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Abstract The three-term conjugate gradient methods solving large-scale optimiza-
tion problems are favored by many researchers because of their nice descent and
convergent properties. In this paper, we extend some new conjugate gradient methods,
and construct some three-term conjugate gradient methods. An remarkable property
of the proposed methods is that the search direction always satisfies the sufficient
descent condition without any line search. Under the standard Wolfe line search, the
global convergence properties of the proposed methods are proved merely by assum-
ing that the objective function is Lipschitz continuous. Preliminary numerical results
and comparisons show that the proposed methods are efficient and promising.

Keywords Unconstrained optimization problem · Three-term conjugate gradient
method · Sufficient descent property · Global convergence

Mathematics Subject Classification 90C30 · 65K05

This research is funded by Chongqing Research Program of Basic Research and Frontier Technology
(Grant No.: cstc2017jcyjAX0318), the fund of Scientific and Technological Research Program of
Chongqing Municipal Education Commission (Grant Nos.: KJ1710251, KJ1501003), Program for
Innovation Team Building at Institutions of Higher Education in Chongqing (Grant number:
CXTDX201601035) and Project Supported by Chongqing Municipal Key Laboratory of Institutions of
Higher Education (Grant No. [2017]3).

B J. K. Liu
liujinkui2006@126.com

1 School of Mathematics and Statistics, Chongqing Three Gorges University,
Chongqing 404100, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10092-018-0258-3&domain=pdf


16 Page 2 of 16 J. K. Liu et al.

1 Introduction

In this paper, we consider the large-scale unconstrained optimization problem

min f (x), x ∈ Rn

where f : Rn → R is continuously differentiable. The gradient-type iterative methods
are usually used to solve this problem by generating an iterative sequence {xk}, using
the following formula

xk+1 = xk + αkdk, (1.1)

for k ≥ 0, where x0 is the initial point, αk > 0 is the step-length and dk is the search
direction.

The conjugate gradient method is one of the most effective gradient-type iterative
methods for solving large-scale unconstrained optimization problems, and its direction
is defined as

dk =
{−gk, i f k = 0,

−gk + βkdk−1, i f k ≥ 1.
(1.2)

where gk denotes the gradient g(xk) of f at point xk , and βk is the conjugate gradi-
ent update parameter. Different conjugate gradient methods correspond to different
choices for the update parameter βk . Well-known update parameters βk have the
Hestenes–Stiefel (HS) [1], the Fletcher–Reeves (FR) [2], the Polak–Ribière–Polyak
(PRP) [3,4], the Conjugate Descent (CD) [5], the Liu-Storey [6], and the Dai–Yuan
(DY) [7], given respectively by

βHS
k = gTk yk−1

dTk−1yk−1
, βFR

k = ||gk ||2
||gk−1||2 , βPRP

k = gTk yk−1

||gk−1||2 ,

βCD
k = ||gk ||2

− dTk−1gk−1
, βLS

k = gTk yk−1

− dTk−1gk−1
, βDY

k = ||gk ||2
dTk−1yk−1

,

where yk−1 = gk−gk−1 and ||·|| denotes the Euclidean norm. If f is a strongly convex
quadratic function,then in theory, the above update parameters are equivalent under the
exact line search. For non-quadratic functions, each choice for update parameter leads
to different performance. When the algorithm moves an extremely small step-length
along the search direction dk−1, i.e., xk ≈ xk−1, this implies yk−1 ≈ 0 . In this case,
PRP, HS and LS methods essentially perform a restart. This property makes these
methods generate effective numerical results for large-scale optimization problems.
However, their global convergence is not still proven under some inexact line searches
(e.g., Wolfe-type line search). One of the main reason is that the search direction dk
is not descent for general objective functions with some inexact line searches. But,
in practice, it generally requires too many evaluations of the objective function f
and possibly the gradient ∇ f to generate a step-length in per-iteration by using the
exact line search. More practical strategies perform an inexact line search to identify
a step-length that archives adequate reductions in f at minimal cost.
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Recently, Rivaie et al. [8] proposed a new-type conjugate gradient update parameter,
i.e.,

βRMI L
k = gTk yk−1

||dk−1||2 , (1.3)

which is similar with βPRP
k . It is clear that the corresponding RMIL method has the

restart property. Unfortunately, the authors only proved its sufficient descent property
and global convergence under the exact line search. Subsequently, Rivaie et al. [9]
modified βRMI L

k as:

βMRMI L
k = gTk (gk − gk−1 − dk−1)

||dk−1||2 . (1.4)

It is not difficult to find that βMRMI L
k reduces to βRMI L

k if the exact line search is used.
They analyzed and discussed the sufficient decent property and global convergence of
the MRMIL method under the strong Wolfe line search.

In recent years, some people are particularly interested in the three-term conjugate
gradient methods. Based on the three-term form of the L-BFGS method [10], Zhang
et al. [11] proposed a three-term PRP conjugate gradient (TTPRP) method, i.e.,

d0 = −g0, dk = −gk + βPRP
k + θk−1yk−1,

where θk = − gTk dk−1

||gk−1||2 . An attractive feature of the TTPRP method is that

dTk gk = −||gk ||2, ∀k ≥ 0, (1.5)

holds without any line search. Under suitable conditions, this method is globally
convergent when a modified Armijo line search is used. Subsequently, Zhang et al. [12]
proposed a three-term HS conjugate gradient (TTHS) method, that is,

dk =
{− gk, i f sTk−1yk−1 < ε1||gk−1||r sTk−1sk−1,

− gk + βHS
k dk−1 + θk−1yk−1, otherwise

where θk−1 = − gTk dk−1

dTk−1yk−1
, sk−1 = xk − xk−1, r ≥ 0, ε1 > 0. It is not difficult to prove

that the search direction dk also satisfies (1.5) independent of any line search. They
proved the global convergence of the TTHS method under the standard Wolfe line
search. Narushima et al. [13] constructed a family of three-term conjugate gradient
methods, defined by

dk =
{− gk, i f k = 0 or gTk pk = 0,

− gk + βk(gTk pk)†[(gTk pk)dk−1 − (gTk dk−1)pk], otherwise

where pk is a parameter vector. This is a general three-term conjugate gradient method
which also always satisfies (1.5). The TTPRP and TTHS methods are the special cases
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of the above method. Interested readers may refer to more references about three-term
conjugate gradient methods (Refs. [14–20]).

In this paper we are particularly interested in the structure of the TTPRP method
[11]. We extend the RMIL method and the MRMIL method to establish two three-
term conjugate gradient methods, which reduce to the RMIL method if the exact line
search is implemented. An attractive feature of the proposed methods is that the search
direction dk always satisfies the sufficient descent condition, which is independent of
any line search. Moreover, the global convergence properties of the proposed methods
are established under the standard Wolfe line search.

The remainder of this paper is organized as follows. In Sect. 2 we propose the spe-
cific algorithm, and give some properties. In Sect. 3 we prove the global convergence
of the proposed methods under suitable conditions, and the linear convergence rate is
proved in Sect. 4. Finally, we provide numerical experiments to show their practical
performance in Sect. 5.

2 Algorithm

In this section we describe the three-term RMIL and MRMIL methods whose form
are similar to that of [11], but with different βk and θk . The search direction dk can be
expressed as:

d0 = −g0, dk = −gk + βkdk−1 + θk yk−1, (2.1)

where βk is specified by (1.3) or (1.4), and

θk = − gTk dk−1

||dk−1||2 . (2.2)

It follows from (1.3) and (2.1), (2.2) that (1.5) holds for any k ≥ 0, which is independent
of any line search. On the other hand, from (1.4) and (2.1), (2.2) we have

dTk gk = −||gk ||2 + gTk yk−1 · gTk dk−1 − (gTk dk−1)
2

||dk−1||2 − gTk yk−1 · gTk dk−1

||dk−1||2

= −||gk ||2 − (gTk dk−1)
2

||dk−1||2 ≤ −||gk ||2.

Thus, the search direction dk generated by the proposed methods always satisfies the
sufficient descent condition ,i.e.,

gTk dk ≤ −c||gk ||2, ∀k ≥ 0, (2.3)

where c = 1. It is not difficult to find that the proposed methods reduce to the standard
RMIL method if the exact line search is used. In order to prove the global convergence
of the proposed methods, in this paper we consider that at the kth iteration the standard
Wolfe line search is executed, that is the step-length αk satisfying
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f (xk + αkdk) − f (xk) ≤ ραkg
T
k dk, (2.4)

gTk+1dk ≥ σgTk dk, (2.5)

where 0 < ρ < σ < 1.
In the following, we describe the proposed three-term methods which we denote

as TTRMIL method and TTMRMIL method, respectively.

Algorithm 2.1

Step 0: Set ρ ∈ (0, 1), σ ∈ (ρ, 1) and ε > 0, and give the initial point x0 ∈ Rn.
Set k := 0.

Step 1: If ||gk || ≤ ε, stop.

Step 2: Determine αk by (2.4) and (2.5), set xk+1 = xk + αkdk .

Step 3: Compute βk+1 by (1.3) or (1.4), and obtain θk+1 by (2.2).

Step 4: Compute dk+1 by (2.1).

Step 5: Set k := k + 1, go to step 1.

Remark 2.1 From the previous analysis, in the proposed methods the search direction
dk satisfying (2.3) is a sufficient descent direction of f at point xk . In addition, it
follows from (2.3) that

||dk || ≥ ||gk ||, ∀k ≥ 0. (2.6)

This implies that the denominators of βRMI L
k , βMRMI L

k and θk are always greater than
zero when ||gk || = 0 is not achieved. Thus, the proposed methods are well defined.

3 Convergence analysis

In this section we need the following assumptions to analyze and prove the global
convergence of the proposed methods.

Assumption 3.1 The level set � = {x ∈ Rn| f (x) ≤ f (x0)} is bounded, i.e., there
exists positive constant B > 0 such that ||x || ≤ B for all x ∈ �.

Assumption 3.2 In some neighborhood C of �, f is continuously differentiable and
its gradient g is Lipschitz continuous, i.e., there exists a constant L > 0 such that

||g(x) − g(y)|| ≤ L||x − y||, ∀x, y ∈ C. (3.1)

From (2.3) and (2.4), it is not difficult to find that the sequence { f (xk)} is decreas-
ing. Thus, the sequence {xk} generated by the proposed methods is contained in �.
Moreover, Assumptions 3.1 and 3.2 imply that there exists a constant γ > 0 such that

||gk || ≤ γ, ∀x ∈ �. (3.2)
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In the latter part of the paper, without specification, we always suppose that Assump-
tions 3.1 and 3.2 hold. At the same time we always assume that gk 	= 0 holds for any
k ≥ 0. Although the search direction dk generated by the proposed methods always
satisfies (2.3), to prove the global convergence we need to constrain the choice of the
step-length αk . The following lemma shows that the standard Wolfe line search always
gives a lower bound for the step-length αk .

Lemma 3.1 Let the sequences {gk} and {dk} be generated by the proposed methods,
then we have

αk ≥ (1 − σ)||gk ||2
L||dk ||2 . (3.3)

Proof From (2.5) we have

(σ − 1)gTk dk ≤ (gk+1 − gk)
T dk ≤ ||gk+1 − gk || · ||dk || ≤ αk L||dk ||2,

where the second inequality follows from Cauchy–Schwarz inequality, and the third
inequality follows from (3.1). Since dk satisfies (2.3) and σ < 1, it is clear that (3.3)
holds.

To prove the global convergence of conjugate gradient methods, the Zoutendijk
condition is usually used, which is first given by Wolfe [21] and Zoutendijk [22] with
the standard Wolfe line search, respectively. The following lemma proves that for
the proposed methods another form of the Zoutendijk condition also holds under the
standard Wolfe line search. 
�
Lemma 3.2 Let the sequences {gk} and {dk} be generated by the proposed methods,
αk is computed by the standard Wolfe line search, then we have

∞∑
k=0

||gk ||4
||dk ||2 < +∞. (3.4)

Proof From (2.4) we have

f (xk) − f (xk+1) ≥ −ραkg
T
k dk ≥ ραk ||gk ||2 ≥ ρ(1 − σ)||gk ||4

L||dk ||2 ,

where the second inequality follows from (2.3), and the third inequality follows from
(3.3). Therefore, it follows from Assumption 3.1 that we obtain (3.4).

As we know that the iteration of conjugate gradient methods may be fail, in the sense
that ||gk || ≥ λ for all k ≥ 0, only if ||dk || → ∞ sufficiently rapidly. In other words,
the sequence {||gk ||} can be bounded away from zero only if

∑∞
k=0

1
||dk || < +∞. In

the following we proved a convergent result of the proposed methods with the standard
Wolfe line search.

Theorem 3.1 Let the sequences {gk} and {dk} be generated by the proposed methods,
we have

lim
k→∞ inf ||gk || = 0. (3.5)
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Proof Suppose that (3.5) does not hold, i.e., there exists a constant r > 0 such that

||gk || > r, ∀k ≥ 0. (3.6)

On the basis of the proposed two three-term conjugate gradient direction in the
TTRMIL and TTMRMIL methods, the rest of the proof can be divided into two
following cases:

Case 1 (TTRMIL) From (1.3) and (2.1), (2.2) we have

||dk || ≤ ||gk || + |βRMI L
k | · ||dk−1|| + |θk | · ||yk−1||

≤ ||gk || + ||gk || · ||yk−1||
||dk−1||2 · ||dk−1|| + ||gk || · ||dk−1||

||dk−1||2 · ||yk−1||

≤ ||gk || + 2
L||gk || · ||xk − xk−1||

||gk−1||
≤ ||gk || + 2L||gk || · (||xk || + ||xk−1||)

||gk−1||
≤ γ + 4Lγ B

r
� ϑ,

where the second inequality follows from Cauchy-Schwarz inequality, the third
inequality follows from (2.6) and (3.1), the fourth inequality follows from Trigonomet-
ric inequality, and the final inequality follows from (3.2), (3.6) and Assumption 3.1.

Case 2 (TTMRMIL) From (1.4), it is easy to obtain that

|βMRMI L
k | ≤ |βRMI L

k | + |gTk dk−1|
||dk−1||2 ≤ |βRMI L

k | + ||gk ||
||dk−1|| , (3.7)

where the second inequality obtains by Cauchy–Schwarz inequality.
Similar to what state in Case 1, for all k ≥ 0, from (1.4) and (2.1), (2.2) we have

||dk || ≤ ||gk || + |βMRMI L
k | · ||dk−1|| + |θk | · ||yk−1||

≤ 2||gk || + |βRMI L
k | · ||dk−1|| + |θk | · ||yk−1||

≤ 2γ + 4Lγ B

r
= (γ + ϑ),

where the second inequality obtains from(3.7), and the third inequality can be referred
to the proof of Case 1. 
�

In summary, the sequence {||dk ||} generated by the proposed methods has a common
upper bound, i.e.

||dk || ≤ M, ∀k ≥ 0, (3.8)
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where M = γ + ϑ . Moreover, by using (3.6) and (3.8), it is clear that

∞∑
k=0

||gk ||4
||dk ||2 ≥

∞∑
k=0

r4

M2 = +∞, (3.9)

which contradicts with (3.4). Thus, the result (3.5) holds.

4 Convergence rate

In this section we turn to prove the convergence rate of the proposed methods. The
following assumption is also needed.

Assumption 4.1 Suppose that f : Rn → R is twice continuously differentiable, and
that the sequence {xk} generated by the proposed methods converges to x∗ at which
∇ f (x∗) = 0 and the Hessian matrix ∇2 f (x∗) is positive definite.

From Assumption 4.1, there exists the neighborhood of x∗ and constants M � m > 0
such that

m||p||2 ≤ pT∇2 f (x)p ≤ M ||p||2,∀x ∈ U (x∗), p ∈ Rn . (4.1)

By using Taylor Theorem and (4.1), it is easy to obtain that

1

2
m||x − x∗||2 ≤ f (x) − f (x∗) ≤ 1

2
M ||x − x∗||2, (4.2)

m||x − x∗|| ≤ ||g(x)|| ≤ M ||x − x∗||. (4.3)

Theorem 4.1 Suppose that Assumptions 3.1, 3.2 and 4.1 hold, and that the sequence
{xk} generated by the proposed methods converges to the unique solution x∗. Then,
for the sufficient large k there exists a constant a > 0 such that

||xk − x∗|| ≤ aδk, (4.4)

where δ ∈ (0, 1).

Proof From the proof of Theorem 3.1, for the proposed methods we always have

||dk || ≤ 2||gk || + 2L||gk || · ||xk − xk−1||
||gk−1|| ≤

(
2 + 4LB

||gk−1||
)

||gk ||, (4.5)

where the final inequality follows from Assumption 3.1. Then from (2.3) to (2.4) we
have

f (xk+1) − f (x∗) ≤ f (xk) − f (x∗) − ραk ||gk ||2

≤ f (xk) − f (x∗) − ρ(1 − σ)||gk ||4
L||dk ||2

≤ f (xk) − f (x∗) − tk ||gk ||2
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≤ f (xk) − f (x∗) − tkm
2||xk − x∗||2

≤ f (xk) − f (x∗) − 2tkm2

M
( f (xk) − f (x∗))

= δ2( f (xk) − f (x∗)),

where the second inequalities obtains from (3.3), the third inequalities uses (4.5)
in which tk = ρ(1−σ)

L
(

2+ 4LB
||gk−1||

)2 , the fourth inequality follows from (4.3), the the fifth

inequality follows from (4.2) where δ2 = 1 − 2tkm2

M .
From L > 0 and 0 < ρ < σ < 1, we have tk > 0. Since M � m, we always find

appropriate M and m such that δ2 ∈ (0, 1). Therefore, δ ∈ (0, 1) is defined well.
From the previous inequality, we have

f (xk) − f (x∗) ≤ δ2( f (xk−1) − f (x∗)) ≤ · · · ≤ δ2k( f (x0) − f (x∗)).

This inequality together with (4.2) obtains that

||xk − x∗||2 ≤ 2

m
( f (xk) − f (x∗)) ≤ 2

m
δ2k( f (x0) − f (x∗)),

then we have

||xk − x∗|| ≤ aδk,

where a =
√

2( f (x0)− f (x∗))√
m

. This implies that the proposed methods are linear conver-
gent. 
�

5 Preliminary numerical experiments

To give some insight into the behavior of the proposed methods, we compared
their performances with those of TTPRP method [11] and MRMIL method [9].
The executed methods are coded in Fortran and compiled with f77 (default com-
piler settings) on a personal computer with Intel Core (TM) CPU 2.60 GHZ and
2.0 G memory. We selected a number of 27 large-scale unconstrained optimization
problems in generalized or extended form from the Refs. [23] and [24]. For each
problem we have taken five numerical experiments with the number of variables as
n = 1000, 6000, 11,000, 15,000, 20,000. The executed methods implements the stan-
dard Wolfe line search with ρ = 10−4 and σ = 0.8. For the terminating the executions,
we used the same criterion ||gk ||∞ ≤ 10−6, or the number of iteration exceeds 10,000,
where || · ||∞ denotes the maximum absolute component of a vector. In addition, we
also apply the same choice of αk , i.e.

αk =
{

1, k = 0,

αk−1
||dk−1||
||dk || , k ≥ 1.
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Table 1 The numerical results obtained by the executed methods

No. Dim TTRMIL TTMRMIL TTPRP MRMIL

Trigonometric 1000 30/0.03 32/0.03 31/0.03 31/0.02

6000 33/0.19 34/0.19 33/0.17 33/0.17

11,000 31/0.29 32/0.30 31/0.30 32/0.30

15,000 34/0.43 35/0.46 34/0.43 37/0.56

20,000 38/0.71 40/0.72 38/0.71 39/0.65

Extended Rosenbrock 1000 37/0.02 35/0.01 38/0.01 35/0.01

6000 35/0.01 37/0.03 38/0.03 34/0.02

11,000 37/0.05 39/0.05 40/0.07 39/0.06

15,000 37/0.07 35/0.06 38/0.07 34/0.1

20,000 37/0.1 36/0.11 38/0.11 36/0.09

Extended White 1000 34/0.01 35/0.02 33/0.01 35/0.01

6000 35/0.03 37/0.03 33/0.04 35/0.03

11,000 35/0.05 37/0.04 33/0.08 35/0.07

15,000 35/0.08 37/0.08 33/0.08 36/0.08

20,000 35/0.09 37/0.11 36/0.11 37/0.11

Extended Beale 1000 12/0.01 13/0.01 12/0.01 13/0.01

6000 14/0.02 12/0.02 14/0.02 12/0.01

11,000 12/0.01 12/0.01 12/0.01 12/0.02

15,000 12/0.03 12/0.03 12/0.03 12/0.01

20,000 12/0.03 13/0.04 12/0.03 12/0.03

Penalty 1000 10/0.01 10/0.01 10/0.01 10/0.01

6000 10/0.02 18/0.01 10/0.01 10/0.01

11,000 10/0.01 16/0.02 10/0.01 10/0.01

15,000 11/0.03 36/0.12 11/0.04 10/0.02

20,000 13/0.03 34/0.28 9/0.03 9/0.03

Generalized Tridiagonal 1 1000 29/0.02 23/0.01 25/0.02 65/0.03

6000 25/0.03 24/0.03 23/0.01 61/0.19

11,000 117/0.78 84/0.53 158/1.17 26/0.05

15,000 31/0.09 77/0.64 23/0.08 142/1.39

20,000 60/0.61 25/0.09 104/1.24 64/0.68

Extended Tridiagonal 1 1000 12/0.01 11/0.01 12/0.01 11/0.01

6000 10/0.02 13/0.02 10/0.01 10/0.01

11,000 10/0.01 11/0.01 10/0.02 10/0.02

15,000 10/0.03 11/0.04 10/0.03 10/0.02

20,000 10/0.03 11/0.01 10/0.01 9/0.01

Extended Three Expo Terms 1000 10/0.01 13/0.02 10/0.01 10/0.01

6000 7/0.03 8/0.05 13/0.08 10/0.08

11,000 8/0.11 9/0.14 8/0.11 9/0.11

15,000 8/0.14 7/0.11 8/0.14 10/0.22

20,000 7/0.22 8/0.2 7/0.17 16/0.35
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Table 2 The numerical results by the executed methods

No. Dim TTRMIL TTMRMIL TTPRP MRMIL

Generalized Tridiagonal 2 1000 68/0.01 63/0.01 64/0.01 72/0.01

6000 75/0.07 71/0.07 59/0.05 72/0.08

11,000 73/0.13 70/0.11 74/0.11 65/0.11

15,000 61/0.16 70/0.16 65/0.15 54/0.12

20,000 69/0.22 72/0.21 58/0.17 58/0.19

Generalized PSC1 1000 150/0.10 275/0.19 215/0.14 318/0.19

6000 618/2.22 642/2.56 1271/3.90 593/2.34

11,000 806/5.40 1108/6.92 762/4.49 787/4.14

15,000 304/0.62 523/1.54 265/0.73 1707/12.39

20,000 624/6.85 593/9.49 888/8.89 1042/9.61

Extended Powell 1000 49/0.02 45/0.01 53/0.01 249/0.03

6000 67/0.09 65/0.06 70/0.05 1858/1.20

11,000 69/0.0 5 92/0.08 61/0.08 120/0.17

15,000 55/0.14 58/0.18 69/0.11 148/0.25

20,000 71/0.19 99/0.24 75/0.17 135/0.33

Extended BD1 1000 52/0.02 47/0.02 52/0.01 52/0.01

6000 55/0.11 55/0.11 55/0.11 55/0.11

11,000 55/0.17 55/0.19 55/0.19 55/0.19

15,000 54/0.36 54/0.25 54/0.25 54/0.25

20,000 39/0.25 26/0.19 39/0.27 38/0.27

Extended Maratos 1000 68/0.01 68/0.01 66/0.02 76/0.02

6000 69/0.05 69/0.06 65/0.04 Inf/Inf

11,000 65/0.09 68/0.09 68/0.11 Inf/Inf

15,000 66/0.12 69/0.12 66/0.12 Inf/Inf

20,000 73/0.17 76/0.18 63/0.14 Inf/Inf

Extended Cliff 1000 28/0.02 26/0.02 19/0.01 9/0.02

6000 13/0.06 12/0.06 9/0.05 Inf/Inf

11,000 14/0.11 14/0.11 10/0.08 Inf/Inf

15,000 13/0.16 14/0.14 11/0.11 Inf/Inf

20,000 10/0.15 13/0.21 10/0.15 Inf/Inf

Quadratic Diagonal Perturbed 1000 167/0.03 244/0.05 169/0.03 299/0.03

6000 459/0.69 677/0.54 405/0.31 687/0.55

11,000 482/1.91 1024/1.52 514/0.74 959/1.41

In Tables 1, 2, 3 and 4 we report the numerical results obtained by using the executed
methods to solve each test problem with different dimension sizes. The detailed results
are presented in the form ’Niter/Time’, where ’Niter’ denotes the number of iterations,
and ’Time’ denotes the CPU time. If the number of iteration exceeds 10,000 before
the algorithm terminates, we denote ’Niter/Time’ as ’Inf/Inf’.
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Table 3 The numerical results by the executed methods

No. Dim TTRMIL TTMRMIL TTPRP MRMIL

15,000 470/0.97 527/1.12 654/1.25 1413/2.8

20,000 935/2.16 627/2.42 1000/2.6 1678/4.48

Extended Hiebert 1000 84/0.01 83/0.02 84/0.01 87/0.01

6000 82/0.06 80/0.06 84/0.06 88/0.06

11,000 83/0.15 85/0.12 83/0.11 87/0.11

15,000 82/0.16 82/0.16 82/0.15 89/0.16

20,000 80/0.2 86/0.22 83/0.21 83/0.21

Extended Quadratic Penalty QP1 1000 8/0.01 5460/3.16 3578/2.07 3904/2.24

6000 45/0.13 30/0.07 Inf/Inf 5782/4.65

11,000 6/0.01 6/0.02 6/0.01 6784/10.78

15,000 20/0.11 Inf/Inf 11/0.04 8182/71.97

20,000 6/0.03 Inf/Inf Inf/Inf Inf/Inf

Extended Tridiagonal 2 1000 104/0.06 36/0.04 85/0.07 36/0.01

6000 66/0.18 96/0.33 139/0.56 106/0.34

11,000 350/2.26 339/2.63 304/2.31 510/3.84

15,000 597/6.87 607/6.44 565/5.89 235/2.31

20,000 393/5.52 863/12.37 318/4.32 329/4.47

SINCOS 1000 40/0.01 41/0.01 33/0.01 32/0.01

6000 40/0.03 38/0.03 32/0.01 43/0.03

11,000 38/0.07 35/0.04 31/0.03 37/0.06

15,000 40/0.08 35/0.08 32/0.06 40/0.08

20,000 38/0.09 35/0.1 36/0.1 37/0.1

ARGLINB (CUTE) 1000 29/0.01 27/0.01 27/0.01 28/0.01

6000 79/0.17 171/0.56 44/0.03 162/0.90

11,000 48/0.06 65/0.07 54/0.07 130/0.85

15,000 46/0.09 127/0.93 86/0.62 53/0.19

20,000 217/2.58 194/2.38 202/2.4 215/2.53

In this section, we use the performance profiles of Dolan and Moré [25] to evaluate
and compare the performances of the set of methods S on the set of test problems
P , i.e., for ns methods and ns problems, the performance profile χ : R → [0, 1] is
defined as follows: for each p ∈ P and for each s ∈ S, they defined tp,s=computing
time (similarly for the number of iterations) required to solve problems p by method s.
The performance ratio is obtained by γp,s = tp,s/ mins∈S tp,s . Then the performance
profile is defined as χs(τ ) = 1

n p
si ze{p ∈ P|log2(γp,s) ≤ τ }, where τ > 0 and si zeA

denotes the number of the elements in the set A. The function χs is the distribution
function for the performance ratio, and for a method χs is a nondecreasing, piecewise
constant function, continuous from the right at each breakpoint. In addition, it is not
difficult to find that χ(τ) is the probability for method s ∈ S such that log2(γp,s) is
within a factor τ > 0 of the best possible ratio. This means that a method with high
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Table 4 The numerical results by the executed methods

No. Dim TTRMIL TTMRMIL TTPRP MRMIL

NONDIA (CUTE) 1000 9/0.01 12/0.02 11/0.01 11/0.01

6000 7/0.02 7/0.01 7/0.01 7/0.02

11,000 7/0.01 7/0.01 7/0.01 7/0.01

15,000 7/0.01 7/0.01 7/0.01 7/0.02

20,000 10/0.03 7/0.02 7/0.02 7/0.01

DQDRTIC (CUTE) 1000 26/0.01 27/0.01 11/0.01 26/0.01

6000 27/0.02 30/0.03 15/0.02 27/0.01

11,000 31/0.05 31/0.03 10/0.02 31/0.03

15,000 41/0.07 41/0.07 11/0.02 41/0.08

20,000 20/0.05 20/0.05 11/0.03 21/0.05

Broyden Tridiagonal 1000 36/0.01 38/0.02 41/0.02 35/0.01

6000 53/0.09 62/0.09 74/0.06 112/0.10

11,000 51/0.1 52/0.1 62/0.09 105/0.15

15,000 59/0.15 53/0.11 67/0.14 112/0.23

20,000 50/0.14 116/0.35 52/0.14 128/0.38

EDENSCH (CUTE) 1000 158/0.12 88/0.06 86/0.07 31/0.01

6000 88/0.36 150/0.72 54/0.17 74/0.29

11,000 62/0.43 117/0.95 152/1.36 119/1.03

15,000 56/0.44 98/0.10 96/0.01 79/0.75

20,000 68/0.81 170/2.84 171/2.77 139/2.28

STAIRCASE S1 1000 17/0.01 20/0.01 18/0.01 21/0.01

6000 14/0.02 17/0.02 15/0.01 23/0.03

11,000 24/0.06 20/0.04 24/0.05 17/0.03

15,000 17/0.03 19/0.05 15/0.04 21/0.06

20,000 20/0.06 18/0.04 22/0.08 19/0.06

DIXON3DQ (CUTE) 1000 255/0.17 170/0.09 325/0.33 74/0.03

6000 222/0.90 915/4.81 157/0.84 67/0.22

11,000 827/6.57 508/3.91 644/5.53 305/2.20

15,000 820/8.5 330/3.38 1001/10.41 645/6.76

20,000 636/8.64 591/8.15 623/5.78 714/10.07

DENSCHNF (CUTE) 1000 132/0.11 172/0.16 169/0.12 Inf/Inf

6000 243/1.06 311/1.88 283/1.13 1021/3.90

11,000 735/6.12 771/6.59 688/5.17 Inf/Inf

15,000 801/8.02 957/10.99 678/6.82 535/5.36

20,000 567/7.7 793/11.01 599/8.15 875/12.06

123



16 Page 14 of 16 J. K. Liu et al.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

χ S
( τ
)

TTRMIL
TTMRMIL
TTPRP
MRMIL

Fig. 1 Performance profiles of the executed methods with respect to the number of iterations
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Fig. 2 Performance profiles of the executed methods with respect to CPU time

value of χs(τ ) is preferable or represent the best method when τ takes certain value.
Figures 1 and 2, obtained by using n p = 135, show the performances of the executed
methods for the CPU time and the number of iterations.
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From Tables 1, 2, 3 and 4, the TTRMIL method can solve all of the given test
problems, the TTMRMIL method fails for Extended Quadratic Penalty QP1 with
n = 15,000, 20,000, the TTPRP method does not solve Extended Quadratic Penalty
QP1 with n = 6000, 20,000, and the RMIL method has more failures for the given
problems. In this perspective, the TTRMIL method has the best performance. From the
aspect of computing speed, Figs. 1 and 2 illustrates that the TTPRP method performs
best, and the TTMRIL method is comparable with the TTPRP method. TTRMIL
method is more effective than the TTMRMIL method. This may be that the TTRMIL
method retains the restart property. Since the TTMRMIL method can generate the
sufficient descent at each iteration, it performs better than the RMIL method.
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