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LOSS AND RECAPTURE OF ORTHOGONALITY IN THE
MODIFIED GRAM-SCHMIDT ALGORITHM*

/. BJ)RCKt AND C. C. PAIGE$

To our close friend and mentor Gene Golub, on his 60th birthday.
This is but one of the many topics on which Gene has generated so

much interest, and shed so much light.

Abstract. This paper arose from a fascinating observation, apparently by Charles Sheffield, and
relayed to us by Gene Golub, that the QR factorization of an m n matrix A via the modified Gram-
Schmidt algorithm (MGS) is numerically equivalent to that arising from Householder transformations
applied to the matrix A augmented by an n by n zero matrix. This is explained in a clear and simple
way, and then combined with a well-known rounding error result to show that the upper triangular
matrix R from MGS is about as accurate as R from other QR factorizations. The special structure of
the product of the Householder transformations is derived, and then used to explain and bound the
loss of orthogonality in MGS. Finally this numerical equivalence is used to show how orthogonality
in MGS can be regained in general. This is illustrated by deriving a numerically stable algorithm
based on MGS for a class of problems which includes solution of nonsingular linear systems, a
minimum 2-norm solution of underdetermined linear systems, and linear least squares problems. A
brief discussion on the relative merits of such algorithms is included.

Key words, orthogonal matrices, QR factorization, Householder transformations, least squares,
minimum norm solution, numerical stability, Gram-Schmidt, augmented systems

AMS(MOS) subject classifications. 65F25, 65G05, 65F05, 65F20

1. Introduction. We consider a matrix A E Rmn with rank n < m. The
modified Gram-Schmidt algorithm (MGS) in theory produces Q1 and R in the QR
factorization

where Q is orthogonal and R upper triangular. In practice, if the condition number
a(A) =_ al/an is large (O"

_ _
O"n being the singular values of A), then

the columns of Q are not accurately orthogonal [3]. If orthogonality is crucial, then
usually either rotations or Householder transformations have been used to compute
the QR factorization. Here we show how MGS can be used just as stably for many
problems requiring this orthogonality.

We derive some important properties of MGS in the presence of rounding errors.
In particular, we show that the R obtained from MGS is numerically as good as that
obtained from rotations or Householder transformations. We present new insights
on the loss of orthogonality in Q from MGS, and show how this can be effectively
regained in computations that use Q, without altering the MGS algorithm or re-
orthogonalizing the columns of Q1. As a practical example of this, we indicate how
Q and R from MGS may be used to solve an important class of problems reliably,
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LOSS AND RECAPTURE OF ORTHOGONALITY 177

despite the loss of orthogonality in Q1. This new approach seems applicable to most
problems for which MGS is in theory relevant.

The class of problems we consider is that of solving the symmetric indefinite linear
system involving A E amxn with rank n

x)_ c.

In general we call (1.2) the augmented system formulation (ASF) of the following two
problems, since it represents the conditions for their solution:

(1.3) min lib xl12 ATx c,

(1.4) min{llb- Ayll2 + 2cTy}.
Y

We examine these problems more fully in [5]. The ASF can be obtained by differenti-
ating the Lagrangian IIb-xll / 2yT(ATx--c) of (1.3), and equating to zero. Here y is
the vector of Lagrange multipliers. The ASF can also be obtained by differentiating
(1.4) to give AT(b- Ay) c, and setting x to be the "residual" x b- Ay.

The ASF covers two important special cases. Setting b 0 in (1.3), and so in (1.2),
gives the problem of finding the minimum 2-norm solution of a linear underdetermined
system (LUS). Setting c- 0 in (1.4) gives the much used linear least squares (LLS)
problem. The ASF also occurs in its full form (1.2) in the iterative refinement of least
squares solutions [2].

Using the Qa factorization (1.1), we can transform (1.2) into

I

(R -0
This gives one method for solving (1.2):

(z)(1.5) z R-Tc, QTb, x Q f y (d- z).

Using x Qlz + Q2f Qz + Q2Qb Qz + (I- QQT )b, we obtain an obvious
variant"

(1.6) z R-Tc, d QTb, x b- Q(d- z), y R-l(d z).

Bjhrck [2] showed that (1.5) is backward stable for (1.2) using the Householder QR
factorization. Since (1.5) uses Q, (1.6) seems preferable if x is required and only Q1
is available. However, as we shall see, it cannot generally be recommended when Q
is obtained by MGS. We will show how to develop more reliable algorithms based on
Q from MGS.

In 2 we illustrate the important but not widely appreciated result that MGS is
numerically equivalent to the Householder QR factorization applied to A augmented
with a block of zeros. From this we show in 3 that the computed R from MGS is
numerically as satisfactory as that obtained using Householder QR on A. The product

OnP of the Householder transformations from the QR factorization of A is crucial
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178 /KE BJRCK AND CHRIS PAIGE

for a full understanding of MGS. P has a simple and important structure, and this
is derived in the theorem in 4. This structure shows exactly how the computed
from MGS can lose orthogonality. In 5 this structure is used to bound the loss of
orthogonality of Q1, while 6 shows how the lost orthogonality can be compensated
for just by using Q differently without altering Q or MGS. We illustrate this by
producing a new backward stable algorithm for (1.2) using the computed Q and R
from MGS. In 7 we consider when we might use MGS in preference to the Householder
QR factorization of A.

2. Modified Gram-Schmidt as a Householder method. The MGS algo-
rithm computes a sequence of matrices A A() A(2) A(n+) Q E Rmn

where A(k) (q,... ,qk_l,a(kk) a(nk)). Here the first (k- 1) columns are final

columns in Q, and a(kk), a(nk) have been made orthogonal to q,’",qk-. In the
kth step we take

(2.1) qk a Pkk Ilqkll2, qk qk/Pkk,

and orthogonalize .(k) a(nk) against qk using the orthogonal projector I- qkq[k+l

(2.2) aJ-(k+l) (I qkq[)ak) ak)
qkPkj,

pj cla j k + l,...,n.

We see A( A(+I)R where R has the same kth row as upper triangular R =_

but is the unit matrix oherwise. After n steps we have obtained the factoriation

(2.a) A A(1) A()R1 A(a)R2R1 A(n+)Rn R1

where in exact arithmetic the columns of Q are orthonormal by construction. Note
that in MGS, as opposed to the classical version, all the projections qkPkj are sub-
tracted from the a sequentially as soon as q is computed. In practice, a square
root free version is often used, where one computes Q, R, and D diag(71,...
in the scaled factoriation, taking q as above,

(2.4) A QIR’, QI’ (ql," q), 7k (q)Tq, k 1, ..., n,

with R’ (pj) unit upper triangular, and pj Uk) /Tk, j > k.
It was reported in [4] that MGS for the QR factorization can be interpreted as

Householder’s method applied to the matrix A augmented with a square matrix of zero
elements on top. This is not only true in theory, but in the presence of rounding errors
as well. This observation is originally due to Charles Sheffield, and was communicated
to the authors by Gene Golub. Because it is such an important but unexpected result,
we will discuss this relationship in some detail. First we look at the theoretical result.

Let A Rmxn have rank n, and let On Rnxn be a zero matrix. Consider
the two QR hctorizations (here we use Q for m x m and P for (m + n) x (m + n)
orthogonal matrices),
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LOSS AND RECAPTURE OF ORTHOGONALITY 179

Since A has rank n, then Pll is zero, P21 is an m x n matrix of orthonormal columns,
and A Q1R P2/. If upper triangular R and/ are both chosen to have positive
diagonal elements in ATA RTR IT, then R =/ by uniqueness, so P21 Q1
can be found from any QR factorization of the augmented matrix. The last m columns
of P are then arbitrary up to an m x m orthogonal multiplier. The important result
is that the Householder QR factorization of the augmented matrix is numerically
equivalent to MGS applied to A.

To see this, remember that with ek the kth column of the unit matrix, the House-
holder transformation Pa elp uses P I- 2vvT/IIvlI, v a- elp, p +/-llal12. If
(2.5) is obtained using Householder transformations, then

(2.6)

where the vectors )k are described below Now from MGS applied to A(1) A,
Pll Ilal)l12 and a) q’ qp, so for the first Householder transformation
applied to the augmented matrix

.(1) ( O
q[ plVl, Vl q

(since there can be no cancellation we take Pkk _> 0). But IIvl122 2, giving

and

pl(il) nil) VlVlT-(I)aj aj(O1) --elq qTail) ai2)
SO

PI P12 P)n
ply(1)

where these values are clearly numerically the same as in the first step of MGS on
A. We see that the next Householder transformation produces the second row of R
and a3), a(n3), just as in MGS. Carrying on this way we see that this Householder
QR is numerically equivalent to MGS applied to A, and that every Pk is effectively
defined by Q1, since

/ \
(2.7) Pk I vkv[, vk |--ek } k=l.., n.

qk\/

P gives us a key to understanding the numerical behavior of MGS. First note
that in theory vvj eej + qT qj 0 if j, so PiPj I- viv -viva, and
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180 /KE BJI:tCK AND CHRIS PAIGE

T is symmetric, so using HouseholderpT Pn P1 I vlvT V2V VnVn
transformations in (2.5),

Pll O,

P P21 qleT +’’" + qneTn Q1,

P22 I qlqT qqTn I QIQT Q2QT

This shows that such special orthogonal matrices are fully defined by their (1,2)
blocks,

(2.8) p(On.__ QT)IQ I- QQ

3. Accuracy of R from modified Gram-Schmidt. A rounding error analysis
of MGS was given in [3]. There it was shown that the computed 0,1 and/ satisfy

where are constants depending on m, n and the details of the arithmetic, and u
is the unit roundoff. Hence Q1R accurately represents A and the departure from
orthogonality can be bounded in terms of the condition number a o’l/an.

From the numerical equivalence shown in the previous section, it follows that
the backward error analysis for the Householder QR factorization of the augmented
matrix in (2.5) can also be applied to the MGS on A. Here we will do this, and in
this section and 5 we will rederive (3.1) as well as give some new results. This is a
simple and unified approach, in that the one analysis of orthogonal transformations
can be used to analyse the QR factorization via both Householder transformations
and MGS. It also deepens our understanding of the MGS algorithm and its possible
uses.

Let Q1 (c1,... ,qn) be the matrix of vectors computed by MGS, and for k
1,..., n define

Then/ is the computed version of the Householder matrix applied in the kth step
of the Householder QR factorization of (), and/Sk is its orthonormal equivalent,
so that/5,/5 I. Wilkinson [11, pp. 153-162] has given a general error analysis of
orthogonal transformations of this type. From this it follows that for R computed by
MGS, the equivalent of (2.5) is

A+Ee

(3.3) IIE II2 a ullAII2, i= 1,2, [IE’I{2 c3u,

where again ci are constants depending on m, n and the details of the arithmetic.
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LOSS AND RECAPTURE OF ORTHOGONALITY 181

To show that this R from MGS, or the Householder QR factorization of the aug-
mented matrix, is numerically about as good as that from the ordinary Householder
QR factorization of A, we use the following general result.

LEMMA 3.1. For any matrices satis]ying

A + E2 P21

there exist 1 and E such that

PPll + PP21 I,

(3.4)

Proof. Consider the CS decomposition (see, for example, [7, p. 77]) Pll
UICWT, P21 V1SWT, where U (U1, U2), V (V1,V2) are square orthonor-
mal matrices and C and S are nonnegative diagonal matrices with C2 + S2 I.
Define (1 VWT, the closest orthonormal matrix to P21 in any unitarily invariant
norm; then since (I + S)(I- S) C2,

01 P21 VI(I- S)WT VI(I + )-IwTwcuu1cwT

+
Yl( +

from which the first two bounds follow. Next,

E IR- A (1 P21)R + E2,

from which the third bound follows. l

Using these results we see when/ is computed using MGS, so/ satisfies (3.3),
there exists orthonormal 1 such that, writing c cl + c2,

(T^(3.7) A + E 0,1, Q I, IIEII2 <_ cullAII2.
This means if dl _> _> n are the singular values of/, and a >_ >_ an are those
of A,

(3.8) cri I<_ cua, i- 1,..., n.

Thus R from MGS is not only the same as R from the Householder QR factorization
applied to A augmented by a square block of zeros, but (3.7) shows it is compara-
ble in accuracy to the upper triangular matrix from the Householder or Givens QR
factorization applied to A alone. Also (3.8) shows that the singular values of R are
very close to those of A. This means we could use MGS as a first step in finding the
singular values of A, and justifies an algorithm by Longley in [9, Chap. 9]. Since we
have not required A to be full rank as yet in this section, this fact also ensures that
R from MGS can be used in any computation for finding the rank of A. Here we will
just use this knowledge to simplify our bounds below.
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182 /KE BJ(RCK AND CHRIS PAIGE

In fact, / is usually even better than (3.7) suggests. We see/ is nonsingular if
CUal < O’n, that is, if cua < 1, so we make the following assumption and definition,

(3.9) cua < 1, =- (1 -cua)-1,
where usually y 1. Then

(3.10)
and E1 =/511/, so

(3.11)
From (3.6),

(3.12)
showing that the first term on the right will be negligible if rlclua << 1, which is
usually true.

We will show how all of/5 and/5 depend crucially on/311 and/311, respectively, so
the bounds in (3.11) are important in understanding the loss of orthogonality in MGS.
Since R is numerically about as good as we can hope for, it is clear that the main
drawback of MGS is this lack of orthogonality in Q1 (ql,’", q,), so we examine
this in the next two sections. (As is mentioned in 7, another less important drawback
is that the operation count is slightly higher for MGS than for the Householder QR
factorization.)

4. Structure of P,/5, and/3 from the Householder QR factorization of
the augmented matrix. It is well known that the orthogonality of the ideal Q1 is
lost in MGS because of cancellation in the subtractions in (2.2), and that this can
give a severely nonorthogonal computed (1. In order to understand this loss fully
and later to bound it, the following theorem provides the detailed structures of P and
/3 in (3.2) as functions of the computed (1 and the normalized (1 (l,’",q-n),
respectively. Note that the theorem is for general Q1 (ql,’", q), and so will apply
to P, /5, and 15. The idea is that any matrix P P1P2"’" Pn with Pk I- VkV[

T T Tand vk (--ek, qk has a very special structure, and the theorem reveals this. In
this structure the whole matrix is seen to depend only on the leading n n block
Pll of P, and on Q1. But we have bounds on our Pll and Pll in (3.11), and so will
be able to understand and bound the loss of orthogonality in (1 or (1 from MGS.
Furthermore, all such Pll have special structure too, being strictly upper triangular.

THEOREM 4.1. Let Q1 (ql,"’, qn) E Rren, and for k 1,..., n, define

()Mk I--qkq, Vk
--ek E Rm+n Pk I--VkVkqk

Then with the partitioning we use throughout this theorem

(4.1) P P1P2 P, =- n Pll P12
g P:

0 qTlq2 qT1 M2q3
0 0 qqa

0 0 0
0 0 0
ql 2Vlq. Mliqa

qT M2M3". Mn_lqn
qT2 M3M4 Mn- qn

T
qn-lqn

0

M1M2 Mn- qn

T "M,qn-1 n
T

MIM2 Mn
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LOSS AND RECAPTURE OF ORTHOGONALITY 183

(4.2) QI(I- Pll)
(I P)Q"

I Q1 (I P)Q" J
P is orthonormal if and only if Ilqkll2 1 for k 1,..., n; PI 0 if and only if
QQ is diagonal.

There is a short proof that does not give (4.1), but since (4.1) reveals the detailed
structure of P, we give a longer proof. Note that if qk has length 1, then Mk is a
projector, and from (4.1) the second column of P2 is that part of q2 orthogonal to
q; the third is q3 orthogonalized against q2 and the result orthogonalized against q,
and so on. However, this is not the same as reorthogonalizing the qk.

Proof. To determine the first n columns of P PP2... Pn, note that

Pk I- VkV I-
qk --ek

qkek
T Mk

and let 1 <_ j _< n. If j k then Pkej ej, while

(0)Pe= I. ’
SO

( qM2""Mj-lqj ’qT2 M3 M:i- q.i

qLM-lq
q-lqj

0

0

P21 ej P2j

7rlj
7r2j

7j--2,j
-1,

\ P2j

say, which gives the (1, 1) and (2, 1) blocks of (4.1). For the last m columns we have

(4.4)

P2 p 0 nqn
P22 Im P1P2 Pn--1 M,

PIP2""" Pn-2 ( enqTn+en-lqnT-1MnMn-Mn qn-1Mn

MI Mn

which completes the proof of (4.1). Next, from (4.3),

P (I- qq)M:M...M_q
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184 KE BJ(RCK AND CHRIS PAIGE

so P21 QI(I- Pll), giving the (2, 1) block of (4.2). Next, from (4.4),

so P12 (I- Pll)Q, giving the (1, 2) block of (4.2). We can now use the structure
of P21 in (4.1) to give

P22 MiM2... Mn
MiM2"’" Mn-i MiM2"’" Mn-iq,qTn
MiM2"’" Mn-i P2ienqTn

T P21en TMM2... Mn-2 P2en-lqn- qn

p:l

I- P21(elqT T T-f- e2q2 + + enqn)

completing the proof of (4.2).
Clearly Pk is orthonormal if qqk 1, so if Ilqkll2 1 for k 1,..., n, then P

is orthonormal. Now suppose P is orthonormal; then Pe Pel (0, qlT)T must
have length 1, so IIql12 1 and P1 and so P2P3 "Pn is orthonormal. But then
P2P3"" Pne2 P2e2 (0, qT2)T must have length 1, and so on. Finally we see from
(4.1) that the ith row ofP is zero if and only if T

qi qj 0 for j / 1,’", n, proving
PI 0 if and only if QTQ is diagonal.

Since each of P (see (2.6) and (2.7)),/5 and/5 (see (3.2)) has the structure of P,
in the theorem, P has the form (2.8), and

(4.5) /5
l(I -/51)

for some strictly upper triangular Ply, with P having a similar form. This shows
how loses orthogonality when/5 is nonzero. Clearly, P and/5 are orthogonal
matrices, so their first n columns form orthonormal sets. Since Pll is zero, Q is
clearly an m n matrix of orthonormal columns, but all we can say about the size
of/5 is 11/511112 < ciult, from(3.11). If is not very much greater than 1, then
/51 is small, and from (4.5), Q1 has nearly orthonormal columns. For larger ,
(4.5) shows how the columns of can become less and less orthogonal, losing all
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LOSS AND RECAPTURE OF ORTHOGONALITY 185

likelihood of orthogonality when clurn - 1. Clearly column pivoting would be useful
in maintaining orthogonality as long as possible, and in revealing the rank of rank
deficient A. Since Q1 is just Q with normalized columns, the same comments on
orthogonality apply to Q1. We will bound these losses of orthogonality in the next
section, and show how to avoid them after that.

5. Loss of orthogonality in Q1 and (1 from MGS. Each column of ( is
just the correctly normalized column of the computed (1 from MGS, whose columns_
already have norm almost 1, so what we prove for Q1 effectively holds for Q1. We
saw from Theorem 4.1 that the first n columns/5(n) of/5 are orthonormal and

/

so an easy result is obtained by applying Lemma 3.1 with R I, A (1, E1 =/511,
and E2 -(1/511, showing that there exist (1 and E such that (1 + E (1 with

01T01--" I and

But then IIQII2 _< 1 + IIEII2, giving

and a bound on the distance of 1 from an orthogonal matrix when clua < 1,

(5.1)
1 + ClU/a

1 C lt?g

which for clurla << 1 is effectively cluria.
In order to bound the departure of (TQ1 from the unit matrix, we could use

(5.1) directly, but a more revealing result follows by noting in (3.3) that E1 =/511/
is strictly upper triangular, since Pll is so from Theorem 4.1. Thus

so that

(- E1)T(2T (I(- El) T_ ET E
(- E1)T([:I- El) + (- El)TEl + ETI(- El).

Since R is nonsingular upper triangular, and E1 is strictly upper triangular, R- E1
is nonsingular upper triangular, and

0T011 I + EI(/ El) -1 + (/ El, 1,

with EI(/- E1)-1 the strictly upper triangular part of 0T01" This gives a clear
picture of exactly how the loss of orthogonality depends on the computed R. Thus
from (3.3) and (3.8)-(3.10), if (c + cl)ua < 1, we obtain the bound

1-(c+cl)ua’
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186 /KE BJRCK AND CHRIS PAIGE

and a loss of orthogonality of this magnitude can often be observed in practice.
The bound (5.3) is of similar form to the bound (3.1) given in [3], but here we also

derived the relation of (1 to the orthonormal matrix P, and described the relation
between the loss of orthogonality in (1 and the deviation of/5 from the ideal form
of P. We also note here that if the first k columns of A in (3.3) have a small a, then
the first k columns of/11 will be small, and the first k columns of ( will be nearly
orthonormal.

Our main purpose is not to show how ( or ( may be improved. Instead, the
key point of this work is that although the computed/5 is very close to the exactly
orthogonal/5 in (3.3), the columns of ( need not be particularly orthonormal. Our
thesis here is that as a result of this, it is usually inadvisable to use (1 as our set of
orthonormal vectors, but we can use P (as the theoretical product of the computed

-T which is extremely close to ), to make use of the desired orthogonality,P I-v
since we have all the necessary information in Q, that is, vk-T (_ek,T qk=T)" Thus we
can solve problems as accurately using MGS as we can using Householder or Givens
QR factorizations if, instead of using the computed Q directly, we formulate the
problems in terms of (2.5) (see (3.3)) and use the k to define P. Of course, in most
cases no block of P need actually be formed. We illustrate an important use of this
idea in the next section, and discuss the efficiency of such an approach in 7.

6. Backward stable solution of the ASF using MGS. BjSrck [2] showed
that (1.5) is backward stable for the ASF (1.2) using the Householder QR factoriza-
tion, but the same is not true when we use (1.6) with and 1 computed by MGS;
see [5]. Here we use our new knowledge of MGS to produce a backward stable algo-
rithm for the ASF based on Q and from MGS. This new approach can be used to
design good algorithms using MGS in general.

Our original ASF (1.2) is equivalent to the augmented system

(6.1) 0 I A
0 AT 0 y c

so applying Householder transformations as in (2.5) gives the augmented version of
the method (1.5) as

x h y=R- (d-z).

But as we saw in 2, we can use the qk from MGS to produce Pk I--vkv’,
T T pTvk (--ek, q[), and use Pn"" P2P1 in (6.2). We show in [5] that this algorithm

is strongly stable (see [6]) for (6.1), and also strongly stable for (1.2).
We now show how to take advantage of the structure of the Pk; then we will

summarize this numerically stable use of MGS for the ASF. To compute d and h in
(6.2) note that pT Pn"" P1, and define

Now using induction we see d(k) has all but its first k- 1 elements zero, and

d(k+) Thk+l))-- (d(k) h(k))qk h(k) qk(qh(k))
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LOSS AND RECAPTURE OF ORTHOGONALITY 187

giving the computation starting with h(1) b,

for k 1,..., n do{hk := q[h(k); h(k+l) := h(k) qkhk},

so h h(n+l),d d(n+l) ((l,"’,(n)T. This costs 2mn flops (1 flop one
multiplication and one addition in floating point arithmetic), compared with the mn
flops required to form d QTb in (1.6). The computation for d and h is exactly the
same as the one that would arise if the n MGS steps in (2.1)-(2.3) had been applied
to (A, b) instead of just A, so that h is theoretically the component of b orthogonal
to the columns of A. Note that now d has elements q[h(k) instead of T

qk b, as would
be the case in (1.6).

To compute x in (6.2), define

w() z (z)x(k-l) --Pk"’P h Pk x(k)

so that

X(k-l) X(k) qk --’k + uk

Twhich shows that in this step only the kth element of w(k) is changed from k ek z
to 0.)k ’tkr’T’(k)’’ This gives the computation starting with x(n) := h h(n+l)

,T,.(k) 1) x(k)for k n,..., 1 dO{wk :-- /k x(k- qk(Wk k)},

SO X X(0), W ()1,’’’, O)n)T. This costs 2mn flops compared with mn flops for
x b- Ql(d- z) in (1.6). From (2.8) we see in theory (6.2) gives x QlZ + Q2QT2h
where h Q2QT2 b, so x h + Qlz. Note that w (wl,... ,Wn)T is ideally zero (see
(6.1)), but can be significant when a(A) is large. The computation of x here can be
seen to reorthogonalize each x() against the corresponding qk before adding on qkk
to give x(k-l). The complete algorithm is then as follows.

ALGORITHM 6.1. Backward Stable Algorithm for the ASF based on MGS.
1. Carry out MGS on A to give Q1 (ql,’", qn) and R;

2. Solve RTz c for z (1,’", n)T;
3. for k 1,..., n do{hk :-- q’b; b b qkhk};

T4. for k-n,...,1 do{wk:=qkb; b:=b--qk(wk--k)}; x’=b;

5. Solve Ry d- z for y, where d- (51,..’, 5,)T.
A weakness in some other MGS-based algorithms is that the reorthogonalization

in step 4 is not done. This is the case for the two algorithms denoted (3.4) and (3.6)
in [1]. The first is equivalent to (1.6) and the second is the Huang algorithm [8] which,
instead of steps 3 and 4, does (using our notation)

for k 1 ,n do{hk T (hk--k)); Xqk b; b := b qk b.

The following implementation issues and specializations of the algorithm are fairly
obvious. Steps 1, 2, and 3 can be combined, and there is a lot of parallelism inherent
in these. When these are complete, steps 4 and 5 can be carried out independently.
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188 /KE BJRCK AND CHRIS PAIGE

For (1.3), step 5 can be omitted if the vector of Lagrange multipliers y is not needed,
while for (1.4), step 4 can be omitted if the residual x is not needed.

If b 0, corresponding to LUS, then d 0 and step 3 will be omitted, as will
step 5 if the Lagrange multipliers are not needed. If c 0, corresponding to LLS,
then z 0 and step 2 will be omitted, and as will step 4 if the LLS residual x is not
needed. Then the algorithm is equivalent to the following variant of MGS:

where d is computed as part of MGS. This is the approach recommended for LLS in [3].
The work here is another way of proving the backward stability of this approach, and
adds insight into why it works. For LUS, however, the numerically stable algorithm
made of steps 1, 2, and 4 constitutes a new algorithm which is superior to the usual
approach that omits the wk in step 4.

If A is square and nonsingular, (1.3) becomes the solution of ATx , and x is
independent of b, so if y is not wanted, then b can be taken as zero in the algorithm,
and steps 3 and 5 dropped. Similarly, if A is square and nonsingular and c 0, then
(1.4) becomes Ay b and steps 2 and 4 can be dropped. This gives two different
backward stable algorithms for solving nonsingular systems using MGS. Note that the
first algorithm applies MGS to the rows of the matrix (here AT) and is numerically
invariant under row scalings. The second algorithm applies MGS to the columns of
A, and is invariant under column scalings. Hence the first algorithm is to be preferred
if the matrix is badly row scaled, the second if A is badly column scaled.

A square root free version of Algorithm 6.1 is obtained if we instead use the
factorization (2.4) A QR, where R is unit upper triangular.

ALGORITHM 6.2.

R’ and D diag(’l, "n),1. Carry out MGS on A to give Qi (ql,"’, q’), "",

where ")’i ]lq II 22"
2. Solve (R’)TDz’= c for z’= (,..., )T.
3. for k 1,..., n do{5 (q)Tb//k; b := b

4. for k=n,...,1 do{w:=(qk)Tb/k; b:=b-q(w-)}; x:=b;

5. Solve R’y d- z for y, where d’ (51,... 5n)T.

This section has not only shown how MGS can be used in a numerically stable
way to solve the very useful linear system (1.2), along with its many specializations,
but it has hopefully shown how MGS can be used more effectively in general.

7. Comparison of MGS and Householder factorizations. There are four
main approaches we need to compare:

(1) MGS on A producing computed/ and (1, and using these.
(2) MGS on A producing computed/ and (1, and using/ and/5,...,
(3) Householder transformations on

(oo
producing/ and/51,...,/sn and using these.
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LOSS AND RECAPTURE OF ORTHOGONALITY 189

(4) Householder transformations on A producing/ and/51,...,/hn, say, and using
these.

We call these approaches rather than algorithms, since each includes a reduction
algorithm, plus a choice of tools to use in problems that use the reduction. We only
consider the case of a single processor computer, a0nd a dense matrix A.

Approaches (2) and (3) are numerically equivalent, but it is clearly more efficient
for computer storage to use approach (2) via (2.1) and (2.2) than to use (3), even
though we may think in terms of (3) to design algorithms which use the/51,...,/5n
(these, of course, being "stored" as ,..., n). Thus we would use the new approach
(2) rather than (3) computationally, while being aware of both their properties theo-
retically.

The most usual case is where we wish to use the orthogonality computationally,
but cannot rely on a(A) being small. Then the choice is between (2) and (4). For
the initial QR factorization MGS requires mn2 flops compared to mn2 -n3/3 for
Householder. MGS also needs n(n- 1)/2 more storage locations. Hence approach
(4) has an advantage with respect to both storage and operation count for the initial
factorization, although this is small when m >> n.

If accurately orthogonal, Q or Q in (1.1) is required as an entity in itself; then
since such orthogonal matrices are not immediately produced by (2) when ,(A) is
large, the obvious choice is (4), where Q (or Q) is available as the product (or part
of it) of the k. To produce Q doubles the cost using (4). To produce an accurately
orthogonal Q1 with MGS in general, we apparently need to reorthogonalize. This also
approximately doubles the factorization cost, and again the operation count is higher
than for Householder.

For both approaches (2) and (4) we have shown backward stability in the usual
normwise sense. In agreement with this, both these approaches tend to give similar
accuracy, although experience shows that MGS has a small edge here, in particular if
the square root free version is used.

If the matrix A is not well row-scaled, then row interchanges may be needed in (4)
to give accurate solutions for problem LLS; see [10]. In this context it is interesting
to note that MGS is numerically invariant under row permutations of A as long as
inner products are unaltered by the order of accumulation of terms. That is, if Q1
and/ are the computed factors for A, then H( and/ are the computed factors of
HA. This shows that (2) is more stable than (4) without row interchanges. However,
if row interchanges are included in (4), this approach is more accurate for problems
where the row norms of A vary widely. In approach (2) a second-order error term

O((wu)2) appears, where w is the maximum ratio of row norms. This error term
can be eliminated by reorthogonalization, which, however, increases the cost of MGS.

We finally mention that sometimes R is used alone to solve our problems, and
then approaches (1) and (2) are identical. We will discuss this case in [5].
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