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Abstract

Low-rank matrix completion is the problem where one tries to recover a low-rank matrix from
noisy observations of a subset of its entries. In this paper, we propose RMC, a new method
to deal with the problem of robust low-rank matrix completion, i.e., matrix completion where
a fraction of the observed entries are corrupted by non-Gaussian noise, typically outliers. The
method relies on the idea of smoothing the `1 norm and using Riemannian optimization to deal
with the low-rank constraint. We first state the algorithms as the successive minimization of
smooth approximations of the `1 norm and we analyze its convergence by showing the strict
decrease of the objective function. We then perform numerical experiments on synthetic data
and demonstrate the effectiveness on the proposed method on the Netflix dataset.

Keywords Low-Rank Matrix Completion, Riemannian optimization, outliers, smooth-
ing techniques, `1 norm, non-smooth, fixed-rank manifold.

1 Introduction

The problem of low-rank matrix completion has drawn significant interest in the past
decade. It can be used as a building block for recommender systems, where one wants
to predict users ratings based on partial ratings using collaborative filtering (Bennett
& Lanning, 2007), in reconstructing 3D path of particles from only partial observation
using a fixed camera (Kennedy et al., 2014), in sensor network localization (Drineas et al.,
2006; So & Ye, 2007; Oh et al., 2010) or image inpainting where low-rank completion is
used as a way to reconstruct a damaged image (Peng et al., 2012).
∗ This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control,

and Optimization), funded by the Interuniversity Attraction Poles Programme initiated by the Belgian
Science Policy Office. P.-A. Absil’s work was supported by “Communauté française de Belgique - Actions
de Recherche Concertées” and by FNRS under grant PDR T.0173.13.
†Institute for Computational & Mathematical Engineering, Stanford University, Stanford, CA-94305,

USA. lcambier@stanford.edu
‡ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, B-1348, Belgium. http:

//sites.uclouvain.be/absil/

1

lcambier@stanford.edu
http://sites.uclouvain.be/absil/
http://sites.uclouvain.be/absil/


1 Introduction 2

Low-Rank Matrix Completion consists of recovering a low-rank matrix of size m × n
from only a fraction (typically O(r(m + n)) or O(r(m + n) log(m + n))) of its entries.
Denoting by Ω the set of observed entries, the problem can be stated as

min
X∈Rm×n

rank(X)

subject to PΩ(X) = PΩ(M)
(1)

where PΩ : Rm×n → Rm×nΩ : X → PΩX is the orthogonal projector onto the space
Rm×nΩ of m × n matrices with zero-entries on Ω̄ = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n}\Ω:
PΩ(X)ij = Xij if (i, j) ∈ Ω and 0 otherwise. Finally, M is the matrix containing the
known entries (with values known only on Ω). This problem, however, is now well known
to be NP-hard (Chistov & Grigor’ev, 1984).

Candès & Recht (2009) stated the problem as

min
X∈Rm×n

‖X‖∗

subject to PΩ(X) = PΩ(M)

where ‖ · ‖∗ is the nuclear norm ‖X‖∗ =
∑min(m,n)
k=1 σk(X) with σk(X) the kth singular

value of X. The authors proved that in the context of exact low-rank matrix completion,
this formulation recovers the original underlying matrix under some mild assumptions.

Another way to approach low-rank matrix completion is the following. Assume the rank
r of the target matrix is known in advance (which does make sense in a lot of applications
like in computer vision, where the rank is often related to the dimension of the space.).
In this case, the problem can be stated as

min
X∈Mr

‖PΩ(X −M)‖`2 , (2)

where
Mr = {X ∈ Rm×n : rank(X) = r}

and where ‖ · ‖`2 = ‖ · ‖F is the `2 or Frobenius norm1. Intuitively, this problem seeks
the matrix X of rank r that best fits the given data. The main advantage is that it is
robust to Gaussian additive noise, in a sense that a small Gaussian additive noise still
allows recovery of the underlying low-rank matrix with an error proportional to the noise
level (Keshavan et al., 2009). This problem and other similar formulations have been
addressed by different authors.

Vandereycken (2013) takes advantage of the fact that Mr is a smooth Riemannian
manifold to apply recent optimization algorithms (Absil et al., 2008) to efficiently solve
the problem. Our method will use the exact same tools.

1 In this paper, we use the notation ‖ · ‖`2 for the Frobenius norm to emphasize the difference with
the `1 norm, ‖ · ‖`1 .
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Fig. 1: The error between the recovered matrix and the original one when minimizing
the `2 norm, as a function of x. We can clearly observe that when using an `2
loss function, even a small perturbation on a single entry of the matrix can lead
to a large error with respect to the original matrix.

All formulations that rely on the Frobenius norm as in (2) suffer from one drawback: even
though they are robust to additive Gaussian noise, they are not well suited to recover
the underlying low-rank matrix when the noise becomes sufficiently far from Gaussian.
Here we focus on the situation where only a few of the observed entries, termed outliers,
are perturbed; that is,

M = M0 + S, (3)

where M0 is the unperturbed data matrix of rank r and S is a sparse matrix. For
instance, consider recovering the best rank-1 approximation of the following matrix

Mx =
(

2 −1 + x
4 −2

)
.

If x = 0, this matrix is rank-1 since, for instance,

M0 =
(

2 −1
4 −2

)
=
(

1
2

)
·
(
2 −1

)
.

But when x 6= 0, this is not the case, and finding the rank-1 matrix that minimizes the
`2 error leads to fundamentally different solutions.

To observe that, we can simply compute, for each x, the rank-1 SVD of Mx (which is
the solution an `2 method minimizing ‖Mx−X‖`2 would return) and then compute the
RMSE with respect to the original matrix M0. This is depicted in figure 1, and we can
see that the error starts to grow as soon as x 6= 0.

However, if the method was able to identify that only the top right entry of Mx is
corrupted by noise, then it would be able to recover M0 exactly by removing the top
right entry from the mask Ω and performing low-rank matrix completion. More generally,
in the problem of completing from its know entries Ω a matrix M generated as in
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equation (3), the ability of detecting the outliers in PΩ(M) (i.e., the entries affected by
the sparse matrix PΩ(S)) and removing those entries from the mask Ω would open the
way for an exact recovery of the rank-r matrix M0.

1.1 Previous Work

Matrix completion in the presence of outliers has been considered in several papers.

Chen et al. (2011) studied the problem of low-rank matrix completion where a large
number of columns are arbitrarily corrupted. They showed that only a small fraction
of the entries are needed in order to recover the low-rank matrix with high probability,
without any assumptions on the location nor the amplitude of the corrupted entries.

Both Li (2013) and Chen et al. (2013) studied a harder problem, when a constant fraction
of the entries (not the columns) of the matrix are outliers. They studied what conditions
need to be imposed in order for the following convex optimization problem

min γ‖X‖∗ + ‖E‖`1
subject to PΩ(X + E) = PΩ(M)

to exactly recover the underlying low-rank matrix (with ‖ · ‖∗ the nuclear norm). Ba-
sically, they showed that there exist universal constants such that with overwhelming
probability the solution of the problem is equal toM on the mask Ω. In the close context
of low-rank PCA, Candès et al. (2011) was also able to solve the same problem. The
advantage of such an algorithm is that it is convex and can then be analyzed thoroughly.

This robust formulation has been improved to deal with Gaussian noise (Hastie, 2012),
leading to the following convex optimization problem (CRMC, Convex Robust Matrix
Completion)

min λ‖X‖∗ + γ‖E1‖`1 + 1
2‖E2‖2`2

subject to PΩ(X + E1 + E2) = PΩ(M)
.

He et al. (2011, 2012) developed a robust version of the GROUSE algorithm (Balzano
et al., 2010), named GRASTA, which aims at solving the problem of robust subspace
tracking. Their algorithm can be cast to solve problems formulated as

min ‖PΩ(S)‖`1
subject to PΩ(UV + S) = PΩ(M)

U ∈ Gr(m, r)
V ∈ Rr×n

where Gr(m, r) is the Grassman manifold, i.e., the set of linear r-dimensional subspaces
of Rm. GRASTA tackles this problem by first building the augmented Lagrangian
problem, and it then solves it by alternating between V , his dual variables and U and
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by performing steepest descent on the Grassman manifold. The advantage of their
algorithm is that it is designed to tackle the problem of online subspace estimation from
incomplete data, hence it can also be casted to solve online low-rank matrix completion
where we observe one column of the matrix M at a time.

Nie et al. (2012a,b) solved a slightly more general problem where all norms become
arbitrary p-norms

minλ‖X‖pSp
+ ‖PΩ(X −M)‖p`p ,

where ‖X‖pSp
=
∑min(m,n)
i=1 σpi (X) and ‖X‖p`p =

∑m,n
i=1,j=1 |Xij |p. The algorithm used

to solve this non-convex program (when p < 1) is, again, an augmented Lagrangian
method. We were unfortunately unable to obtain or write an efficient implementation of
this algorithm since it requires the storage of the full m×n matrix, as well as SVD of full
matrices of this size. This formulation, however, is efficient for moderate size problems.

Yan et al. (2013) solved `2 problems of the form

min
X∈Mr

‖PΩ(X −M)‖`2

where the mask Ω is adapted at each iteration to remove the suspected outliers. The
idea is to first solve the problem with the original mask Ω, detect outliers, adapt the
mask, and then solve the problem again until convergence. Intermediate problems are
handled using RTRMC (Boumal & Absil, 2011).

Yang et al. (2014) studied the problem of robust low-rank matrix completion using a
non-convex loss-function. They solve the following problem

min
X∈Rm×n:rank(X)≤r

σ2

2
∑

(i,j)∈Ω

(
1− exp

(
−(Xij −Mij)2/σ2

))
,

where the rank-constraint is relaxed using the now standard nuclear-norm heuristic.

Finally, Klopp et al. (2014) studied the optimal reconstruction error in the case of matrix
completion, where the observations are noisy and column-wise or element-wise corrupted
and where the only piece of information needed is a bound on the matrix entries. They
provided a range of (optimal) estimators to solve such problems with guarantees.

1.2 Contribution

In this paper, we consider low-rank matrix completion in the presence of outliers, assum-
ing as in, e.g., Yan et al. (2013) that the rank r is known in advance, which naturally
leads to the formulation

min
X∈Mr

‖PΩ(X −M)‖`p .

It remains to choose p. The choice p = 0, which results in maximizing the number
of exactly recovered entries over the mask Ω, seems natural when only a sparse noise
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is present, but this discontinuous objective function is unwieldy, and moreover it is
inadequate in the presence of an additional dense (i.e., nonsparse) noise. The choice
p = 2, as in (Vandereycken, 2013; Boumal & Absil, 2015) would be adequate for Gaussian
additive noise, but its mean square nature makes it excessively sensitive to the outliers.
We opt for the middle ground, namely p = 1. Its well-known sparsity-inducing property
lets us expect exact recovery when the noise consists of just a few outliers. We will see
in the numerical experiments that this is indeed the case.

The choice p = 1 leaves us with a nonsmooth objective function. We handle this difficulty
by replacing successively the `1 norm by increasingly accurate smooth approximations
thereof. As in (Yan et al., 2013), the resulting minimization problems over the fixed-rank
manifold Mr are tackled by Riemannian optimization techniques. However, while the
`2 formulation in (Yan et al., 2013) enables a variable projection strategy that yields an
optimization problem on the Grassmann manifold (Boumal & Absil, 2015), our smoothed
`1 objective functions do not lend themselves to this approach. Following the way paved
in (Vandereycken, 2013), we resort instead to a conjugate gradient scheme on the fixed-
rank manifoldMr viewed as an embedded Riemannian submanifold of Rm×n. Numerical
experiments confirm that the resulting algorithm is particularly efficient in the case where
a few percents of the entries are largely corrupted by non-Gaussian noise.

Compared to the methods described by (Candès et al., 2011) or (Hastie, 2012) for in-
stance, our method requires at least an estimate of the target rank. In some applications,
as in computer vision, the target rank can be known in advance. It can also often be
estimated, and then adjusted according to the result. In comparison with the nuclear-
norm formulation that requires full SVD factorizations, iterating on low-rank manifolds
yields lower time and space complexities.

We also point out that our problem formulation, like GRASTA’s, involves an `1 objective
function and a fixed-rank constraint. However the algorithms are fundamentally differ-
ent: GRASTA proceeds one column at a time and combines gradient descent on the
Grassmannian and ADMM, while our proposed method applies to the whole objective
function a conjugate gradient scheme on a fixed-rank manifold.

Our algorithm can also efficiently handle regularization, and in practice we solve

min
X∈Mr

‖PΩ(X −M)‖`1 + λ‖PΩ̄(X)‖2`2 .

The regularization factor appears to be quite useful in applications to limit overfitting.
This is justified by the work of Boumal & Absil (2015) where regularization is crucial
to handle real datasets. The algorithm also scales well with the size of the problem and
stays very efficient when the amplitude of the outliers increase. We finally implemented
a simple Matlab version of the algorithm, able to solve problems of size 50 000×50 000
of rank 10 in a matter of minutes on a regular desktop computer.

This paper is divided in the following way. In section 2 we remind the reader of the
essential tools of optimization on manifolds. We introduce our algorithm in section 3.
We study its convergence in section 4 while we perform numerical experiments, both
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synthetic ones and real-life applications, in section 5. Conclusions are drawn in section
6.

2 Optimization on Manifolds and the Low-Rank Matrix Manifold

The low-rank matrix manifold

Mr = {X ∈ Rm×n : rank(X) = r},

where r ≤ min(m,n), is known to be a smooth manifold embedded in Rm×n of dimension
r(m + n − r) (Lee, 2003; Vandereycken et al., 2009). Hence, optimization techniques
presented in (Absil et al., 2008) can be applied to solve smooth optimization problems
where constraints are formulated usingMr.

There are several ways of describing a matrix X ∈ Mr (Absil & Oseledets, 2014). In
this document, we will use the very natural SVD-like representation

X = UΣV > (4)

where U ∈ Rm×r and V ∈ Rn×r are matrices with orthogonal columns (i.e., U>U = Ir
and V >V = Ir) and Σ ∈ Rr×r is a diagonal full-rank matrix. This formulation requires
r(m + n + 1) ≈ r(m + n − r) storage capacity and has the advantage of having two
orthogonal matrices.

Each vector Ẋ belonging to the tangent space TXMr ofMr at X has a unique repre-
sentation (U̇ , Σ̇, V̇ ) such that (Vandereycken, 2013)

Ẋ = U Σ̇V > + U̇V > + UV̇ >, (5)

U>U̇ = 0 and V >V̇ = 0.

This formulation also requires r(m+ n+ 1) ≈ r(m+ n− r) storage capacity.

Given a vector Z in the ambient space Rm×n, its projection on the tangent space TXMr

can be computed (Vandereycken, 2013) and is given by PTXMr (Z), defined as

PTXMr : Rm×n → TXMr : Z → PUZPV + P⊥U ZPV + PUZP
⊥
V ,

with PU = UU> and P⊥U = I − UU>, PV and P⊥V being defined in the same way.

Using the tangent space representation, a basic identification yields the following repre-
sentation for the (orthogonal) projection of an ambient vector Z onto TXMr:

Σ̇ = U>ZV U̇ = (I − UU>)ZV V̇ = (I − V V >)Z>U. (6)

The algorithm we will describe requires to be able to move along directions on the
manifold. It is now well established (e.g. in Absil et al. 2008) that this can be cheaply
achieved using a retraction instead of the expensive exponential map for instance, while
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keeping all convergence guarantees. We decided to use the projective retraction (Absil
& Oseledets, 2014): given a vector Ẋ ∈ TXMr, it finds Y ∈Mr such that

Y = RX(Ẋ) = argminY ∈Mr
‖X + Ẋ − Y ‖F .

The solution of this minimization problem is known to be the rank-r SVD of X + Ẋ
(Eckart–Young theorem). Assuming X is given as (4) and Ẋ as (5), it is possible to
compute it efficiently (Vandereycken, 2013; Absil & Oseledets, 2014).
Because Mr is embedded in Rm×n, a suitable vector transport (i.e., a mapping from
the tangent space at some point to the tangent space at another point) is simply the
projection of the ambient version of the original vector in the tangent space at the new
point (Vandereycken, 2013).

3 Riemannian Optimization and Smoothing Techniques

3.1 The Main Idea

As explained earlier, the problem we aim to solve is the following

min
X∈Mr

‖PΩ(X −M)‖`1 + λ‖PΩ̄(X)‖2`2 , (7)

with the following interpretation: we ought to find a low-rank matrix X that fits the
data M in the `1 sense on the mask Ω. On the remaining entries in Ω̄, we have a
small confidence λ (typically between 0 and 10−5-10−3, even though this is application-
dependent) that the value should be zero, hence we minimize the `2 error between X
and 0 on Ω̄ 2. This is motivated by previous studies of (Boumal & Absil, 2015) were
regularization was especially useful to deal with real datasets. Note that the reason for
the use of the `2 norm in the regularization term is twofold: first, the `2 norm will allow
significant simplifications to be detailed in the forthcoming sections. Secondly, we can
observe outliers on Ω, so the `1 norm makes sense there; but we obviously cannot observe
outliers on Ω̄, so it does not seem necessary to use an `1 norm there, and an `2 norm
should be more suitable.
The obvious main drawback of using (7) is that it is non differentiable. To remedy
this problem, we decided to use smoothing techniques in order to make the objective
differentiable. The idea is that, for a small δ > 0, the following function∑

(i,j)∈Ω

√
δ2 + (Xij −Mij)2

is a smooth approximation of
‖PΩ(X −M)‖`1 ,

as depicted on figure 2. The idea is thus to solve the following optimization problem
2 Note that this assumes that the entries in the matrix have a mean equal to zero.
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min
X∈Mr

∑
(i,j)∈Ω

√
δ2 + (Xij −Mij)2 + λ

∑
(i,j)∈Ω̄

X2
ij (8)

for decreasing values of δ.

To solve a problem in the form
min
x∈M

f(x)

whereM is a smooth Riemannian manifold and where f is smooth, there exist now many
different techniques such as Riemannian conjugate gradient or trust-region algorithms
(Absil et al., 2008). We have opted for the conjugate gradient approach, as it appears
to be more precise and efficient when δ becomes small.

3.2 The Objective Function and its Gradient

Using a first-order algorithm like conjugate gradient requires the computation of the
cost function and the (Riemannian) gradient.

Taking a look at (8), one may think that just evaluating the cost would require O (mn)
operations, since we need to evaluate X over both Ω and Ω̄. Actually, as pointed out in
(Boumal & Absil, 2011) this is not the case, since

‖PΩ̄(X)‖2`2 = ‖X‖2`2 − ‖PΩ(X)‖2`2 ,

and, because we store X using the factorization X = UΣV >, we can compute ‖X‖2`2
easily thanks to the invariance of the Frobenius norm to orthogonal changes of basis :

‖X‖2`2 = ‖Σ‖2`2 ,

which requires O (r) operations. We can then rewrite the cost function of (8) as

fδ(X) =
∑

(i,j)∈Ω

(√
δ2 + (Xij −Mij)2 − λX2

ij

)
+ λ‖X‖2`2 . (9)
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Hence, computing the cost function requires O (|Ω|+ r) operations, after having evalu-
ated the product UΣV > on the mask Ω.

We can clearly see here the advantage of having added an `2 regularization term: the
fact that ‖X‖2`2 = ‖Σ‖2`2 is crucial to avoid an O (mn) complexity in the computation of
the objective function.

To compute the gradient, becauseMr is embedded in Rm×n, we first need to compute
the Euclidian gradient of f at X and then project it onto TXMr. The Euclidian gradient
is

∇fδ(X) = S + 2λX

where S is a sparse matrix defined as

Sij =


Xij−Mij√

δ2+(Xij−Mij)2 − 2λXij if (i, j) ∈ Ω,
0 otherwise.

The gradient is thus the sum of a sparse (S) and a low-rank (2λX) component. Then,
projecting it onto TXMr can be done efficiently thanks to equation (6) and to the fac-
torization X = UΣV >. Indeed, we have

Σ̇ = U>(S + 2λX)V
= U>SV + 2λΣ,

U̇ = (I − UU>)(S + 2λX)V
= SV + 2λUΣ− UU>SV − 2λUΣ
= SV − UU>SV,

V̇ = (I − V V >)(S + 2λX)>U
= S>U + 2λV Σ− V V >S>U − 2λV Σ
= S>U − V V >S>U.

Given the fact that S is sparse, these three terms can be computed efficiently. Note that
the addition of the regularization parameter is cheap, since it only requires us to modify
the S matrix, and to add a small r × r matrix to Σ̇.

3.3 The Algorithm

The full algorithm is stated in algorithm 1; the name RMC stands for “Robust Matrix
Completion”. Note that in the following, by outer and inner iteration we mean the δ
and the conjugate-gradient (CG) loop, respectively.

We use a CG algorithm with a Hestenes-Stiefel modified rule (even though, after several
experiments, we found that this choice does not really impact the algorithm) and an
Armijo backtracking linesearch.
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The starting point of the algorithm, X(0), can be chosen simply using the rank-r SVD
of PΩ(M). Suitable values for δ(0) (the initial value for the smoothing parameter δ) are
application-dependent, but for data M with values around unity, we use δ(0) = 1. Note
that this value can have a significant impact on the quality of the final solution. The
smoothing parameter is then updated using a geometric rule δ(k+1) = θ · δ(k). A quite
“aggressive” value of θ = 0.05 gives good results in our synthetic experiments. In real
applications this parameter has to be tuned to find a suitable value. For all experiments,
ε is set to 10−8 (but again, this is application-dependent). The stopping criterion of the
conjugate-gradient algorithm is set to a maximum of 40 iterations or a gradient norm of
10−8, whichever is reached first.

Algorithm 1 RMC
procedure RMC(X(0), δ(0), θ, ε, λ)

f (0) ←∞
k ← 0
δ(1) ← δ(0)

e←∞
while e ≥ ε do

Solve

X(k+1) = argminX∈Mr

∑
(i,j)∈Ω

√
(δ(k+1))2 + (Xij −Mij)2 + λ‖PΩ̄(X)‖2`2 (10)

using Riemannian Conjugate Gradient algorithm and X(k) as a starting point.
f (k+1) ← fδ(k+1)(X(k+1))
e← f (k) − f (k+1)

k ← k + 1
δ(k+1) ← δ(k) · θ

end while
end procedure

4 Convergence Analysis

This section provides a basic convergence analysis of the RMC algorithm. Its goal is
mostly to give sense to the stopping criterion of the outer loop, i.e., that the algorithm
will terminate at some point (assuming exact arithmetic at least). Let fδ be defined as
in equation (9).

Theorem 1 (Strict decrease). If the sequence of iterates {X(0), X(1), X(2), . . . } is pro-
duced by algorithm 1 with θ < 1, defining f (k) = fδ(k)(X(k)), we have

f (0) > f (1) > · · · > f (k) > · · ·
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Proof. At iteration k, the CG algorithm returns a feasible solution X(k) ∈ Mr, associ-
ated with δ(k). It is easy to see that X(k) stays a feasible point for the next step (since
it belongs toMr), and that

fδ(k)(X(k)) > fδ(k+1)(X(k)).

This follows from δ(k+1) = θ · δ(k) < δ(k) and the expression (9) of fδ(X). Then, because
CG is a descent direction,

fδ(k+1)(X(k)) ≥ fδ(k+1)(X(k+1)).

The claim follows from these two inequalities.

Now, it is also easy to notice that, ∀δ ≥ 0 and ∀X ∈Mr,

fδ(X) ≥ f(X).

Hence, defining
f∗ = inf

X∈Mr

f(X) ≥ 0,

we observe that the sequence of iterates {fk}Kk=1 is monotonically decreasing and bounded
below by f∗.

This conclusion gives sense to the stopping criterion of the algorithm saying that it stops
after iteration k if the difference between f (k) and f (k+1) is below some threshold ε: the
algorithm will terminate at some point. We emphasize the fact that this does not prove
that the algorithm converges towards a global minimum.

5 Numerical Experiments

In this section, we first apply RMC on synthetic problems. We then perform experiments
on the Netflix dataset to show how the algorithm behaves in this situation.

5.1 Synthetic Problems

On all experiments, synthetic data are created in the following way: we build U ∈ Rm×r
and V ∈ Rr×n with i.i.d. Gaussian-entries such that their product M = UV is filled
with zero-mean and unit-variance non independent Gaussian entries. We then sample
k = ρr(m+ n− r) entries uniformly at random, where ρ is the oversampling factor.

In some cases, we will add some non-Gaussian noise on part the observed entries to
create outliers. To do so, we add one realization of the following random variable

O = S±1 · N (µ, σ2)
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where S±1 is a random variable with equal probability to be equal to +1 or −1, while
N (µ, σ2) is a Gaussian random variable of mean µ and variance σ2. Outliers are always
created uniformly at random with a probability of 5%.

Different factors affect the task of matrix completion. Obviously, the size of the problem
matters, and we will try to tackle large enough problems to show that our algorithm
scales well. The oversampling factor ρ should also be greater than 1, and in the following
experiments it will be fixed to either 4 or 5.

Let us denote byM0 the original low-rank matrix, without any outliers. We will monitor
how the root mean square error (RMSE), defined as the error on all the entries between
X and the original matrix M0

RMSE(X,M0) =

√∑m,n
i=1,j=1(Xij −M0,ij)2

mn

decreases. Since we have access to the factorization of both X and M0, this can be
computed efficiently (Boumal & Absil, 2015). A decrease towards zero is what we expect
from a robust matrix completion method, since our goal is to recover exactly (up to
numerical errors) the original low-rank matrix, even in the presence of outliers.

We decided to compare RMC (algorithm 1) to AOPMC (Yan et al., 2013), GRASTA
(He et al., 2011, 2012), CRMC (Hastie, 2012) and to the `2 method RTRMC (Boumal
& Absil, 2015).

For RMC, the maximum number of CG iterations (the inner loop) is set to 40 with a
gradient tolerance of 10−8. We use δ0 = 1, as well as θ = 0.05.

For AOPMC, we use the default settings with a maximum of 20 trust-region iterations
at each outer iteration (i.e., when the mask Ω is fixed, with potentially some outliers
removed) but a maximum of 20 iterations for the tCG algorithm (see (Boumal & Absil,
2011) for further information). Note that we use the code of the authors3, but because
we know the number of outliers, we decided to provide it to AOPMC. Otherwise, we
would need to run the algorithm several times to guess the number of outliers. Also
note that AOPMC automatically adjusts the number of iterations if it seems that the
convergence is too bad. We did not change this option, so this may explain why the
algorithm sometimes does more than 20 iteration between each update of the mask Ω.

Regarding GRASTA, we also use the implementation provided by the authors4, with the
default settings, but we had some troubles to run the algorithm on large 50 000× 50 000
problems, since it was not even able to perform two complete sweeps over the data in
less than 10 minutes (while RMC terminates in about 5 minutes in this situation). It
is to be due to the fact that the algorithm operates one column at a time, and since
each rank-1 update of the U matrix takes about 0.01-0.02 second (using a standard but
efficient Matlab implementation), one loop over the 50 000 columns takes more than 10

3 Available at https://binary-matching-pursuit.googlecode.com/files/AOPMCv1.zip.
4 Available at https://sites.google.com/site/hejunzz/grasta, version 1.2.0.

https://binary-matching-pursuit.googlecode.com/files/AOPMCv1.zip
https://sites.google.com/site/hejunzz/grasta
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minutes. Note that this can be easily understood, since the original goal of GRASTA is
not to perform “batch” matrix completion, but rather online subspace tracking. For the
5000×5000 case, everything goes well and the algorithm converges in a decent amount of
time. The only modification made to the algorithm was to change the initial point that
was set, like the other algorithms, to the left matrix of the rank-r SVD of the matrix
PΩ(M) (instead of some complete random initialization). Note that this does not have
a significant influence on the convergence of the algorithm.

For CRMC, we obtained the code directly from the authors. It uses the PROPACK tool-
box to compute the SVD. All the computational burden comes from the required dense
SVD (required to compute the gradient step) that has to be performed at every step. As
we will show in the next experiment, this significantly slows down the algorithm. CRMC
has two essential parameters (see equation 1.1), namely γ and λ. In our experiments,
we noticed a sharp increase in the solution quality for λ = 10−6 and γ = 4.5 ·10−3. Note
that since RMC knows the rank of the target low-rank matrix, we decided to provide it
to CRMC: it significantly speeds-up the convergence, by only computing thin SVD’s.

Finally, we compared these four `1 methods with an efficient `2 method. This aims at
showing that `2 do not perform well in the presence of outliers, even for very moderate
values. We decided to use RTRMC (Boumal & Absil, 2015) version 3.1, with all the
default parameters, including the regularization parameter λ set to 0. Note that higher
values do not lead to better solution in the presence of outliers.

On all figures, the large dots indicate a change in the outer-iteration: in RMC it indicates
a decrease in δ, while it indicates an update of the mask Ω in AOPMC.

Remark 1 We point out that we tried, without success, to speed-up the RMC and
AOPMC algorithms by terminating the inner loop sooner, when the decrease from iter-
ation to iteration was small enough. It appears that solving the inner problems with a
good enough quality (i.e., a small enough gradient norm) is crucial for the convergence
of both algorithms towards the exact underlying low-rank matrix. For this reason, we
left the gradient tolerance set to 10−8. This explains the flat regions at the end of each
iteration of the outer-loop on the following figures.

Remark 2 Note that the experiments where run on quite large 50 000×50 000 matrices,
in order to show that the algorithm presented here scales well on large matrices. Similar
experiments were also run on 500 000 × 500 000 matrices of rank 10: the behavior of
RMC was very stable and the running time appeared to be linear in the size of the
matrix, i.e., in O(m+ n). They are omitted for simplicity. Results on smaller matrices
are qualitatively the same, except for the time the algorithm takes to reach the optimal
value.

All experiments where run on a 6-core Intel Xeon CPU E5-1650 v2 at 3.50GHz with 64
Go of RAN using Matlab R2014a on a 64-bit Linux machine. We used the Manopt
toolbox (Boumal et al., 2014) (version 1.0.7) to handle the optimization part of the
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Fig. 3: Perfect low-rank matrix completion: low-rank matrix completion of a rank-10
5 000 × 5 000 matrix observed with an oversampling of 5. The decrease in the
objective function from iteration to iteration is clear. In this example, RMC
struggles to significantly decrease the RMSE at the end since the function be-
comes less and less differentiable near the “kinks” of the absolute values, where
the solution is located.

RMC algorithm with the fixedrankembeddedfactory manifold factory and the default
conjugate gradient method.

Perfect Low-Rank Matrix Completion As a sanity check, we test all the methods on
the very simple perfect matrix completion (matrix completion without any noise nor
outliers) problem using a 5 000× 5 000 matrix of rank 10. Results are depicted on figure
3. All methods eventually successfully recover the original matrix: the RMSE is driven
towards zero, as expected.

GRASTA and CRMC are observed to be much slower than the other three methods. In
both methods, the first iterate is computed after between 2 and 5 seconds (explaining
the fact that the curves start only later). For GRASTA, as explained earlier, this is
due to the fact that it operates one column at a time. In this particular case, it takes
GRASTA approximately 40 seconds to reach an RMSE of 10−8. For CRMC, the dense
SVD make the algorithm so slow that it cannot even decrease the RMSE by a factor 10
in 5 minutes.

Low-Rank Matrix Completion with Outliers Given a 500 × 500 matrix for which we
observe the entries uniformly at random with an oversampling ρ of 5, we perturbed 5%
of the observed entries by adding to them some non-Gaussian noise to create outliers.



5 Numerical Experiments 16

This problem would be cumbersome to solve with an `2 method because of the high
weights the outliers would have in the objective function (as depicted by the result of
RTRMC in the following plots).

When running our algorithms, we obtain the results depicted on figure 4(a) for outliers
created using µ = σ = 0.1 and on figure 4(b) using µ = σ = 1.

We can see that all the `1 methods manage to successfully solve this problem. CRMC
is quite slow compared to the other methods due to the expensive dense SVD required
at each iteration. Still, it is able to reduce the error by three orders of magnitude. This
is in contrast with the `2 method RTRMC. We observe that RTRMC follows exactly
the same convergence as the first outer-iteration of AOPMC, but it then stops. The
high weight of the outliers in the `2 objective function prevent any improvement in the
solution quality. We can see that, in this case, the strength of the outliers do not have
a significant impact: it is moderate enough so that all the `1 methods successfully solve
the problem.

We then run the same experiment on larger 50 000 × 50 000 matrices, with still 5% of
outliers. Figure 5(a) and 5(b) illustrate the results of these experiments, with µ = σ = 1
and µ = σ = 5 respectively, using an oversampling of 5.

We can see that both AOPMC and RMC solve the first problem well. Both GRASTA
and CRMC, on the other hand, do not converge in a decent amount of time. We also
observe that RMC stays very robust when the strength of the outliers increases, while
AOPMC starts to have important difficulties in the second experiment. The robustness
of RMC is most likely be due to the asymptotic linear behavior of the cost function,
even in the first iterations: AOPMC, on the contrary, needs to first solve an `2 problem.
If this problem is too hard, the first outer-iteration will lead to such a bad solution that
the algorithm will not eventually converge. Finally, note that RTRMC, the `2 method,
simply does not converge in the second case.

Note that this is a quite extreme experiment, in a sense that the outliers have a mean
(absolute) amplitude of 5, while the entries have mean (absolute) value of 1. Yet, it
demonstrates the robustness of RMC. Also note that the oversampling has a significant
importance in this experiment, as an oversampling of 4 seems to make things harder for
RMC: in this case, the RMSE stagnates around 10−4 − 10−5.

Noisy Low-Rank Matrix Completion with Outliers In this experiment, we try to tackle
the important problem of matrix completion in the presence of both (dense) noise and
(sparse) outliers. Outliers are defined as previously, while noise is the addition, at each
observed entry, of a zero-mean Gaussian random variable with variance σ2

N .

To have a point of comparison, we compare the results using RMC to the performances
an oracle knowing the row and column space ofM0, and returning the best matrix using
this information, would give. If the entries are perturbed by Gaussian noise (without
outliers) with variance σ2

N , the best RMSE is equal (in expectation) to (Candes & Plan,
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(b) µ = σ = 1

Fig. 4: Low-rank matrix completion with outliers: robust low-rank matrix completion
of rank-10 500 × 500 matrices observed with an oversampling of 5 and with 5%
outliers in the observed entries.
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Fig. 5: Low-rank matrix completion with outliers: robust low-rank matrix completion
on 50 000× 50 000 matrices of rank 10 with an oversampling of 5 and 5% outliers
in the observed entries.
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Fig. 6: Noisy low-rank matrix completion with outliers: Evolution of the RMSE with
respect to the signal-to-noise ratio SNR = 1

σ2
N

on a 5 000× 5 000 matrix of rank
10 with an oversampling of 5 and 5% outliers created using µ = 1 and σ = 1.
Noise is the addition of i.i.d. Gaussian variables N (0, σ2

N ).

2010)

RMSEOracle = σN

√
2nr − r2

|Ω|

for the low-rank completion of an n× n matrix with an `2 method.

Figure 6 depicts the RMSE at termination of RMC with respect to the signal-to-noise
(SNR) ratio. Results are the average of 3 successive experiments. Entries in the matrix
M are such that the matrix has unit-variance Gaussian entries. We thus have SNR = 1

σ2
N
.

We clearly see that—even in the presence of 5% of outliers—the algorithm successfully
recovers the original low-rank matrix with an error proportional to the noise level. As
long as the noise level is not too high, we have performances very similar to those of the
oracle bound. For a high level of noise (SNR < 1), we see that the algorithm is slightly
better than the oracle bound. This can be due to the `1 objective function which helps
reduce the effect of the high variance. For a low level of noise, with an SNR greater than
1014, the algorithm begins to have numerical difficulties to drive the RMSE towards zero
because the objective function becomes less and less differentiable near the “kinks” of the
absolute values. This is the same effect as in the previous experiments where the RMSE
begins to stagnate around 10−8 − 10−6 due to the non-differentiability of the objective
function near the solution, which happens to be exactly at the non-differentiable part of
the objective function. A moderate and high level of noise has the effect of “smoothing”
the objective function since the solution starts to deviate from the kinks of the `1 norm.
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Fig. 7: Evolution of the RMSE with respect to the percentage of outliers and their
strength on a 5 000 × 5 000 matrix of rank 10, observed with an oversampling
of 4 and using µ = σ.

Influence of the Percentage of Outliers Finally, we study the effect of the percentage
and strength of the outliers. As we can expect, for a high amount of outliers, we cannot
expect RMC to retrieve the original low-rank matrix. But as we will see, as long as
the number of outliers is small enough, our algorithm is able to perfectly recover the
underlying model. Figure 7 shows how the RMSE at termination evolves with the
percentage of outliers added and their strengh. This figure is obtained after the average
(at each point on the plot) of 3 experiments, aiming at the completion of a 5 000× 5 000
rank-10 matrix observed with an oversampling of 5 (note the triple-log scale).

Three things are worth noting on this figure. First, the abrupt change in the RMSE
around 0.5% of outliers is purely numeric. The reason is that the slight increase in
the number of outliers allows the method to converge better: the algorithm succeeds in
decreasing δ(k) one more time (without the conjugate gradient stalling) and can then
decrease the RMSE even more.

Secondly, we notice a strong increase in the RMSE around 6-8% of outliers. This is
quite low but can be explained by the small oversampling ratio used: a low percentage
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of outliers can reduce the number of healthy entries below the minimum required number.
Still, this is interesting, as it shows that as long as the number of outliers is small enough,
the recovered matrix stays almost exactly the same as the original unperturbed matrix.

Thirdly, it is interesting to note that the strength of the outliers, from µ = σ = 0.1
to µ = σ ≈ 10, has a negligible impact on the quality of the final solution (remember
entries have values around unity) as long as it remains low enough. This is in complete
opposition with the previous experiment on noisy matrix completion, where the RMSE
is clearly proportional to the level of the dense Gaussian noise

5.2 Application: The Netflix Dataset

One of the most emblematic uses of Low-Rank Matrix Completion is in recommender
systems and in particular in the Netflix Prize (Bennett & Lanning, 2007). In this
section, we propose to test our algorithm RMC on this real-world dataset.

The problem is the following: Netflix, a movie rental company, wants to recommend
movies to its users. To do so, they have a limited database of known ratings provided
by some users themselves. In practice, this translates into the completion of a large
480 189 × 17 770 matrix, where columns correspond to movies, rows to user, and each
entry is the rating of the movie represented by an integer from 1 to 5. To train the
algorithm, we have 99 072 112 entries revealed; that is, approximately 1% of the entries
are known. We then test our model on another set of 1 408 395 entries. Note that all
values are shifted towards zero by subtracting the mean of the revealed entries (3.604),
since our (regularized) model assumes a mean value of 0.

To assess the results, we use the root mean square criterion, i.e.,

RMSEtest =

√∑
(i,j)∈TestSet(Xij −Mij)2

|TestSet| ,

on the test set (i.e., the unrevealed entries). Returning the mean ratings as a prediction
leads to a test RMSE of 1.13, while the winner of the Netflix prize, the BellKor’s Prag-
matic Chaos algorithm (Netflix, 2009), reached an RMSE of 0.8567, using a combination
of many different techniques. Boumal & Absil (2015) performed extensive comparisons
between different low-rank matrix completion algorithms (all minimizing the `2 norm
on the training set). We can observe that the best result was obtained using LMaFit
(Balzano et al., 2010), reaching a test RMSE of 0.955.

Two parameters have a significant influence on the results. The rank “dictates” the
complexity of the solution; the regularization parameter λ is used to limit overfitting,
i.e., to avoid fitting too well the known entries while deviating too much from the mean
on the unknown entries. To study the impact of both parameters, we picked a reference
point with r = 10 and λ = 8 · 10−4 and we then changed the two parameters around
these two values, one at the time. Note that the rank was chosen arbitrarily, while the
value of λ is the one that gives the best results for a rank of 10. Also note that, after a
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Fig. 8: Evolution of the test RMSE on the Netflix dataset for different values of λ
(displayed on the right) using a rank r = 10. It is clear from this experiment
that the regularization λ play an important role. By tuning it to the right value,
we obtain a quite good test RMSE of 0.9477

few trials, we found that in this context, iteratively decreasing the δ parameter was not
particularly useful. We then decided to fix it to 1. This value might seems high, but the
smooth version is already a quite good approximation of the `1 norm. The number of
iterations was limited to 100, and the gradient tolerance was set to 10−8. In practice,
most of the runs did not reach a gradient tolerance of 10−8 and were interrupted after
100 iterations.

Figure 8 depicts the evolution of the test RMSE for different values of λ. We can easily
see that the non-regularized algorithm reaches a reasonable test RMSE but then tends
to overfit. Increasing the regularization parameter λ around 10−3-10−4 allows to find
a good compromise between training error and overfitting. By increasing it even more,
the test RMSE eventually stagnates, i.e., the regularization is so strong that it does not
really fit anything except the mean value (see the λ = 10−2 curve for instance).

Figure 9 illustrates how the rank plays a significant role in the solution quality. From
this plot, it seems that the choice r = 10 was the right one, since other values for r give
higher results. As underlined in (Boumal & Absil, 2015), choosing a high rank from
the beginning does not seem to be the best choice and rank increasing methods may be
worth investigating.

We can conclude from these experiments that our algorithm performs well on the Net-
flix dataset since it slightly outperforms the low-rank matrix completion algorithms
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Fig. 9: Evolution of the test RMSE on the Netflix dataset for different values of the
rank r using λ = 8 · 10−4. It seems that the choice r = 10 is the right one, and
that increasing the rank leads to overfitting.

that use the `2 norm. This may be due to the fact that our method is robust to out-
liers: this can help to reduce overfitting (even with no regularization), hence leading to
a better overall model that better fits the test set.

Still, it is known that to reach lower test RMSE, it is useful to combine this idea of
low-rank matrix completion with other techniques. For instance, temporal effects have
a large impact, as explained in (Bennett & Lanning, 2007): movies become more or less
popular over time, user tastes and ratings can change over time, and so on. Neighborhood
models, where users and movies are aggregated into groups of similar profiles, also help
in decreasing the test RMSE (Bennett & Lanning, 2007). Yet, our algorithm proved
itself to be quite efficient and may certainly be used as a good building block for a more
complex algorithm. It should also be possible to better fine tune each parameter of the
algorithm to find an even better configuration.

6 Conclusion

In this paper, we have developed a robust low-rank matrix completion algorithm designed
to solve the matrix-completion problem where a small part of the entries are outliers.
Our method can also handle the case were the all the entries are corrupted by a small
Gaussian noise.
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We tackled this problem using Riemannian optimization as well as smoothing techniques
to handle the non-smooth objective function. The resulting algorithm (Algorithm 1)
clearly outperforms state-of-the-art methods when outliers have a large amplitude. On
the Netflix data sets, it provides a 0.8% improvement on the test RMSE compared to
the most accurate (according to Boumal & Absil (2015)) `2 low-rank matrix completion
method, namely LMaFit.

The code of RMC is available online and can be downloaded from https://people.
stanford.edu/lcambier/rmc.
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function, iteratively for decreasing delta so as to get a better

approximation with each iteration.

The paper is not highly novel but brings together a lot of interesting ideas
into a novel algorithm and therefore I think it makes a reasonably strong
contribution. In particular, combining homotopy (decreasing delta) and
Riemannian optimization is very interesting, and the descent proof will be
useful for future theoretical results. Other strengths include the authors’
clear explanation of the algorithm itself, with enough detail to replicate
results including parameter choices.

The main drawbacks of the paper are the focus of empirical results on only two
competing algorithms when there are many more out there, confusing plots
and sometimes not clear evidence for empirical claims, and finally very
casual language and typos.

Comments:

1. Known rank

The authors only briefly justify that they need to know the rank for their
algorithm. In some applications this is reasonable, but in many it is not.
A further discussion is required here, perhaps the authors are focusing on
certain applications and those should be described. However this is not a
serious issue, because often upper bounds on rank can be estimated, and
this can also be discussed in the paper.

2. Organization

The Intro includes related work and ends with the proposed approach. I suggest
instead ending the intro with the proposed approach ("In this paper, we
consider" middle of p5) and then have a related work section, at this point
comparing and contrasting the other approaches to yours.
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3. Experiments

In the experiments the authors chose to only compare to AOPMC and GRASTA. This
makes little sense since there are several other algorithms that get state
of the art results, though sometimes with a heavy computational burden. I
suggest the authors at least compare to a general solver for the nuclear
norm + ell1 norm convex problem on the smaller problems.

Thank you for the clear description of how simulations are generated. One thing
I wasn’t sure about exactly is matrix value normalization. I think your

final matrix M has entries with non-independent mean zero and unit variance
. Therefore for Figures 4 and 5, when mu=1 or mu=5, it seems it would be
possible to threshold the large entries and get rid of many outliers. To
address this you could compare RMC without a threshold step to RMC with a
threshold step that treats clearly large entries as missing data.

The GRASTA results seem fishy because it is known to be a very fast algorithm.
However it may well be that it has trouble scaling. I’d like to see a
little more justification here. I suggest the authors try to optimize
parameters instead of using those set in the provided code for different
problem sizes/types for a fairer comparison. 10 minutes is not incredibly
long; in at least one plot you should compare algorithms even if they take
hours to run, providing evidence for your claims.

Finally the experiment plots need clarification. What do the dots correspond to
? Why are there flat regions and drops- is this after each minimization
problem?

3. The paper needs a careful edit to fix typos and tighten up what is at times
very casual prose. Here are some suggestions:

awkward phrasing:

drawn large interest (significant instead?)
if the method was able to find out that only the top right entry (could

identify instead?)
The choice p=0, which consists in maximizing -> results in maximizing

typos:

reconstruct damaged image -> a damaged
completion of it is -> completion is
allows to recover -> allows recovery of
requires to modify -> requires us to modify
handle better the outliers -> the outliers better

other suggestions/questions:
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The second paragraph of the intro has "typically O(m+n)" samples required, but
this is only if rank = O(1). Do you mean to operate in this regime for rank
?

Chen et al 2011 has an updated non-arxiv citation.

U is an orthogonal matrix... technically orthogonal should be square. I don’t
mind this but you may want "a matrix with orthonormal columns."

f(X) is not defined in the middle of p11

the letter f is used again as the oversampling factor, I suggest a different
letter.

The text at the start of "Evolution with number of outliers" is very casual and
needs to be tightened up.

• Known rank : indeed, an upper-bound on the rank can often be found. In this
case, a bisection method can be used to find the optimal rank for instance.

• Organization : we added subtitles in the introduction to make its structure more
apparent. We also added text to better compare and contrast the other approaches
with ours.

• Experiments :

– We added the comparison with CRMC (from Hastie and Mazumder). This
method is a general nuclear norm + l2 + l1 method. As the experiment show,
this method requires dense SVD and is then much slower than our algorithm.
On large problem this is very unpractical.

– Thresholding method : we tried this method. For an `2 method, this has
very little effect, and a method that was diverging without thresholding still
diverge. For RMC, it has some impact, speeding-up convergence from 10 to
20%. Still, it is not obvious how to remove these outliers, since one has no
apriori about the original matrix distribution. It is indeed not hard to have
a low-rank matrix with a distribution far from Gaussian (by, for instance,
taking the truncated SVD of a matrix with two modes). In this case, the
thresholding is not obvious to apply, and if applied, only lead to very small
improvements.

– The results for GRASTA can indeed look strange at first sight. Though, as
explained page 13, we strongly believe this is due to the fact that GRASTA
is designed to do "online" matrix completion, i.e. one column at a time. Since
we do "batch" matrix completion, it needs to do several loops on the columns
in order to converge (between 10 and 30). Even with finely tuned parameters
where it only needs 8 loops in total, one loop can take up to 5 minutes on
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the large instances (with a good implementation, using the mex compiled
functions). This is simply because it needs to spend a few milliseconds on
each of the 50 000 columns. There is thus no way for it to compete with say
RMC or AOPMC. Still, on smaller instance (like the 500x500 matrices) it
converges quite quickly and to a solution with a good quality.

– The dots on the figures correspond to a change in the outer-iteration for RMC
and AOPMC, as described page 14. The flat region on the RMC convergence
correspond to the fact that we require it to run up to a gradient of 10−8.
Because of that, there is a flat region at the end of every inner-iteration. As
pointed out on page 14, we tried to avoid this phase, but then the algorithm
becomes less likely to converge to a good-quality solution. The drops simply
correspond to the minimization of the smooth approximations of the `1 norm.
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Response to Referee 3

Robust Low-Rank Matrix Completion by Riemannian Optimization
Authors: Léopold Cambier, P.-A. Absil
Version under review: M102515, submitted on June 06, 2015

We have added comparisons with CRMC from Hastie and Mazumder and with RTRMC
from Boumal and Absil. Besides this, minor modifications that could require attention
are in blue.

The paper describes a optimization procedure for low-rank matrix completion,
where the solution is restricted to the Grassmanian manifold M_r of low-
rank matrices, a robust l_1 norm (with smoothing) is used over the provided
entries M in Omega, and a lambda-regularized l_2 norm over the predicted

values not given (should ideally be 0 after normalization). Namely the
optimization procedure formulation is:

min_{X in M_r} ||P_Omega,delta(X-M)||_{ell_1} + lambda ||P_{not Omega}(X)||_{
ell_2}^2

where
P_Omega,delta(X-M) = sum_{i,j in Omega} sqrt(delta^2 + (X_{i,j} - M_{i,j})^2}.

It seems both have the objective:
(A) min_{X in M_r} ||P_Omega,delta(X-M)||_{ell_1}
and
(B) min_{X in M_r} ||P_Omega,delta(X-M)||_{ell_2}^2 + lambda ||P_{not Omega}(X)

||_{ell_2}^2 (by overlapping authors this year)
have been considered before.

The key new ideas seem to be the addition of the
lambda ||P_{not Omega}(X)||_{ell_2}^2
term while also having a robust l_1 norm on the Omega mask data. This puts a

small penalty on the non-observed values to be 0. Since this has an ell_2
norm, it allows the objective function to still have its derivative taken
in time depending on |Omega|. And the ell_1 norm on the first term can be
smoothed and so it still has a simple to compute derivative.

It would be helpful to more specifically describe the changes in formulation
from Boumal-Absil 2015. I had to look up this other paper.

Experiments show that
(1) this is competitive with other state-of-the-art solvers for most versions

of this solver
(2) for certain extreme cases of outliers, it outperforms the state-of-the-art,
(3) it is quite scalable, say compared to GRASTA,
(4) and there is clear tangible effect on the NETFLIX data of a non-zero lambda

parameter.
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Although the improvements are for a fairly limited case of data, they are
improvements that would be easy to add to an existing routine, and are
probably worth publishing.

However, I have one major worry!
The authors do not also compare to Boumal-Absil 2015 (sharing one author, "Low-

rank matrix completion via preconditioned optimization on the Grassmann
manifold"), with a very similar formulation (swapping an l_1 norm with an
l_2 norm). There is a toy example that illustrates the advantage of the l_1
norm, but otherwise no actual experiments that demonstrate that the (

smoothed) l_1 norm is actually better. I’d expect both to be about as
scalable. So why not compare (I assume it will be easy to get the code :) )
? Simply including its run into Figures 3,4, and 5 (or saying its much
worse if it somehow dramatically shifts the plots) would be sufficient. But
without that inclusion, its hard to say that this method provides any

tangible benefits over existing work.

• RTRMC : we added RTRMC as an `2 reference method. As we can see on the
experiments, it clearly has a lot of trouble solving the problem in the presence of
outliers. We even tried using the regularization parameters, but this does not work
either. It is clear from that that the outliers have too much weight in the objective
function, preventing it to find the underlying low-rank matrix.
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