we have the following result.
Proposition III.1: Rank of Δ(θ) attains the maximal value

f(r,m) if and only if the corresponding matrix Y = V W� is
well posed.

Furthermore we have the following.
Theorem III.4: The following holds: (i) Almost every point

(V,W ) ∈ Fr × Gr is regular. (ii) The set of regular points
forms an open subset of Fr × Gr . (iii) For any regular point
(V,W ) ∈ Fr × Gr , the corresponding matrix Y = V W� satis-
fies the well-posedness condition (21) if and only if the char-
acteristic rank � is equal to f(r,m). (iv) If � < f(r,m) and a
point (V̄ , W̄ ) ∈ Fr × Gr is regular, then for any Y ∈ Mr in
a neighborhood of Ȳ = V̄ W̄� there exists X ∈ VΩ c such that
Y = Ȳ + X .

The significance of Theorem III.4 is that this shows that for
given rank r and index set Ω, either � = f(r,m) in which case
a.e. Y ∈ Mr satisfies the well-posedness condition (21), or
� < f(r,m) in which case condition (21) does not hold for all
Y ∈ Mr and generically rank r solutions are not locally unique.

We have that a necessary condition for � = f(r,m) is that
each row and each column of the considered matrix has at least
r observed entries. Another necessary condition is for the index
set to be irreducible (see Theorem III.5). Whether these two
conditions are sufficient for � = f(r,m) to hold remains an
open question. Numerical experiments, reported in Section V,
indicate that in a certain probabilistic sense chances of occurring
not well posed solution are negligible when r is slightly less than
R(n1 , n2 ,m).

E. Global Uniqueness of Solutions for Special Cases

In some rather special cases it is possible to give verifiable
conditions for global uniqueness of minimum rank solutions.
The following conditions are straightforward extensions of well
known conditions in Factor Analysis (cf., [29, Theorem 5.1] ).

Assumption III.1: Suppose that: (i) for a given index (k, l) ∈
Ωc , there exist index sets I1 ⊂ {1, ..., n1} \ {k} and I2 ⊂
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{1, ..., n2} \ {l} such that |I1 | = |I2 | = r, I1 × I2 ⊂ Ω, and
{k} × I2 ⊂ Ω and {l} × I1 ⊂ Ω, (ii) the r × r submatrix of
M corresponding to rows i ∈ I1 and columns j ∈ I2 is nonsin-
gular.

For example, for r = 1 part (i) of the above assump-
tion means existence of indexes k′ �= k and l′ �= l such that
(k′, l), (k, l′), (k′, l′) ∈ Ω.

Proposition III.2: Suppose that Assumption III.1 holds for
an index (k, l) ∈ Ωc . Then the minimum rank r∗ ≥ r, and for
any matrix Y ∈ Mr such that PΩ(Y ) = M it follows that Ykl =
Ȳkl .

Clearly part (ii) of Assumption III.1 implies that r∗ ≥ r. The
other result of the above proposition follows by observing that
the (r + 1) × (r + 1) submatrix of Y corresponding to rows
{k} ∪ I1 and columns {l} ∪ I2 has rank r and hence zero de-
terminant, and applying Schur complement for the element Ykl .
Note that provided the part (i) holds, part (ii) is generic in the
sense that it holds for a.e. Mij .

If Assumption III.1 holds for every (k, l) ∈ Ωc , then the
uniqueness of the solution Ȳ follows. This is closely related to
[8, Theorem 2], but is not the same. It is assumed in [8] that every
column of M has r + 1 observed entries. For example, consider
2 × 2 matrix with 3 observed entries, M12 = M21 = M22 = 1.
The only unobserved entry, corresponding to the index (1, 1),
satisfies Assumption III.1 and rank one matrix, with all entries
equal 1, is the unique solution of the MRMC problem. On the
other hand the first column of matrix M has only one observed
entry.

Remark III.1: An example was constructed in Wilson and
Worcester [30], of two 6 × 6 symmetric matrices of rank 3
with the same off-diagonal and different diagonal elements. If
we define the index set as Ω := {(i, j) : i �= j, i, j = 1, ..., 6},
then this can be viewed as an example of two different lo-
cally unique solutions of rank 3. Note that here m = 30 and
R(6, 6, 30) = 6 −

√
6. That is R(6, 6, 30) > 3 and generically

(almost surely) rank cannot be reduced below r = 4. We will
discuss this example further in Section V.

F. Identifiable Ω

Our results can also be used to determine wether observation
patterns Ω is identifiable. First note that uniqueness of the min-
imum rank solution is invariant with respect to permutations of
rows and columns of matrix M . This motivates to introduce the
following definition.

Definition III.4: We say that the index set Ω is reducible if by
permutations of rows and columns, the set Ω can be represented
as the union Ω′ ∪ Ω′′ of two disjoined sets Ω′ ⊂ {1, ..., k} ×
{1, ..., l} and Ω′′ ⊂ {k + 1, ..., n1} × {l + 1, ..., n2} for some
1 ≤ k < n1 and 1 ≤ l < n2 . Otherwise we say that Ω is irre-
ducible.

Reducibility of the index set Ω means that by permutations
of rows and columns, matrix M can be represented in the block
diagonal form

M =
[

M ′ 0
0 M ′′

]
, (27)

where matrices M ′ and M ′′ are of order k × l and (n1 − k) ×
(n2 − l), respectively, with observed entries M ′

ij , (i, j) ∈ Ω′,
and M ′′

ij , (i, j) ∈ Ω′′. Some entries of matrices M ′ and M ′′

can also be zero if the corresponding entries of matrix M are
zeros.

Theorem III.5 (Reducible index set): If the index set Ω is re-
ducible, then any minimum rank solution Ȳ is not locally (and
hence globally) unique.

As it was shown in Theorem III.2, if Ȳ is not locally unique,
then it cannot be well-posed. Therefore if the index set Ω is
reducible, then any minimum rank solution is not well-posed.
Of course even if Ω is reducible, it still can happen that in each
row and column there are at least r elements of the index set
Ω. That is, the condition of having r elements of the index
set Ω in each row and column is not sufficient to ensure the
well-posedness property.

Remark III.2: Reducibility/irreducibility of the index set Ω
can be verified in the following way. Consider the undirected
graph G = (V,E) with the set of vertices V := Ω, and edges
between two vertices (i, j), (i′, j′) ∈ Ω if and only if i = i′ or
j = j′. Then Ω is irreducible if and only if G has only one con-
nected component. A connected component of G is a subgraph
in which any two vertices are connected to each other by paths,
and which is connected to no additional vertices in the super-
graph G. There are algorithms of running time O(|V | + |E|)
which can find every vertex that is reachable from a given ver-
tex of G, and hence to determine a connected component of G,
e.g., the well known breadth-first search algorithm [31, Section
22.2]. Note that the number of vertices in G is m = |Ω|, which
could be much smaller than n1n2 .

G. Uniqueness of Rank One Solutions

In this section we discuss uniqueness of rank one solutions of
the MRMC problem (2). We show that in case of the minimum
rank one, irreducibility of Ω is sufficient for the global unique-
ness. We assume that all Mij �= 0, (i, j) ∈ Ω, and that every
row and every column of the matrix M has at least one element
Mij . Let Ȳ be a solution of rank one of problem (2), i.e., there
are nonzero column vectors v and w such that Ȳ = vw� with
PΩ(Ȳ ) = M .

Recall that permutations of the components of vector v cor-
responds to permutations of the rows of the respective rank one
matrix, and permutations of the components of vector w corre-
sponds to permutations of the columns of the respective rank
one matrix. It was shown in Theorem III.5 that if the index set
Ω is reducible, then solution Ȳ cannot be locally unique. In case
of rank one solution the converse of that also holds.

Theorem III.6 (Global uniqueness for rank one solution):
Suppose that Ω is irreducible, Mij �= 0 for all (i, j) ∈ Ω, and
every row and every column of the matrix M has at least one
element Mij , (i, j) ∈ Ω. Then any rank one solution is globally
unique.

It could be mentioned that even for r = 1 the irreducibility
is a weaker condition than part (i) of Assumption III.1 applied
to every (k, l) ∈ Ωc . For example, let n1 = n2 = n ≥ 3 and
Ω = {(i, j) : i ≥ j, i, j = 1, ..., n} \ {(n, 1)}. This set Ω irre-
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ducible. However for the index (1, n), Assumption III.1 (i) does
not hold.

H. Semidefinite Relaxations

Consider the trace minimization problem (9) (which can be
viewed as a generalized version of the nuclear norm minimiza-
tion problem), and assume that the matrix C ∈ WSc is positive
definite. The (Lagrangian) dual of problem (9) is the problem

max
Λ�0

min
X∈ WSc

tr(CX) − tr[Λ(Ξ + X)]. (28)

For Λ = C − Θ, with Θ ∈ WS, problem (28) can be written
(note that tr(CΞ) = 0 for Ξ ∈ WS) as

max
Θ∈WS

tr(ΘΞ) subject to C − Θ � 0. (29)

We have the following uniqueness results for the SDP ap-
proach, which is a consequence of (cf., [32, Theorem 5.2] and
[14, Proposition 8]) (we also provide justification in the ap-
pendix):

Theorem III.7: (i) For a given Ξ ∈ WS it follows that for
almost every positive definite matrix C ∈ WSc , problem (9)
has unique optimal solution. (ii) For a given positive definite
matrix C ∈ WSc it follows that for almost every Ξ ∈ WS the
dual problem (29) has unique optimal solution.

However, we have the following observation, which comes
as a consequence of [14, Theorem 2]:

Remark III.3: Consider the minimum trace (MT) problem
(7). Suppose that the matrix Ξ is observed with errors: Ξ = Ξ∗ +
U , where U ∈ Sp is random matrix such that N 1/2U converges
in distribution to a random matrix Υ ∈ Sp whose entries have
zero means and finite positive second order moments (we discuss
a similar model for the MRMC in section III-I below). Let X̂
and X∗ be optimal solutions of the MT problems of the form (7)
for matrices Ξ and Ξ∗, respectively. Then under mild regularity
conditions

tr(X̂) − tr(X∗) = sup
Λ∈ Sol(D )

tr(ΛU) + op(N−1/2), (30)

where Sol(D) is the set of optimal solutions of the dual prob-
lem (28). When the minimal rank of the true model is less
than the generic lower bound (given by the right hand side of
(31)), the set Sol(D) contains more than one element. Con-
sequently tr(X̂), considered as an estimator of tr(X∗), has a
bias of order N−1/2E

[
supΛ∈ Sol(D ) tr(ΛΥ)

]
(we can refer to

[14, Theorem 2] for derivations and a discussion of the required
regularity conditions).

We conclude this section by mentioning connections to ex-
isting results in Factor Analysis. The classical Minimum Rank
Factor Analysis (MRFA) can be viewed as a particular case of
problem (6) with WSc being the space Dp of p × p diagonal
matrices, and given symmetric matrix Ξ of off diagonal ele-
ments. It is possible to show that generically (i.e., for a.e. Ξ) the
reduced rank of the MRFA problem is bounded (cf., [33]):

rank(Ξ + X) ≥ 2p + 1 −
√

8p + 1
2

, ∀X ∈ Dp . (31)

In Factor Analysis the respective minimum trace problem of the
form (7) is called the Minimum Trace Factor Analysis (MTFA).
A relation between MRFA and MTFA problems is discussed
in [33], [34]. In Factor Analysis conditions analogues to the
assumptions of Proposition III.2 can be used to show that in a
certain generic sense, MRFA solution is unique if the respec-
tive minimal rank is less than p/2 (we can refer to [35], and
references therein, for a discussion of uniqueness of MRFA
solutions).

I. LRMA and its Properties

We discuss below the LRMA approach (5). Compared with
the formulation of exact low rank recovery, the LRMA is more
realistic in the presence of noise. By Theorem III.1 we have
that if the minimal rank r∗ is less than R(n1 , n2 ,m), then the
corresponding solution is unstable in the sense that an arbitrary
small perturbation of the observed values Mij can make this
rank unattainable. On the other hand if r∗ > R(n1 , n2 ,m), then
almost surely the solution is not (even locally) unique. This
indicates that except in rare occasions, problem (2) of exact
rank minimization cannot have both properties of possessing
unique and stable solutions. Consequently, what makes sense is
to try to solve the minimum rank problem approximately.

Proposition III.3 (Necessary condition for LRMA): The fol-
lowing are necessary conditions for Y ∈ Mr to be an optimal
solution of problem (5)

(PΩ(Y ) − M)�Y = 0 and Y (PΩ(Y ) − M)� = 0. (32)

Remark III.4: We can view the least squares problem (5)
from the following point of view. Consider function

φ(Y,Θ) :=
1
2
tr[(PΩ(Y ) − Θ)�(PΩ(Y ) − Θ)], (33)

with Θ ∈ VΩ viewed as a parameter. Define

f(Y ) :=
1
2

∑

(i,j )∈ Ω

(Yij − Mij )
2

=
1
2
tr[(PΩ(Y ) − M)�(PΩ(Y ) − M)], (34)

Hence, the problem (5) consists of minimization of f(Y ) sub-
ject to Y ∈ Mr . Note that for Θ = M we have f(·) = φ(·,M),
where f(·) is defined in (34). Let Ȳ ∈ Mr be such that
φ(Ȳ ,Θ0) = 0 for some Θ0 ∈ VΩ , i.e., PΩ(Ȳ ) = Θ0 . A suffi-
cient condition for Ȳ to be a locally unique solution of problem
(2), at M = Θ0 , is

tr
[
PΩ(H)�PΩ(H)

]
> 0, ∀H ∈ TMr

(Ȳ ) \ {0}. (35)

The above condition means that if H ∈ TMr
(Ȳ ) and H �= 0,

then PΩ(H) �= 0. In other words this means that the kernel

Ker(PΩ) := {H ∈ TMr
(Ȳ ) : PΩ(H) = 0}

is {0}. Since PΩ(H) = 0 for any H ∈ VΩ c , it follows that:
condition (35) is equivalent to the sufficient condition (21) of
Proposition III.2. That is, condition (35) means that matrix Ȳ is
well-posed for problem (2).
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Assuming that condition (35) (or equivalently condition (21))
holds, by applying the Implicit Function Theorem to the first
order optimality conditions of the least squares problem (5) we
have the following result.

Proposition III.4: Let Ȳ ∈ Mr be such that PΩ(Ȳ ) = Θ0
for some Θ0 ∈ VΩ and suppose that the well posedness con-
dition (21) holds. Then there exist neighborhoods V and W of
Ȳ and Θ0 , respectively, such that for any M ∈ W ∩ VΩ there
exists unique Y ∈ V ∩Mr satisfying the optimality conditions
(32).

The above proposition implies the following. Suppose that
we run a numerical procedure which identifies a matrix Ȳ ∈
Mr satisfying the (necessary) first order optimality conditions
(32). Then if PΩ(Ȳ ) is sufficiently close to M (i.e., the fit∑

(i,j )∈Ω (Yij − Mij )
2 is sufficiently small) and condition (21)

holds at Ȳ , then we can say that f(Y ) > f(Ȳ ) for all Y �= Ȳ in
a neighborhood of Ȳ . That is, Ȳ solves the least squares problem
at least locally. Unfortunately it is not clear how to quantify the
“sufficiently close” condition, and this does not guarantee global
optimality of Ȳ unless Ȳ is the unique minimum rank solution.

IV. STATISTICAL TEST FOR RANK SELECTION

In this section, we propose a statistical test procedure for
value of the “true” minimal rank, when the entries of the data
matrix M are observed with noise. Such statistical approach
can be useful for many existing low-rank matrix completion
algorithms, which require a pre-specification of the matrix rank,
such as the alternating minimization approach to solving the
non-convex problem by representing the low-rank matrix as a
product of two low-rank matrix factors (see, e.g., [4]).

Consider the LRMA formulation. By the above discussion, it
will be natural to take some value of r less than R(n1 , n2 ,m),
since otherwise we will not even have locally unique solution.
Can the fit of Y ∈ Mr to X + M , and hence the choice of r,
be tested in some statistical sense?

To proceed we assume the following model with noisy and
possibly biased observations of a subset of matrix entries.
There is a (population) value Y ∗ of n1 × n2 matrix of rank
r < R(n1 , n2 ,m) and Mij are viewed as observed (estimated)
values of Y ∗

ij , (i, j) ∈ Ω, based on a sample of size N . The
observed values are modeled as

Mij = Y ∗
ij + N−1/2Δij + εij , (i, j) ∈ Ω, (36)

where Y ∗ ∈ Mr and Δij are some (deterministic) numbers.
The random errors εij are assumed to be independent of each
other and such that N 1/2εij converge in distribution to nor-
mal with mean zero and variance σ2

ij , (i, j) ∈ Ω. The additional
terms N−1/2Δij in (36) represent a possible deviation of pop-
ulation values from the “true” model and are often referred to
as the population drift or a sequence of local alternatives (we
can refer to [36] for a historical overview of invention of the
local alternatives setting). This is a reasonably realistic model
motivated by many real applications.

Definition IV.1: We say that the model is globally identifiable
(at Y ∗) if Ȳ ∈ Rn1 ×n2 of rank(Ȳ ) ≤ r and PΩ(Ȳ ) = PΩ(Y ∗)
imply that Ȳ = Y ∗, i.e., Y ∗ is the unique solution of the re-
spective matrix completion problem. Similarly it is said that the

model is locally identifiable if this holds for all such Ȳ in a
neighborhood of Y ∗, i.e., Y ∗ is a locally unique solution.

Consider the following weighted least squares problem (a
generalization of (5)):

min
Y ∈ Mr

∑

(i,j )∈ Ω

wij (Mij − Yij )
2 , (37)

for some weights wij > 0, (i, j) ∈ Ω. (Of course, if wij = 1,
(i, j) ∈ Ω, then problem (37) coincides with the least squares
problem (5)). We have the following standard result about con-
sistency of the least squares estimates.

Proposition IV.1: Suppose that the model is globally iden-
tifiable at Y ∗ ∈ Mr and values Mij , (i, j) ∈ Ω, converge in
probability to the respective values Y ∗

ij as the sample size N

tends to infinity. Then an optimal solution Ŷ of problem (37)
converges in probability to Y ∗ as N → ∞.

Consider the following weighted least squares test statistic

TN (r) := N min
Y ∈ Mr

∑

(i,j )∈ Ω

wij (Mij − Yij )
2 , (38)

where wij := 1/σ̂2
ij with σ̂2

ij being consistent estimates of σ2
ij

(i.e., σ̂2
ij converge in probability to σ2

ij as N → ∞). Recall that
the respective condition of form (21), or equivalently (35), is
sufficient for local identifiability of Y ∗. The following asymp-
totic results can be compared with similar results in the analysis
of covariance structures (cf., [37]).

Proposition IV.2 (Asymptotic properties of test statistic):
Consider the noisy observation model (36). Suppose that
the model is globally identifiable at Y ∗ ∈ Mr and Y ∗ is
well-posed for problem (2). Then as N → ∞, the test statistic
TN (r) converges in distribution to noncentral χ2 distribution
with degrees of freedom dfr = m − r(n1 + n2 − r) and the
noncentrality parameter

δr = min
H∈ TMr (Y ∗)

∑

(i,j )∈ Ω

σ−2
ij (Δij − Hij )

2 . (39)

Note that the optimal (minimal) value of the weighted least
squares problem (37) can be approximated by

min
H∈ TMr (Y ∗)

∑

(i,j )∈ Ω

wij (Eij − Hij )
2 + RN , (40)

with Eij := N−1/2Δij + εij and the error term RN =
o
(
‖M − PΩ(Y ∗)‖2

)
being of stochastic order RN = op(N−1).

Hence, the noncentrality parameter, given in (39), can be approx-
imated as

δr ≈ N min
Y ∈ Mr

∑

(i,j )∈ Ω

wij

(
Y ∗

ij + N−1/2Δij − Yij

)2
. (41)

That is, the noncentrality parameter is approximately equal to
N times the fit to the “true” model of the alternative popula-
tion values Y ∗

ij + N−1/2Δij under small perturbations of order
O(N−1/2).

Remark IV.1: The above asymptotic results are formulated
in terms of the “sample size N” suggesting that the observed
values are estimated from some data. That is, the given values
M̄ij , (i, j) ∈ Ω, are obtained by averaging i.i.d. data points M	

ij ,
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	 = 1, ..., N . In that case asymptotic normality of N 1/2εij can
be justified by application of the Central Limit Theorem, and
the corresponding variances σ2

ij can be estimated from the data

in the usual way σ̂2
ij = (N − 1)−1 ∑N

	=1(M
	
ij − M̄ij )2 . This

model allows to formulate mathematically precise convergence
results. One can take a more pragmatic point of view that when
there is a “small” random noise in the observed values, the
respective test statistics properly normalized with respect to
magnitude of that noise have approximately a noncentral chi
square distribution.

The asymptotics of the test statistic TN (r) depends on r and
also on the cardinality m of the index set Ω. Suppose now that
more observations become available at additional entries of the
matrix. That is we are testing now the model with a larger index
set Ω′, of cardinality m′, such that Ω ⊂ Ω′. In order to emphasize
that the test statistic also depends on the corresponding index
set we add the index set in the respective notations. Note that if
Y ∗ is a solution of rank r for both sets Ω and Ω′ and the model is
globally (locally) identifiable at Y ∗ for the set Ω, then the model
is globally (locally) identifiable at Y ∗ for the set Ω′. Note also
that if the regularity condition (21) holds at Y ∗ for the smaller
model (i.e. for Ω), then it holds at Y ∗ for the larger model (i.e.
for Ω′). The following result can be proved in the same way as
Theorem IV.2 (cf., [37]).

Proposition IV.3: Consider index sets Ω ⊂ Ω′ of cardinality
m = |Ω| and m′ = |Ω′|, and the noisy observation model (36).
Suppose that the model is globally identifiable at Y ∗ ∈ Mr and
condition (21) holds at Y ∗ for the smaller model (and hence
for both models). Then the statistic TN (r,Ω′) − TN (r,Ω) con-
verges in distribution to noncentral χ2 with dfr,Ω ′ − dfr,Ω =
m′ − m degrees of freedom and the noncentrality parameter
δr,Ω ′ − δr,Ω , and TN (r,Ω′) − TN (r,Ω) is asymptotically inde-
pendent of TN (r,Ω).

For given index set Ω and observed (estimated) values Mij ,
(i, j) ∈ Ω, the statistic TN (r) can be used for testing the (null)
hypothesis that the “true” rank is r. That is the null hypothesis
is rejected if TN (r) is large enough on the scale of the χ2 dis-
tribution with the respective dfr degrees of freedom. It is often
observed in practice that such tests reject the null hypothesis
even when the fit is reasonable. In that respect the role of values
Δij in the model is to suggest that the “true” model is true only
approximately, and the corresponding noncentrality parameter
δr gives an indication of the deviation from the exact rank r
model. It is a common practice to perform such tests sequen-
tially for increasing values of r, with all deficiencies of such
sequential testing.

Such testing procedure assumes that the sample size N is
given and the corresponding variances σ2

ij can be consistently
estimated. When the observed values are obtained by aver-
aging N data points, this is available in the straightforward
way (see Remark IV.1). Otherwise setting N = 1 and assum-
ing that all σ2

ij = σ2 , (i, j) ∈ Ω, are equal to each other, we
need to specify range of σ2 . We will discuss this further in
Section V.

Remark IV.2: It is also possible to give asymptotic distribu-
tion of solutions of problem (37). Suppose now that the assump-

tions of Theorem IV.2 hold with all Δij in equation (36) being
zeros. Let ŶN be a solution of problem (37), i.e.,

ŶN ∈ arg min
Y ∈ Mr

∑

(i,j )∈ Ω

wij

(
Y ∗

ij + εij
︸ ︷︷ ︸

Mi j

−Yij

)2
. (42)

Consider operator A : VΩ → TMr
(Y ∗) defined as

A(W ) := arg min
H∈ TMr (Y ∗)

∑

(i,j )∈ Ω

σ−2
ij (Wij − Hij )

2 , (43)

for W ∈ VΩ . Because of the assumption of well posedness
(which is equivalent to (35)) the minimizer in (43) is unique
and hence A(W ) is well defined. Then

ŶN = A(M) + op(N−1/2). (44)

Note that the operator A is linear.
We have that Y ∗ ∈ TMr

(Y ∗) and hence A(PΩ(Y ∗)) = Y ∗.
Thus A(M) = Y ∗ + A(E), where E ∈ Rn1 ×n2 is such that
Eij = εij for (i, j) ∈ Ω, and Eij = 0 otherwise. Since N 1/2εij ,
(i, j) ∈ Ω, converge in distribution to normal with mean zero
and variance σ2

ij and independent of each over, it follows that

N 1/2(ŶN − Y ∗) converges in distribution to the random ma-
trix A(Z), where Z ∈ VΩ is a random matrix with entries
Zij ∼ N (0, σ2

ij ), (i, j) ∈ Ω, having normal distribution and in-
dependent of each over. Note that since A(·) is a linear operator,
A(Z) has a multivariate normal distribution with zero means.
SinceA(Z) belongs to the linear subspace TMr

(Y ∗) of Rn1 ×n2 ,
the multivariate normal distribution of A(Z) is degenerate.

V. NUMERICAL EXAMPLES

We present some numerical experiments to illustrate our
theory.1 In this section, without further notification, the nuclear
norm minimization is solved by TFOCS [38] in Matlab and
LRMA problem is solved by “SoftImpute” [39] (regularization
parameter equals to 0) in R.

A. An Example of 6× 6 Matrix Considered in [30]

As pointed in Remark III.1, Wilson and Worcester showed in
[30] using analysis that there are two different locally unique
solutions of rank r∗ = 3 for a 6 × 6 matrix with the index set
Ω corresponding to its off-diagonal elements. The matrix M in
that example is given by

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0.56 0.16 0.48 0.24 0.64
0.56 0 0.20 0.66 0.51 0.86
0.16 0.20 0 0.18 0.07 0.23
0.48 0.66 0.18 0 0.3 0.72
0.24 0.51 0.07 0.30 0 0.41
0.64 0.86 0.23 0.72 0.41 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It can be verified that there are two rank 3 solutions by filling
the diagonal entries by (0.64, 0.85, 0.06, 0.56, 0.50, 0.93), and
(0.42, 0.90, 0.06, 0.55, 0.39, 1.00), respectively.

1More discussions can be found in a supplementary material at https://
www2.isye.gatech.edu/∼yxie77/Experiment.pdf
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Fig. 2. Probability that well-posedness is satisfied; random instances for dif-
ferent rank and sampling probability. For each sampling probability and rank, we
generate Y ∗ and Ω. Then, we check the well-posedness condition and compute
the probability. Blue curve is the estimated generic bound for the corresponding
sampling probability.

This simple test case where we know the ground truth can
illustrate the problem. Both the nuclear norm minimization and
LRMA fail to recover any of these two local solutions above.
The soft-thresholded SVD converges to a completely incorrect
solution with off-diagonals far off from those of M , and the
nuclear norm minimization produces a rank 4 solution by filling
out the diagonal entries by (0.44, 0.76, 0.05, 0.53, 0.19, 0.96).
Note that here both optimal solutions satisfy the well-posedness
condition, and yet these numerical procedures can not recover
either one of them. It is not clear how typical this example, of
different locally optimal solutions, is. Recall that generically the
nuclear norm minimization problem possesses unique optimal
solution. However, it is not clear how well it approximates the
“true” minimal rank solution when there is observation noise.

B. Probability of Well-posedness

We show the probability of satisfying the well-posedness con-
dition by generating random cases. For each rank r∗, we generate
an 40 × r∗ orthonormal matrix V , an 50 × r∗ orthonormal ma-
trix W , and an r∗ × r∗ diagonal matrix D. Set Y ∗ = V DW�.
For each instance, we randomly generate the observation pattern
Ω such that each entry is observed with probability p. We check
the well-posedness condition according to Theorem III.3 and us-
ing the verifiable algebraic condition. Then we repeat the above
procedure 100 times and compute the percentage of cases that
satisfy the well-posedness condition. Figure 2 shows the resulted
proportion. We also plotted the generic bound R̂(n1 , n2 , p) =
(n1 + n2)/2 − ((n1 + n2)2/4 − n1n2p)1/2 . Figure 2 shows
that the probability that a matrix satisfies the well-posedness
condition is not small, when the true rank is less than the generic
lower bound. Moreover, the probability converge to 1 quickly,
when the rank is 2 or 3 less than the generic bound. This demon-
strates that the R̂(n1 , n2 , p) is a sharp bound.

Fig. 3. When the well-posedness condition is satisfied, the absolute errors at
each entries |Yij − Y ∗

ij | for the LRMA (middle panel) and the nuclear norm
minimization (right panel). The left panel shows the sampling pattern Ω. Here the
true matrix Y ∗ ∈ R40×50 , rank(Y ∗) = 10, |Ω| = 1000, εij ∼ N (0, 52 /50)
and the observation matrix Mij = Y ∗

ij + εij , (i, j) ∈ Ω.

Fig. 4. When the well-posedness condition is violated, the absolute errors at
each entries |Yij − Y ∗

ij | for the LRMA (middle panel) and the nuclear norm min-
imization (right panel). The left panel shows the sampling pattern Ω. Here the
true matrix Y ∗ ∈ R70×40 , rank(Y ∗) = 11, |Ω| = 1300, ε ∼ N (0, 52 /50)
and the observation matrix Mij = Y ∗

ij + εij , (i, j) ∈ Ω. The necessary condi-
tion for the well-posedness condition is violated (i.e., the numbers of observa-
tions are less than 11) at row with index numbers 3, 6, 30, 46, 50.

C. Comparison of LRMA and Nuclear Norm Minimization

In this section, we compare the performance of LRMA and
matrix completion using standard nuclear norm minimization,
when the well-posedness condition is satisfied and when it is
violated, respectively. The results show that the well-posedness
condition is indeed necessary for good recovery performance.
Moreover, our examples show that LRMA performs more stable
than nuclear norm minimization in these cases.

We generate Y ∗, an n1 × n2 matrix of rank r∗, by uni-
formly generated an n1 × r∗ matrix V , an n2 × r∗ matrix W
and an r∗ × r∗ diagonal matrix D and setting Y ∗ = Ṽ DW̃�,
where Ṽ and W̃ are orthonormalization of V , W , respec-
tively. We again sample Ω uniformly random with probabil-
ity p, where |Ω| = m. Observation matrix M is generated by
Mij = Y ∗

ij + εij , (i, j) ∈ Ω, where εij ∼ N(0, σ2N−1). Algo-
rithms stop when either relative change in the Frobenius norm
between two successive estimates, ‖Y (t+1) − Y t‖F /‖Y (t)‖F ,
is less than some tolerance, denoted as tol or the number of
iterations exceeds the maximum it.

1) Element-wise error for three cases: We first consider
three individual instances, when the well-posedness condition
is satisfied and violated, respectively:

(1) In Figure 3 the well-posedness condition is satisfied. The
element-wise reconstruction error for LRMA is much smaller
than that of the nuclear norm minimization. In this experiment,
n1 = 40, n2 = 50, r∗ = 10, m = 1000, σ = 5, N = 50 and Ω
is sampled until the well-posedness condition is satisfied. The
parameters are tol = 10−20 and it = 50000.
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Fig. 5. When Ω is reducible, the absolute errors at each entries |Yij − Y ∗
ij | for

the LRMA (middle panel) and the nuclear norm minimization (right panel). The
left panel shows the sampling pattern Ω. Here the true matrix Y ∗ ∈ R40×50 ,

rank(Y ∗) = 10, |Ω| = 1000, εij ∼ N (0, 52

50 ) and the observation matrix
Mij = Y ∗

ij + εij , (i, j) ∈ Ω. Ω is reducible. In this case, only two diagonal

block matrices M1 ∈ R20×20 and M2 ∈ R20×30 are observed.

(2) In Figure 4, the well-posedness condition is violated. As
predicted by our theory, both LRMA and nuclear perform worse,
and the errors are especially large at index numbers 3, 6, 30,
46, 50, where the necessary condition for the well-posedness
condition is violated. Still, in this situation, the nuclear norm
minimization has a larger total recover error than LRMA. In
this experiment, n1 = 70, n2 = 40, r∗ = 11, m = 1300, σ = 5,
and N = 50. We repeatedly sample Ω until the necessary con-
dition for the well-posedness condition is violated. The pa-
rameters tol = 10−16 and it = 50000. (3) In Figure 5, Ω is
reducible and thus the well-posedness condition is violated.
Consistent with our theory, in this situation, both methods fail
to recover the true matrix since the necessary condition of lo-
cal uniqueness is violated. In this experiment, n1 = 40, n2 =
50, r∗ = 10, m = 1000, σ = 5, N = 50 and Ω = {(i, j) ∈
{1 · · · 20} × {1 · · · 20} ∪ {21 · · · 40} × {21 · · · 50}}. The pa-
rameters are tol = 10−20 and it = 50000.

2) Mean-square-error performance: In this section, we con-
sider the mean-square-error performance, defined by

MSE =
1

n1n2K

K∑

k=1

∑

i,j

(Y ∗
ij,k − Ŷij,k )2

where K is the total number of repetitions. Figure 6 shows the
difference between the mean square error of LRMA and the
nuclear norm minimization. In this experiment, n1 = 40, n2 =
50, σ = 5, and we generate 50 random instances to compute
the average error. The estimated R̂(n1 , n2 , p) is also drawn as
the blue curve. Figure 6 shows that, indeed, as predicted by
our theory, when the true rank is lower than the generic lower
bound, the performance of LRMA is much better than that of
the nuclear norm minimization.

D. Testing for True Rank

1) Asymptotic distribution of test statistic: In Section IV (see
(36)), we show that the asymptotical distribution of the test
statistic for the “true” rank is χ2 distribution, which we will
verify numerically here. We generate the true matrix Y ∗, an
n1 × n2 matrix of rank r∗, by uniformly generated an n1 × r∗

matrix V , an n2 × r∗ matrix W , and an r∗ × r∗ diagonal matrix
D and setting Y ∗ = Ṽ DW̃�, where Ṽ and W̃ are orthonor-
malization of V , W , respectively. We sample Ω uniformly ran-

Fig. 6. Difference between the MSEs of LRMA and the nuclear norm mini-
mization. The blue curve is the generic bound for the corresponding sampling
probability.

Fig. 7. Q-Q plot of TN (r) against quantiles of χ2 distribution: Y ∗ ∈ R40×50 ,
rank(Y ∗) = 11, |Ω| = 1000, the observation matrix M is generated 200

times, M (k )
ij = Y ∗

ij + ε
(k )
ij , (i, j) ∈ Ω, where ε

(k )
ij ∼ N (0, 52 /400). For each

M (k ) , T
(k )
N (r) is computed as equation 38. By Theorem IV.2, {T (k )

N (r)} fol-
lows central χ2 distribution with the degree-of-freedom dfr = m − r(n1 +
n2 − r) = 131.

dom, where |Ω| = m. The noisy and repeated observation ma-
trices are generated by M

(k)
ij = Y ∗

ij + ε
(k)
ij , (i, j) ∈ Ω, where

ε
(k)
ij ∼ N(0, σ2N−1). When computing the test statistic T

(k)
N (r)

(38), the least square approximation problem is solved by the
soft-thresholded SVD solver. The algorithm stops when either
relative change in the Frobenius norm between two successive
estimates is less than some tolerance, denoted as tol, or the
number of iterations reaches the maximum, denoted as it.

Figure 7 shows the Q-Q plot of {T (k)
N (r)}200

k=1 against the
corresponding χ2 distribution. In this experiment, n1 = 40,
n2 = 50, r∗ = 11, m = 1000, σ = 5, N = 400 and Ω is sam-
pled until the well-posedness condition is satisfied. The pa-
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Fig. 8. Q-Q plot of TN (r, Ω′) − TN (r, Ω) against the quantiles of χ2

distribution: Y ∗ ∈ R40×50 , rank(Y ∗) = 11, |Ω′| = 1001, |Ω| = 996, where
Ω ⊂ Ω′. The observation matrix M ′ and M are generated 200 times, By

Theorem IV.3, {T (k )
N (r, Ω′) − T

(k )
N (r, Ω)} follows central χ2 distribution with

the degree-of-freedom dfr,Ω ′ − dfr,Ω = m′ − m = 5.

TABLE I
p-VALUE FOR SEQUENTIAL RANK TEST IN SIMULATION

rameters tol = 10−20 and it = 50000. From the result, we can
see TN (r) follows a central χ2 distribution with a degree-of-
freedom dfr = m − r(n1 + n2 − r) = 131, which is consis-
tent with Theorem IV.2.

Figure 8 shows the Q-Q plot of {T (k)
N (r,Ω′) −

T
(k)
N (r,Ω)}200

k=1 against the corresponding χ2 distribution. In
this experiment, n1 = 40, n2 = 50, r∗ = 11, m = 996, σ = 5,
N = 50, m′ = |Ω′| = 1001 and Ω is sampled until the well-
posedness condition is satisfied. Note that Ω′ also satisfied
well-posedness condition since Ω′C ⊂ ΩC . The parameters
tol = 10−20 and it = 50000. From the result, we can see
TN (r,Ω′) − TN (r,Ω) follows a central χ2 distribution with
a degree-of-freedom dfr,Ω ′ − dfr,Ω = m′ − m = 5, which is
consistent with Theorem IV.3.

2) Test for true rank: As discussed in Section IV, we can
determine the true rank r∗ by sequential χ2 tests. That is, for
r ranging from 1 to �R(n1 , n2 ,m)�, we solve the least square
approximations and compute TN (r). According to TN (r) we
can determine which rank can be accepted for a predefined
significant level. Table I shows a result of sequential rank test
on a simulated data set. In this experiment, n1 = 40, n2 = 50,
r∗ = 9, m = 1000, σ = 5, N = 100, and Ω is sampled until
well-posedness condition is satisfied. The true rank 9, is the first
one accepted for 0.05 significant level.

Fig. 9. Comparison of rank selection between sequential χ2 test, the nu-
clear norm minimization and the M E method, when the sampling probability
p=0.3. For each true rank, we compute the median of rank error for 100 ex-

periments. Y ∗(k ) ∈ R100×1000 , M
(k )
ij = Y

∗(k )
ij + ε

(k )
ij , (i, j) ∈ Ω, where

ε
(k )
ij ∼ N (0, 52 /50). Threshold bn m = 0.25, bM E = 0.13 for the nuclear

norm minimization and the M E method, respectively.

Figure 9 shows the comparison of rank selection be-
tween our sequential rank test, the nuclear norm minimiza-
tion and the method suggested in [40] (we refer to it as ME

method in the following). Since the nuclear norm minimiza-
tion and the ME method cannot give the exact rank, we
choose the rank by thresholding the percentage of the sin-
gular value of the recovered matrix in this two methods, i.e.
r̂ = argminr

∑r
i=1 λ(i)/

∑min(n1 ,n2 )
i=1 λ(i) > b, where b is a

chosen threshold. In this experiment, n1 = 100, n2 = 1000,
σ = 5, N = 50 and the sampling probability p = 0.3. For each
true rank, we generate 100 instances of (Y ∗,Ω,M), complete
the rank selection with these three methods and compute the
median of the error of estimated rank of each method. For the
sequential rank test, we choose the first rank accepted with a
0.05 significant level. For the nuclear norm minimization and
the ME method, we choose the threshold that gives us the best
results for these two methods. It shows that selection by sequen-
tial χ2 test outperforms the other two methods.

VI. CONCLUSION

In this paper, we have examined the matrix completion from
a geometric viewpoint and established a sufficient condition for
local uniqueness of solutions. Our characterization assumes de-
terministic patterns and the results are general. We argue that
the exact minimum rank matrix completion (MRMC) leads to
either unstable or non-unique solutions and thus the alternative
low-rank matrix approximation (LRMA) is a more reasonable
approach. We propose a statistical test for rank selection, based
on observed entries, which can be useful for practical matrix
completion algorithms. Assuming the model (36), it is also pos-
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sible to derive asymptotics of the optimal value and, under rather
stringent conditions, of the optimal solutions of the minimum
trace (MT) problem (7) (cf., [14]).

For small values of the “true” rank, when the respective dual
of the “true” MT problem has more than one optimal solution,
the asymptotic bias of the optimal value of the approximat-
ing MT problem is of order O(N−1/2) (see Remark III.3). On
the other hand, under the model (36) when the values Mij ,
(i, j) ∈ Ω, are computed by averaging N data points having
normal distribution (see Remark IV.1), the least squares ap-
proach corresponds to the Maximum Likelihood method which
is an asymptotically efficient estimation procedure. This gives
an insight into the relatively poor performance of the nuclear
norm approach, as compared with the least squares method, as
reported in Section V.

APPENDIX

Proof of Theorem III.2: We argue by a contradiction. Suppose
that there is a sequence {Yk} ⊂ Mr (with Yk �= Ȳ ) converging
to Ȳ such that PΩ(Yk ) = M . It follows that Yk − Ȳ ∈ VΩ c .
By passing to a subsequence if necessary we can assume
that (Yk − Ȳ )/tk , where tk := ‖Yk − Ȳ ‖, converges to some
H ∈ VΩ c . Note that H �= 0. Moreover Yk = Ȳ + tkH + o(tk ),
and hence H ∈ TMr

(Ȳ ). That is H ∈ VΩ c ∩ TMr
(Ȳ ), and

H �= 0 by the construction. This gives the desired contradiction
with (21).

Proof of Theorem III.4: Let � be the characteristic rank of
mapping F. Consider θ∗ ∈ Θ such that � = rank

(
Δ(θ∗)

)
. It

follows that matrix Δ(θ∗) has an � × � submatrix whose de-
terminant is not zero. Consider function φ : Θ → R defined as
the determinant of the corresponding � × � submatrix of Δ(θ).
We have that φ(·) is a polynomial function and is not identi-
cally zero on Θ since by the construction φ(θ∗) �= 0. Since Θ is
connected, it follows that the set {θ ∈ Θ : φ(θ) = 0} is “thin”,
in particular has Lebesgue measure zero. That is, φ(θ) �= 0 and
hence rank

(
Δ(θ)

)
≥ � for a.e. θ ∈ Θ. Also by the definition of

� we have that rank
(
Δ(θ)

)
≤ � for all θ ∈ Θ. It follows that

rank
(
Δ(θ)

)
= � for a.e. θ ∈ Θ. Since rank of Δ(V,W,X) is

the same for all X ∈ VΩ c , this completes the proof of the asser-
tion (i). Since rank

(
Δ(·)

)
is a lower semicontinuous function,

the assertion (ii) follows.
Now consider a regular point θ̄ = (V̄ , W̄ , X̄) with X̄ = 0,

and the corresponding matrix Ȳ = V̄ W̄�. Since θ̄ is regular,
we have that rank of Δ(θ) is constant (equal �) for all θ in a
neighborhood of θ̄. By the Constant Rank Theorem it follows
that there is a neighborhoodV of θ̄ such that the setS := {F(θ) :
θ ∈ V} forms a smooth manifold of dimension � in Rn1 ×n2 . The
tangent space to this manifold at Ȳ is the space TMr

(Ȳ ) + VΩ c .
Hence if � = f(r,m), then

dim
(
TMr

(Ȳ ) + VΩ c

)
= dim(TMr

(Ȳ )) + dim(VΩ c ).

Consequently dim
(
TMr

(Ȳ ) ∩ VΩ c

)
= 0, and thus condition

(21) follows (compare with Proposition III.1). On the other
hand if � < f(r,m), then the manifold (VΩ c + Ȳ ) ∩Mr , in a
neighborhood of Ȳ , has a positive dimension. Thus in that case
the solution of MRMC is not locally unique and condition (21)

does not hold. This completes the proof of the assertions (iii)
and (iv).

Proof of Theorem III.5: Suppose that Ω is reducible. Then
by making permutations of rows and columns if necessary, it
can be assumed that M has the block diagonal form as in
(27). Let Ȳ be a respective minimum rank solution. That is
M1 = V1W

�
1 , M2 = V2W

�
2 and Ȳ = V W� with V = (V1

V2
)

and W = (W 1
W 2

) being n1 × r and n2 × r matrices of rank r.

Note that Ȳ = ( M 1
V2 W �

1

V1 W �
2

M 2
). By changing V1 to αV1 and

W1 to α−1W1 for α �= 0, we change matrix Ȳ to matrix
( M 1

α−1 V2 W �
1

αV1 W �
2

M 2
). If V1W

�
2 �= 0 or V2W

�
1 �= 0, we obtain that

solution Ȳ is not locally unique. On the other hand when both
V1W

�
2 = 0 and V2W

�
1 = 0, and hence Ȳ = (M 1

0
0

M 2
), rank r

solutions for example are matrices of the form Ȳ = (M 1
M 3

0
M 2

),
where columns of matrix M3 are linear combinations of columns
of matrix M1 . If M1 = 0, then we can use matrix Ȳ = (M 1

0
M 3
M 2

)
in the similar way. Hence nonuniqueness of rank r solutions fol-
lows.

Proof of Theorem III.6: Suppose that Ω is irreducible. Con-
sider a rank one solution Ȳ = vw� with respective vectors
v = (v1 , ..., vn1 )

� and w = (w1 , ..., wn2 )
�. We can assume that

v1 is fixed, say v1 = 1. Consider an element M1j1 , (1, j1) ∈ Ω,
in the first row of matrix M . Since it is assumed that each
row has at least one observed entry, such element exists. Since
M1j1 = v1wj1 , it follows that the component wj1 of vector w is
uniquely defined. Next consider element Mi1 ,j1 , (i1 , j1) ∈ Ω.
Since Mi1 j1 = vi1 wj1 , it follows that the component vi1 of
vector v is uniquely defined. We proceed now iteratively. Let
ν ⊂ {1, ..., n1} and ω ⊂ {1, ..., n2} be index sets for which the
respective components of vectors v and w are already uniquely
defined. Let j �∈ ω be such that there is (i, j′) ∈ Ω with j′ ∈ ω
and hence wj ′ is already uniquely defined. Since Mij = viwj

and Mij ′ = viwj ′ , it follows that wj is uniquely defined and j
can be added to the index set ω. If such column j does not exist,
take row i �∈ ν such that there is (i′, j) ∈ Ω with i′ ∈ ν. Then vi

is uniquely defined and hence i can be added to ν. Since Ω is
irreducible, this process can be continued until all components
of vectors v and w are uniquely defined.

Proof of Proposition III.3: Consider function defined in (34).
The differential of f(Y ) can be written as

df(Y ) = tr[(PΩ(Y ) − M)�dY ].

Therefore if Y ∈ Mr is an optimal solution of the least squares
problem (5), then ∇f(Y ) = PΩ(Y ) − M is orthogonal to the
tangent space TMr

(Y ). By (20) this implies optimality condi-
tions (32).

Proof of Proposition III.4: Consider function φ defined in
(33), and the problem of minimization of φ(Y,Θ) subject to
Y ∈ Mr with Θ viewed as a parameter. Locally for Y near
Ȳ ∈ Mr the manifold Mr can be represented by a system of
K = n1n2 − dim(Mr ) equations gi(Y ) = 0, i = 1, ...,K, for
an appropriate smooth mapping g = (g1 , ..., gK ). That is, the
above optimization problem can be written as

min φ(y, θ) subject to gi(y) = 0, i = 1, ...,K, (45)
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where with some abuse of the notation we write this in terms of
vectors y = vec(Y ) and θ = vec(Θ). Note that the mapping g is
such that the gradient vectors ∇g1(ȳ), ...,∇gK (ȳ) are linearly
independent.

First order optimality conditions for problem (45) are

∇yL(y, λ, θ) = 0, g(y) = 0, (46)

where L(y, λ, θ) := f(y, θ) + λ�g(y) is the corresponding La-
grangian. For θ = θ0 this system has solution ȳ and the cor-
responding vector λ̄ = 0 of Lagrange multipliers. We can view
(46) as a system of (nonlinear) equations in z = (y, λ) variables.

We would like now to apply the Implicit Function Theorem
to this system of equations to conclude that for all θ near θ0
it has unique solution near z̄ = (ȳ, λ̄). Consider the Jacobian
matrix (H

G
G�

0 ) of the system (46) at (y, λ) = (ȳ, λ̄), where
H := ∇yyφ(ȳ, θ0) is the Hessian matrix of the objective func-
tion and G := ∇g(ȳ) = [∇g1(ȳ), ...,∇gK (ȳ)]. We need to ver-
ify that this Jacobian matrix is nonsingular. This is implied by
condition (21), which is equivalent to condition (35). Indeed
suppose that

[
H G
G� 0

] [
v
u

]
= 0, (47)

for some vectors v and u of appropriate dimensions. This means
that Hv + Gu = 0 and G�v = 0. It follows that v�Hv = 0.
Condition G�v = 0 means that v is orthogonal to the tangent
space TMr

(ȳ). It follows then by condition (35) that v = 0. Then
Gu = 0 and hence, since G has full column rank, it follows that
u = 0. Since equations (47) have only zero solution, it follows
that this Jacobian matrix is nonsingular. Now by implying the
Implicit Function Theorem to the system (46) we obtain the
required result. This completes the proof.

Proof of Proposition IV.2: Note that under the specified as-
sumptions, Mij − Y ∗

ij are of stochastic order Op(N−1/2). We
have by Proposition IV.1 that an optimal solution of problem
(37) converges in probability to Y ∗. By the standard theory of
least squares (e.g., [41, Lemma 2.2]) we can write the following
local approximation near Y ∗ as (40). It follows that the limiting
distribution of TN (r) is the same as the limiting distribution of
N times the first term in the right hand side of (40). Note that
N 1/2w

1/2
ij Eij converges in distribution to normal with mean

σ−1
ij Δij and variance one. It follows that the limiting distribu-

tion of N times the first term in the right hand side of (40),
and hence the limiting distribution of TN (r), is noncentral chi-
square with degrees of freedom ν = m − dim (PΩ(L)) and the
noncentrality parameter δr . Recall that dimension of the linear
space L is equal to the sum of the dimension of its image PΩ (L)
plus the dimension of the kernel Ker(PΩ). It remains to note that
condition (21) means that Ker(PΩ) = {0} (see Remark III.4),
and hence

dim (PΩ(L)) = dim (L) = r(n1 + n2 − r). (48)

This completes the proof.
Justification for Theorem III.7: Note that for both problems

(28) and (29) the Slater condition holds, and hence there is no
duality gap between these problems, and both problems have

nonempty bounded sets of optimal solutions. Optimality condi-
tions (necessary and sufficient) for problem (9) are

C = PSc (Λ), (49)

(Ξ + X)Λ = 0, (50)

Λ � 0, Ξ + X � 0, X ∈ WSc . (51)

Now suppose that X̄ ∈ WSc is such that Ξ + X̄ � 0 and
rank(Ξ + X̄) = r < p. Let E be a p × (p − r) matrix of rank
p − r such that (Ξ + X̄)E = 0. By the optimality conditions
(49)–(51) we have that X̄ is an optimal solution of the SDP
problem (9) if and only if the following condition holds:
there exists Z ∈ Sp−r

+ such that PSc (EZE�) = C. Equations
PSc (EZE�) = C can be viewed as a system of dim(WSc )
equations with (p − r)(p − r + 1)/2 unknowns (nonduplicated
elements of matrix Z ∈ Sp−r ). When r is “small” and conse-
quently (p − r)(p − r + 1)/2 > dim(WSc ), it is likely that this
system will have a solution Z � 0, and hence X̄ is an optimal so-
lution of problem (9). We can also view this by adjusting weight
matrix C to the considered matrix Ξ + X̄ by choosing Z � 0
and defining C := PSc (EZE�). For such C the corresponding
SDP problem has X̄ as an optimal solution. Note that although
matrix EZE� is positive semidefinite when Z � 0, there is no
guarantee that the corresponding matrix PSc (EZE�) is posi-
tive semidefinite.
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